Skip to main content

Advertisement

Log in

Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Correction to this article was published on 22 September 2022

This article has been updated

Abstract

CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author on reasonable request.

Change history

Abbreviations

PAAD:

Pancreatic adenocarcinoma

GEO:

Gene expression omnibus

WGCNA:

Weighted correlation network analysis

TCGA:

The cancer genome Atlas

GSVA:

Gene set variation analysis

TME:

Tumor microenvironment

CYT:

Cytolytic activity

AIC:

Akaike information criterion

GSEA:

Gene set enrichment analysis

NEO:

Neo-antigen

References

  1. Oberstein PE, Olive KP (2013) Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol 6(4):321–337

    Article  PubMed  PubMed Central  Google Scholar 

  2. Force USPST et al (2019) Screening for pancreatic cancer: us preventive services task force reaffirmation recommendation statement. JAMA 322(5):438–444.

  3. Vincent A et al (2011) Pancreatic cancer. Lancet 378(9791):607–620

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Reilly EM et al (2019) Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol 5(10):1431–1438

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hilmi M, Bartholin L, Neuzillet C (2018) Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 24(20):2137–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie C et al (2020) Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin Cancer Res 26(10):2318–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501

    Article  PubMed  PubMed Central  Google Scholar 

  8. Humphris JL et al (2017) Hypermutation in pancreatic cancer. Gastroenterology 152(1):68–74 e2.

  9. Thompson ED et al (2010) Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 207(8):1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148

    Article  CAS  PubMed  Google Scholar 

  11. Gubin MM et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naito Y et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58(16):3491–3494

    CAS  PubMed  Google Scholar 

  13. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  14. Sade-Feldman M et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175(4):998-1013.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azizi E et al (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174(5):1293-1308.e36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang P et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24(10):1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng C et al (2017) Landscape of Infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7):1342-1356.e16

    Article  CAS  PubMed  Google Scholar 

  18. Guo X et al (2018) Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 24(7):978–985

    Article  CAS  PubMed  Google Scholar 

  19. Danaher P et al (2018) Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer 6(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lutz ER et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2(7):616–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang TX, Fu L (2019) The immune landscape of esophageal cancer. Cancer Commun (Lond) 39(1):79

    Article  PubMed  Google Scholar 

  22. Zhang Y et al (2010) Aberrant expression of NK cell receptors in Epstein-Barr virus-positive gammadelta T-cell lymphoproliferative disorders. Hematology 15(1):43–47

    Article  CAS  PubMed  Google Scholar 

  23. Jansen BJ et al (2011) MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters. BMC Genomics 12:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tosolini M et al (2015) Human monocyte recognition of adenosine-based cyclic dinucleotides unveils the A2a Gαs protein-coupled receptor tonic inhibition of mitochondrially induced cell death. Mol Cell Biol 35(2):479–495

    Article  PubMed  Google Scholar 

  25. Garg TK et al (2012) Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 97(9):1348–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allantaz F et al (2012) Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS ONE 7(1):e29979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Constantinides MG et al (2011) A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger. J Immunol 187(1):309–315

    Article  CAS  PubMed  Google Scholar 

  28. Aung LL et al (2012) Multiple sclerosis-linked and interferon-beta-regulated gene expression in plasmacytoid dendritic cells. J Neuroimmunol 250(1–2):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malcolm KC et al (2013) Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS ONE 8(2):e57402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagy LH et al (2013) Chronic HIV infection enhances the responsiveness of antigen presenting cells to commensal Lactobacillus. PLoS ONE 8(8):e72789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mabbott NA et al (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martínez-Cingolani C et al (2014) Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β. Blood 124(15):2411–2420

    Article  PubMed  Google Scholar 

  33. Ricciardi A et al (2008) Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression. Mol Cancer Res 6(2):175–185

    Article  CAS  PubMed  Google Scholar 

  34. Dybkaer K et al (2007) Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 8:230

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26(12):1572–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rooney MS et al (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dooms-Goossens A et al (1986) Imidazolidinyl urea dermatitis. Contact Dermatitis 14(5):322–324

    Article  CAS  PubMed  Google Scholar 

  39. Danilova L et al (2019) Programmed Cell Death Ligand-1 (PD-L1) and CD8 Expression Profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable survival. Cancer Immunol Res 7(6):886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Vega F et al (2018) Oncogenic signaling pathways in the cancer genome Atlas. Cell 173(2):321–337 e10.

  41. Thorsson V et al (2018) The immune landscape of cancer. Immunity 48(4):812–830 e14.

  42. Wu T et al (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (N Y) 2(3):100141.

  43. Royal RE et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33(8):828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen LY, Cheng CS, Qu C, Wang P, Chen H, Meng ZQ, Chen Z (2018) Overexpression of CBX3 in pancreatic adenocarcinoma promotes cell cycle transition-associated tumor progression. Int J Mol Sci 19(6):1768. https://doi.org/10.3390/ijms19061768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yue P et al (2020) Development of an autophagy-related signature in pancreatic adenocarcinoma. Biomed Pharmacother 126:110080

    Article  CAS  PubMed  Google Scholar 

  48. Wei R et al (2020) Analyzing the prognostic value of DKK1 expression in human cancers based on bioinformatics. Ann Transl Med 8(8):552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Federico A, Tateo V, Parisi C, Formica F, Carloni R, Frega G, Rizzo A, Ricci D, Di Marco M, Palloni A, Brandi G (2021) Hacking pancreatic cancer: present and future of personalized medicine. Pharmaceuticals (Basel) 14(7):677. https://doi.org/10.3390/ph14070677

    Article  CAS  PubMed  Google Scholar 

  50. Flecken T et al (2014) Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 59(4):1415–1426

    Article  CAS  PubMed  Google Scholar 

  51. Rizvi H et al (2018) Molecular determinants of response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36(7):633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jia M et al (2021) CD2(+) T-helper 17-like cells differentiated from a CD133(+) subpopulation of non-small cell lung carcinoma cells promote the growth of lung carcinoma. Ann Transl Med 9(8):687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han HJ et al (2008) SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452(7184):187–193

    Article  CAS  PubMed  Google Scholar 

  54. Glatzel-Plucinska N, Piotrowska A, Rzechonek A, Podhorska-Okolow M, Dziegiel P (2021) SATB1 protein is associated with the epithelial‑mesenchymal transition process in non‑small cell lung cancers. Oncol Rep 45(6):118. https://doi.org/10.3892/or.2021.8069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan M et al (2021) Downregulated CMTM8 correlates with poor prognosis in gastric cancer patients. DNA Cell Biol 40(6):791–797

    Article  CAS  PubMed  Google Scholar 

  56. Shi W et al (2021) CMTM8 as an LPA1-associated partner mediates lysophosphatidic acid-induced pancreatic cancer metastasis. Ann Transl Med 9(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Z et al (2021) PNOC Expressed by B cells in cholangiocarcinoma was survival related and LAIR2 Could Be a T cell exhaustion biomarker in tumor microenvironment: characterization of immune microenvironment combining single-cell and bulk sequencing technology. Front Immunol 12:647209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sumida T et al (2018) Activated beta-catenin in Foxp3(+) regulatory T cells links inflammatory environments to autoimmunity. Nat Immunol 19(12):1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan JQ et al (2017) lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia. Int J Mol Med 39(3):663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang M et al (2021) ITPR3 facilitates tumor growth, metastasis and stemness by inducing the NF-kB/CD44 pathway in urinary bladder carcinoma. J Exp Clin Cancer Res 40(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  61. Akatsuka A et al (2010) Tumor cells of non-hematopoietic and hematopoietic origins express activation-induced C-type lectin, the ligand for killer cell lectin-like receptor F1. Int Immunol 22(9):783–790

    Article  CAS  PubMed  Google Scholar 

  62. Silva G, Sales-Dias J, Casal D, Alves S, Domenici G, Barreto C, Matos C, Lemos AR, Matias AT, Kucheryava K, Ferreira A, Moita MR, Braga S, Brito C, Cabral MG, Casalou C, Barral DC, Sousa PMF, Videira PA, Bandeiras TM, Barbas A (2021) Development of Dl1.72, a Novel Anti-DLL1 antibody with anti-tumor efficacy against estrogen receptor-positive breast cancer. Cancers (Basel) 13(16):4074. https://doi.org/10.3390/cancers13164074

    Article  CAS  PubMed  Google Scholar 

  63. Neveu G et al (2015) AP-2-associated protein kinase 1 and cyclin G-associated kinase regulate hepatitis C virus entry and are potential drug targets. J Virol 89(8):4387–4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chun SH et al (2021) Prognostic value of noggin protein expression in patients with resected gastric cancer. BMC Cancer 21(1):558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ding X et al (2021) INTS6 promotes colorectal cancer progression by activating of AKT and ERK signaling. Exp Cell Res 407(2):112826

    Article  CAS  PubMed  Google Scholar 

  66. Wang X et al (2021) Bortezomib enhances the anti-cancer effect of the novel Bruton’s tyrosine kinase inhibitor (BGB-3111) in mantle cell lymphoma expressing BTK. Aging (Albany NY) 13(17):21102–21121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was funded by Natural Science Foundation of Hainan Province (820MS130); Hainan Provincial Science and Technology Program (Clinical Medical Research Center): LCYX202101.

Author information

Authors and Affiliations

Authors

Contributions

WY and XDF designed the study, performed data analysis, and wrote the manuscript. CYH performed data collection, and ZJF supervised the manuscript. The current manuscript has been read and approved by all named authors.

Corresponding author

Correspondence to Jinfang Zheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wang, Y., Chen, Y. et al. Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes. Cancer Immunol Immunother 72, 647–664 (2023). https://doi.org/10.1007/s00262-022-03269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03269-3

Keywords

Navigation