Skip to main content

Advertisement

Log in

High abundance of Lachnospiraceae in the human gut microbiome is related to high immunoscores in advanced colorectal cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Introduction

The tumor microenvironment (TME) in colorectal cancer (CRC) includes the gut microbiome, immune cells, angiogenic factors, and fibroblasts and plays a major role in cancer progression. The Immunoscore (IS) is based on tumor infiltration by immune cells that are known prognostic biomarkers for CRC. However, the interrelation between the IS, microbiome, and other TME factors in human CRC remains unclear.

Patients and methods

A cohort of 94 patients with CRC was examined at the Shiga University of Medical Science Hospital in Japan. The expression levels of CD3, CD8, CD31, and alpha-smooth muscle actin (α-SMA) in the primary tumor were evaluated by immunohistochemistry. The IS was calculated based on the results of the CD3 and CD8 staining assays. Microbiomes in patients with CRC were examined by amplicon sequencing.

Results

The expression levels of α-SMA and tumor-infiltrating lymphocytes in patients with CRC were negatively correlated (P = 0.006). A high IS was associated with high abundance of Lachnospiraceae in the microbiomes of patients with CRC.

Conclusion

Lymphocyte infiltration into the primary tumor was marked by reduced density of cancer-associated fibroblasts and enrichment of the Lachnospiraceae family in the gut microbiome, which may influence CRC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α-SMA:

Alpha-smooth muscle actin

CAF:

Cancer-associated fibroblast

CRC:

Colorectal cancer

CT:

Center of tumor

ECM:

Extracellular matrix

IM:

Invasive margin

LDA:

Linear discriminant analysis

LEfSe:

Linear discriminant analysis effect size

TIL:

Tumor-infiltrating lymphocyte

TME:

Tumor microenvironment

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Pilleron S, Soto-Perez-de-Celis E, Vignat J, Ferlay J, Soerjomataram I, Bray F, Sarfati D (2021) Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. Int J Cancer 148:601–608. https://doi.org/10.1002/ijc.33232

    Article  CAS  Google Scholar 

  3. Xiong Y, Wang Y, Tiruthani K (2019) Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. Nanomedicine 21:102034. https://doi.org/10.1016/j.nano.2019.102034

    Article  CAS  Google Scholar 

  4. Long S, Yang Y, Shen C, Wang Y, Deng A, Qin Q, Qiao L (2020) Metaproteomics characterizes human gut microbiome function in colorectal cancer. NPJ Biofilms Microbiomes 6:14. https://doi.org/10.1038/s41522-020-0123-4

    Article  Google Scholar 

  5. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1. https://doi.org/10.1186/1479-5876-10-1

    Article  Google Scholar 

  6. Pages F, Mlecnik B, Marliot F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391:2128–2139. https://doi.org/10.1016/S0140-6736(18)30789-X

    Article  Google Scholar 

  7. Gong J, Lin Y, Zhang H et al (2020) Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis 11:267. https://doi.org/10.1038/s41419-020-2434-z

    Article  CAS  Google Scholar 

  8. Freeman P, Mielgo A (2020) Cancer-associated fibroblast mediated inhibition of CD8+ Cytotoxic T cell accumulation in tumours: mechanisms and therapeutic opportunities. Cancers (Basel). https://doi.org/10.3390/cancers12092687

    Article  Google Scholar 

  9. Jie Z, Xia H, Zhong SL et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  Google Scholar 

  10. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012) A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10:575–582. https://doi.org/10.1038/nrmicro2819

    Article  CAS  Google Scholar 

  11. Yu J, Feng Q, Wong SH et al (2017) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66:70–78. https://doi.org/10.1136/gutjnl-2015-309800

    Article  CAS  Google Scholar 

  12. Zeng MY, Inohara N, Nunez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26. https://doi.org/10.1038/mi.2016.75

    Article  CAS  Google Scholar 

  13. Tilg H, Adolph TE, Gerner RR, Moschen AR (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33:954–964. https://doi.org/10.1016/j.ccell.2018.03.004

    Article  CAS  Google Scholar 

  14. Lea D, Watson M, Skaland I, Hagland HR, Lillesand M, Gudlaugsson E, Soreide K (2021) A template to quantify the location and density of CD3 + and CD8 + tumor-infiltrating lymphocytes in colon cancer by digital pathology on whole slides for an objective, standardized immune score assessment. Cancer Immunol Immunother 70:2049–2057. https://doi.org/10.1007/s00262-020-02834-y

    Article  CAS  Google Scholar 

  15. Miyake T, Mori H, Yasukawa D et al (2021) The comparison of fecal microbiota in left-side and right-side human colorectal cancer. Eur Surg Res. https://doi.org/10.1159/000516922

    Article  Google Scholar 

  16. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  Google Scholar 

  17. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP (2015) 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3:26. https://doi.org/10.1186/s40168-015-0087-4

    Article  Google Scholar 

  18. Jian C, Luukkonen P, Yki-Jarvinen H, Salonen A, Korpela K (2020) Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE 15:e0227285. https://doi.org/10.1371/journal.pone.0227285

    Article  CAS  Google Scholar 

  19. Seo SU, Kamada N, Munoz-Planillo R et al (2015) Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42:744–755. https://doi.org/10.1016/j.immuni.2015.03.004

    Article  CAS  Google Scholar 

  20. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  Google Scholar 

  21. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  Google Scholar 

  22. Caspi R, Billington R, Keseler IM et al (2020) The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res 48:D445–D453. https://doi.org/10.1093/nar/gkz862

    Article  CAS  Google Scholar 

  23. Clark RA, McCoy GA, Folkvord JM, McPherson JM (1997) TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol 170:69–80. https://doi.org/10.1002/(SICI)1097-4652(199701)170:1%3c69::AID-JCP8%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  24. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122:899–910. https://doi.org/10.1172/JCI45817

    Article  CAS  Google Scholar 

  25. Menon AG, Janssen-van Rhijn CM, Morreau H, Putter H, Tollenaar RA, van de Velde CJ, Fleuren GJ, Kuppen PJ (2004) Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest 84:493–501. https://doi.org/10.1038/labinvest.3700055

    Article  CAS  Google Scholar 

  26. Harryvan TJ, Verdegaal EME, Hardwick JCH, Hawinkels L, van der Burg SH (2019) Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies. J Clin Med. https://doi.org/10.3390/jcm8111989

    Article  Google Scholar 

  27. Tauriello DVF, Palomo-Ponce S, Stork D et al (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–543. https://doi.org/10.1038/nature25492

    Article  CAS  Google Scholar 

  28. Unterleuthner D, Neuhold P, Schwarz K et al (2020) Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis 23:159–177. https://doi.org/10.1007/s10456-019-09688-8

    Article  CAS  Google Scholar 

  29. Yin H, Yu S, Xie Y, Dai X, Dong M, Sheng C, Hu J (2021) Cancer-associated fibroblasts-derived exosomes upregulate microRNA-135b-5p to promote colorectal cancer cell growth and angiogenesis by inhibiting thioredoxin-interacting protein. Cell Signal 84:110029. https://doi.org/10.1016/j.cellsig.2021.110029

    Article  CAS  Google Scholar 

  30. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, Goedert JJ, Hayes RB, Yang L (2013) Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 105:1907–1911. https://doi.org/10.1093/jnci/djt300

    Article  CAS  Google Scholar 

  31. Geng J, Fan H, Tang X, Zhai H, Zhang Z (2013) Diversified pattern of the human colorectal cancer microbiome. Gut Pathog 5:2. https://doi.org/10.1186/1757-4749-5-2

    Article  CAS  Google Scholar 

  32. Mira-Pascual L, Cabrera-Rubio R, Ocon S et al (2015) Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 50:167–179. https://doi.org/10.1007/s00535-014-0963-x

    Article  CAS  Google Scholar 

  33. Meehan CJ, Beiko RG (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6:703–713. https://doi.org/10.1093/gbe/evu050

    Article  CAS  Google Scholar 

  34. Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC (2014) Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet 10:e1004773. https://doi.org/10.1371/journal.pgen.1004773

    Article  CAS  Google Scholar 

  35. Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x

    Article  CAS  Google Scholar 

  36. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106. https://doi.org/10.1128/JB.186.7.2099-2106.2004

    Article  CAS  Google Scholar 

  37. Takada T, Kurakawa T, Tsuji H, Nomoto K (2013) Fusicatenibacter saccharivorans gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 63:3691–3696. https://doi.org/10.1099/ijs.0.045823-0

    Article  CAS  Google Scholar 

  38. Li Q, Cao L, Tian Y et al (2018) Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteomics 17:1531–1545. https://doi.org/10.1074/mcp.RA118.000752

    Article  CAS  Google Scholar 

  39. Wang SY, Li JY, Xu JH, Xia ZS, Cheng D, Zhong W, Lai Y, Yu T, Chen QK (2019) Butyrate suppresses abnormal proliferation in colonic epithelial cells under diabetic state by targeting HMGB1. J Pharmacol Sci 139:266–274. https://doi.org/10.1016/j.jphs.2018.07.012

    Article  CAS  Google Scholar 

  40. Ikuta D, Miyake T, Shimizu T, Sonoda H, Mukaisho KI, Tokuda A, Ueki T, Sugihara H, Tani M (2018) Fibrosis in metastatic lymph nodes is clinically correlated to poor prognosis in colorectal cancer. Oncotarget 9:29574–29586. https://doi.org/10.18632/oncotarget.25636

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This work was supported by JSPS KAKENHI (Grant No. JP 19K16831 and JP 19K18081).

Author information

Authors and Affiliations

Authors

Contributions

TM described and designed this study. ZH acquired and analyzed the staining data. TM performed the next-generation sequencing analysis. TM, HM and DY collected the clinical samples and data and supported the analysis. TM and ZH made the drafting of this manuscript. AN, AA, HM, MO, and MT revised this article. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Toru Miyake.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical standard

The study complied with the ethical standards of the Declaration of Helsinki and was approved by the Ethics Committee of Shiga University of Medical Science (No. R2018-037).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hexun, Z., Miyake, T., Maekawa, T. et al. High abundance of Lachnospiraceae in the human gut microbiome is related to high immunoscores in advanced colorectal cancer. Cancer Immunol Immunother 72, 315–326 (2023). https://doi.org/10.1007/s00262-022-03256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03256-8

Keywords

Navigation