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Abstract
Background Bovine leukemia virus (BLV) is an oncogenic delta-retrovirus causing bovine leucosis. Studies on BLV have 
shown the association with human breast cancer. However, the exact molecular mechanism is neither known nor their appro-
priate preventative measure to halt the disease initiation and progression. In this study, we designed a multi-epitope vaccine 
against BLV using a computational analyses.
Methods Following a rigorous assessment, the vaccine was constructed using the T-cell epitopes from each BLV-derived 
protein with suitable adjuvant and linkers. Both physicochemistry and immunogenic potency as well as the safeness of the 
vaccine candidate were assessed. Population coverage was done to evaluate the vaccine probable efficiency in eliciting 
the immune response worldwide. After homology modeling, the three-dimensional structure was refined and validated to 
determine the quality of the designed vaccine. The vaccine protein was then subjected to molecular docking with Toll-like 
receptor 3 (TLR3) to evaluate the binding efficiency followed by dynamic simulation for stable interaction.
Results Our vaccine construct has the potential immune response and good physicochemical properties. The vaccine is anti-
genic and immunogenic, and has no allergenic or toxic effect on the human body. This novel vaccine contains a significant 
interactions and binding affinity with the TLR3 receptor.
Conclusions The proposed vaccine candidate would be structurally stable and capable of generating an effective immune 
response to combat BLV infections. However, experimental evaluations are essential to validate the exact safety and immu-
nogenic profiling of this vaccine.
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E. coli  Escherichia coli
GC  Guanine and cysteine
GRAVY  Grand average of hydropathicity
HTL  Helper T-lymphocyte
IFN-γ  Interferon-gamma
IgG  Immunoglobulin G
IgM  Immunoglobulin M
IL-4  Interleukin-4
IL-10  Interleukin-10
II  Instability Index
MD  Molecular dynamics
MHC  Major histocompatibility complex
MW  Molecular weight
NCBI  National center for biotechnology information
TCRs  T-cell receptors
TLR3  Toll-like receptor 3
SOPMA  Self-optimized prediction method with 

alignment

Introduction

Bovine leukemia virus (BLV) is the etiologic agent of enzo-
otic bovine leucosis, is closely related to human T-cell leu-
kemia virus type 1 and 2 (HTLV-1 and HTLV-2), and causes 
the most common neoplastic disease of cattle [1, 2]. The 
pestilence depredation of BLV infection is extremely preva-
lent, appears in several regions of the world, and induces 
major commercial losses in dairy production and export 
business [3]. Erskine and Bartlett et al. had reported that 
BLV infections are associated with herd-level in high-per-
forming dairy herds and cow longevity [4]. In 1995, because 
of BLV infection in USA, the amount of losses in the dairy 
industry was reported to $525 million annually [3]. Previ-
ous study had been reported that the economic loss per case 
of lymph sarcoma was estimated to be $412 [5], but there 
are no appropriate preventative measures to halt the disease 
initiation and progression. Also, BLV was highly associated 
with breast cancer tissues by white blood cells [6]. Recent 
studies indicate that a handful of evidence of BLV infection 
in breast tissue and approximately 18% of viral infection 
causes cancer patients to die worldwide [7]. In the absence 
of oncogenic property, BLV can integrate itself into the host 
cell genome which further disrupts the host gene but not 
the suppression of viral gene expression [8]. BLV infec-
tion is probably a human infection that transmits from dairy 
animals to humans as a Zoonotic infection. Despite having 
no proper investigation or public data about the chance of 
human to human transmission, the countries with the highest 
ingestion of dairy foodstuffs have the highest incidence of 
breast cancer which has been determined for decades; most 
probably transfer through blood and breast milk [9].

The structural gag-pol and env genes of BLV are respon-
sible for the synthesis of this virus [10, 11], in which the 
gag gene elicits the precursor Pr45 Gag, forms three mature 
proteins [10, 12]. The matrix protein binds viral genomic 
RNA and interrelates with the lipid bilayer of the viral mem-
brane [13]. BLV capsid protein is found in the serum of 
infected animals with high antibody titers and considered 
as the major target for the host immune response [14], and 
the nucleocapsid protein affix to the packaged genomic RNA 
[15]. The env gene encodes envelope glycoproteins which 
cleaved into a mature surface glycoprotein chain and trans-
membrane protein chain that are responsible for the fusion of 
virus membrane with the host cell membrane, and originate 
host–virus interaction [11].

Cytotoxic T lymphocyte epitopes [16] and CD4+ T-cell 
epitopes were found to diverge in cattle, mice, and sheep 
from the previous findings [17–19] by epitopes mapping 
using cattle with experimentally infected BLV and a library 
of overlapping peptides of BLV. The vaccine provides 
acquired immunity against contagious diseases like dif-
ferent types of viruses causing cancers [20]. Vaccines are 
designed to form an immune response against a harmful 
fatal foreign microbe and make a pre-preparation to invade 
those particles, to inhibit its toxicity or arise the assassina-
tion activity against the microbes. The vaccine was made 
an inhibitory memory response against furthermore similar 
microbe’s effect on the body [21]. According to the previ-
ous investigation, a vaccine can prevent a future outbreak of 
those virus-associated natural microbes like viruses [22]. In 
previous vaccine, construction against metastatic breast can-
cer provides a direction to develop a peptide-based vaccine 
against BLV to prevent its infection of cattle’s and human 
breast cells [23]. Previously, several attempts have been 
made to successfully formulate/design the multi-epitope 
vaccines against cancer and cancer-causing viruses [24–27].

In this study, we aim to construct an efficient vaccine 
candidate using the highly advanced computational frame-
work with the simulation of immune interaction. Our pre-
dicted multi-epitope vaccine against BLV showed a strong 
immunogenic effect against BLV infections. Thus, the new 
strategy of vaccine development is a prime need that will 
contribute to finding a solution to BLV.

Materials and methods

The sequential steps followed to design and construct the 
multi-epitope vaccine are illustrated in Fig. 1.
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Protein sequences retrieval

Protein sequences of BLV (Proteome ID: UP000202838) 
were extracted from the UniProt database (http:// www. unipr 
ot. org) [28]. A total of six protein names were available—
Gag polyprotein, Gp60 SU, p18, p34, Pr66, and RT-IN. 
A total of 2,252 sequences contained in the dataset and 
selected protein sequences were principally chosen by anti-
genicity. The prediction of antigenicity is using the VaxiJen 
v-2.0 and ANTIGENpro server at threshold 0.5. All protein 
data are downloaded in FASTA format.

Antigenic properties of target proteins

The protein sequences of the total proteins were submit-
ted in the VaxiJen v-2.0 server (http:// www. ddg- pharm fac. 
net/ Vaxij en/ VaxiJ en/ VaxiJ en. html) at threshold 0.5 for the 
prediction of antigenicity [29]. We also predicted antigenic-
ity using ANTIGENpro (http:// www. scrat ch. prote omics. ics. 
uci. edu/) server [30]. The prediction of antigenicity is an 
important step to isolate when attempting to isolate the most 
antigenic protein sequences.

CTL and HTL epitopes prediction

Most cytotoxic T lymphocyte (CTL) and helper T lym-
phocyte (HTL) are expressed in T-cell receptors that can 
recognize a specific antigen [31]. CTL and HTL epitopes 
were predicted by submitting FASTA sequences of the target 
proteins to the NetCTL-1.2 (http:// www. cbs. dtu. dk/ servi ces/ 
NetCTL/) [32] at 1.0 threshold (combine score) and MHC-
II binding tool (http:// tools. iedb. org/ mhcii/) [33] of IEDB 
server where percentile score was set to 5.

CTL and HTL epitopes evaluation

The reasonableness of CTL epitopes exists in their immuno-
genic potential. Consequently, it is considered as the center 
of the vaccine ability [34]. All predicted CTL epitopes were 
assessed for their immunogenicity, antigenicity, allergenic-
ity, and toxicity utilizing MHC-I immunogenicity (http:// 
tools. iedb. org/ immun ogeni city/) [35], VaxiJen v-2.0 (http:// 
www. ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ en. html) [29], 
AllergenFPv-1.0 (http:// ddg- pharm fac. net/ Aller genFP/) 
[36], and ToxinPred servers (http:// crdd. osdd. net/ ragha va/ 
toxin pred/) [37], respectively. Epitopes having antigenic, 

Fig. 1  Graphical representation 
of study workflow
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allergenic, and/or toxic properties were eliminated, since 
they can compromise the aim and development of the 
vaccine.

The cytotoxic T-cell epitopes can stimulate the HTL by 
releasing different types of cytokines such as interferon-
gamma (IFN-γ), interleukin-4 (IL-4), and interleukin-10 
(IL-10) [38]. For the prediction of IFN-γ in the target pro-
tein, we used the IFNepitope server (http:// crdd. osdd. net/ 
ragha va/ ifnep itope/) [39]. The support vector machine 
(SVM) and a motif hybrid method were used to perform 
the prediction. Next, IL-4 and IL-10 inducers were identi-
fied with the IL4pred (http:// crdd. osdd. net/ ragha va/ il4pr ed/) 
and IL10pred servers (http:// crdd. osdd. net/ ragha va/ il10p red/ 
predi ct. php), respectively. The IL4pred and IL10pred opera-
tions were carried out based on hybrid methods with other 
parameters kept as default [40, 41]. Finally, we analyzed 
their antigenicity using the VaxiJen v-2.0 server [29].

Population coverage

CTL and HTL alleles of selected epitopes were analyzed 
for exploring the population coverage of the constructed 
vaccine. Epitopes of CTL and HTL were submitted to the 
IEDB database tools for MHC-I-binding [42] and MHC-II-
binding [43] alleles, respectively. With the HLA alleles, the 
prospective coverage of the population was appraised using 
the IEDB population coverage tool [44].

Designing of epitope‑based vaccine construct

The epitope-based peptide vaccine was developed with the 
appropriate linkers and adjuvant [45, 46]. Toll like recep-
tor (TLR3) agonist, namely β-defensin, was added at the 
N-terminal of the vaccine with EAAAK linker [47, 48]. We 
used TLR3 as a receptor for vaccine construction as it can 
recognize the virus [49]. The adjuvant is an immunological 
agent to response immune system and produces long-lasting 
immunity [45]. Previously, many studies demonstrated that 
GPGPG and AAY linkers [50, 51] were added between pre-
dicted HTL and CTL epitopic sequences, respectively, and 
produced junctional immunogenicity, thereby allowing the 
rational design construction of a potent poly-epitope vac-
cine [52]. Arai et al. reported that the EAAAK linker was 
incorporated between epitopes and adjuvant for improving 
bioactivity of fused protein and reaching a high level of 
expression [53].

Secondary structure features

The secondary structure features such as alpha-helix, 
extended sheet, beta turn, and random coil were predicted 
through the SOPMA tool (https:// npsa- prabi. ibcp. fr/ cgi- bin/ 
npsa_ autom at. pl? page=/ NPSA/ npsa_ sopma. html) [54]. All 

SOPMA secondary structure analysis tool parameters were 
kept defaults (Number of conformational states as 4, helix, 
sheet, turn, and coil; threshold values 8 and Window width: 
17).

Structure modeling, refinement, and validation

GalaxyTBM online tool (http:// galaxy. seokl ab. org/) [55] 
used to generate the 3D structure of the linear vaccine 
constructs, and the Galaxy Refine web server (http:// gal-
axy. seokl ab. org/) [56] was used to refine the model. The 
GalaxyRefine server enhances the local structural quality 
using CASP10 refinement techniques. This algorithm pri-
marily reconstructs side chains and accomplishes side-chain 
repacking followed by molecular dynamics simulation to 
achieve overall structural relaxation. The obtained 3D struc-
ture was visualized with BIOVIA Discovery Studio 2020.

Validation of modeled structure was performed based 
on the Z-score as assessed by ProSA-web (https:// prosa. 
servi ces. came. sbg. ac. at/ prosa. php) [57]. The Z-score of an 
anticipated model defines the structural quality of a model 
based on the protein structure elucidated by NMR and X-ray 
crystallography. Finally, the overall structural quality was 
validated by a Ramachandran plot analysis, followed by the 
PROCHECK server (https:// servi cesn. mbi. ucla. edu/ PROCH 
ECK/) [58].

Pharmacological properties of the vaccine

The immunogenicity, antigenicity, and allergenicity of the 
final vaccine construct were analyzed by the IEDB Immu-
nogenicity tool, VaxiJenv-2.0, and AllergenFP v-1 servers, 
respectively. Molecular weight, aliphatic index, instabil-
ity index, isoelectric point, half-life, and GRAVY values 
were evaluated using the ExPASasy ProtParam tool [59]. 
Finally, vaccine construct was submitted to the SOLpro 
server (http:// scrat ch. prote omics. ics. uci. edu/) for solubility 
assessment [60].

Vaccine–receptor docking and interaction

Molecular docking is the interaction of a ligand with its 
receptor and consequently forecasts the stable adduct [61]. 
In addition, it can also predict the binding affinity of two 
molecules based on certain scoring functions. For our dock-
ing simulation, we chose TLR3 as the receptor and the spe-
cific PDB file (PDB id: 2A0Z) was downloaded from RCSB- 
Protein Data Bank. The TLR3 receptor was paired with the 
vaccine model (which acts as the ligand) that we had already 
refined [62]. The processing and water remove from TLR3 
using BIOVIA Discovery Studio 2020. The ClusPro v-2.0 
server was used to measure the binding affinity between 
the multi-epitope vaccine and TLR3 receptor with the help 
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of molecular docking [63]. The docked structure and vac-
cine–receptor interaction was visualized by Discovery Stu-
dio and PDBSum server, respectively.

In‑silico molecular dynamic simulation

The complex structure of the selected vaccine-receptor 
complex candidate was evaluated using 100 ns molecu-
lar dynamic simulations (MDS) to evaluate their binding 
stability to the desired protein to the active site cavity of 
the protein [64, 65]. The MDS of the receptor–ligand com-
plex was performed using the ‘Desmond v6.3 Program’ in 
Schrödinger 2020-3 under Linux framework to evaluate 
the thermodynamic stability of the receptor–ligand com-
plex [66, 67]. To solve the system, a predetermined TIP3P 
water model was used, with an orthorhombic periodic 
boundary box form with a box distance of 10 Å assigned 
to both sides to retain a specific volume. After constructing 
the solvated system containing protein in complex with the 
ligand, the system has been minimized and relaxed using 
the default protocol introduced within the Desmond mod-
ule with OPLS_2005 force field parameters [65]. In protein 
preparation wizard: Initially, protein preprocesses by adding 
hydrogens, create disulfide bonds, fill in the missing side 
chains, and delete waters using Epik (pH 7.0 ± 2.0) and opti-
mize by PROPKA pH: 7.0. In model system for simulation 
run, simulation time = 100 ns, trajectory intervals = 100 ps, 
total number of frame = 1000, Ensemble class = NPT, tem-
perature = 300 K, and one atmospheric (1.01325 bar) pres-
sure. Finally, the simulation was carried out for 100 ns, and 
RMSF, RMSD, and protein secondary structure elements 
from the trajectories were analyzed to reveal the stability of 
the vaccine complex.

Immune simulation analysis

For analyzing the immunological response, the sequence 
of the vaccine construct was submitted to the C-IMMSIM 
server and the immunological response results were down-
loaded [68]. The lowest suggested dose of vaccine was two 
times, dose-1 and dose-2 with an interval of 1 month [69]. 
The three consecutive injections were administered with 
time steps of 1, 84, and 168 where 1 time steps = 8 h.); and 
simulation steps were 300. Other immune simulation criteria 
were kept default.

Results

Retrieving of target protein sequences 
and antigenicity prediction

The target sequence of BLV was retrieved in FASTA format 
from the UniProt database. The available six proteins were 
Gag polyprotein, Gp60 SU, p18, p34, Pr66, and RT-IN. The 
highest antigenicity score was found for Gag polyprotein and 
Gp60 by VaxiJen v2.0 and ANTIGENpro servers (Table 1).

Identification of CTL and HTL epitopes

In this study, the NetCTL-1.2 server was employed for the 
prediction of the CTL epitopes, whereas the HTL epitopes 
was predicted using the Net MHC-II pan 3.2 server. After 
evaluation, only 5 unique CTL epitopes were found to be 
as antigenic, immunogenic, non-toxic, and non-allergenic, 
which were considered for vaccine construction (Table S1). 
Similarly, we found only 4 unique HTL epitopes to be IFN-
γ, IL-4, IL-10, and antigenic, which were considered for 
construct design (Table S2). Finally, we identified only 9 
unique epitopes for vaccine design (Table 2).

Population coverage

Successful HLA allele calculations are essential when 
developing a vaccine that will be effective worldwide. The 
selected CTL and HTL epitopes along with their binding 
alleles were used for population coverage estimation. The 
total combined (CTL and HTL) epitopes have a good sig-
nificant percentage of coverage across the World (98.04%), 
Europe (98.70%), South Asia (95.95%), India (94.58%), 
Russia (98.55%), and North America (98.61%). This result 
indicated that our designed vaccine can be used worldwide 
(Fig. 2 and Table S3).

Table 1  The selected protein name and antigenicity score of BLV

Accession ID Proteins 
name

Antigenicity score Remark

VaxiJen ANTIGEN-
pro

Q85490 Gag polypro-
tein

0.51 0.963546 Selected

Q77YG2 Gp60 SU 0.6561 0.687863 Selected
O92813 p18 0.4349 0.938062 Non-selected
O56232 p34 0.2963 0.778874 Non-selected
Q9WJP3 Pr66 0.4410 0.944496 Non-selected
O92812 RT-IN 0.4214 0.6666078 Non-selected
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Vaccine formulating, 2D and 3D structure modeling, 
and refinement

For multi-epitope vaccine designing, we have considered 
five CTL epitopes (by immunogenicity = 0.2, combined 
score = 1, and antigenicity = 0.5) from every type of pro-
teins that are immunogenic, non-allergenic, and non-toxic, 
as shown in Table 2. On the other hand, at HTL epitope 
selection, we screened cytokine-inducing properties, over-
lapped epitopes, and found three types of cytokine and the 
highest antigenicity (Table 2). Therefore, 5 CTL and 4 HTL 

epitopes are merged by AAY and GPGPG linkers, respec-
tively. Furthermore, TLR3 agonist β-defensin was added as 
an adjuvant using EAAAK linkers. The arrangement of dif-
ferent epitopes along with their joining linkers is shown in 
Fig. 3A. The final vaccine construct comprises 187 amino 
acid residues.

Overall, secondary structural feature prediction results 
indicate 44.39% are random coils, 21.39% are extended 
strand, 24.06% are α-helix, and 10.16% are β-turn (Fig. 3B). 
The vaccine construct was modeling was done through Gal-
axyWeb server, where the modeled vaccine structure of BLV 

Table 2  Final selected CTL and HTL epitopes of BLV

CTL epitopes

Epitopes Antigenicity Immunogenicity Toxicity Allergenicity

SYVEFVNRL 1.1064 0.29179 No No
QACAHWAPK 1.1052 0.28842 No No
GIFTLTWEI 0.6583 0.34824 No No
GLTGINVAV 1.245 0.22791 No No
NRRGLDWLY 1.7751 0.24144 No No

HTL epitopes

Epitopes IFN-γ IL-4 IL-10 Antigenicity

CAHWAPKVKQPAILV POSITIVE Yes Yes 0.9935
DLKNYIHWFHKTQKK POSITIVE Yes Yes 0.7997
PSHWKRDCPTLKSKN POSITIVE Yes Yes 1.2702
DWLNLRQSAQRLNPR POSITIVE Yes Yes 1.0392

Fig. 2  Worldwide population coverage map by T-cell epitopes based on their combined CTL- and HTL epitoptes-binding alleles
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using the template 1JVR and structure was visualized Dis-
covery Studio 2020 (Fig. 3C). The 3D structure was refine 
performed by the Galaxy Refine server, which generated five 
models. Among all of the refined 3-D structures, model 2 
was selected for better quality, and structure was visualized 
Discovery Studio 2020 (Fig. 3D and Table S4).

Validation of final vaccine model

Validation of the initial and refined models was examined 
using ProSA-Web and PROCHECK servers. According 
to the Ramachandran plot most favored (MFR), addi-
tional allowed (AAR), generously allowed (GAR), and 
disallowed regions (DS) score is 90.0%, 6.7%, 2.0%, and 
0.7% in initial vaccine model. On the other hand, refine 
vaccine model Ramachandran plot score is 92.0%, 5.3%, 
2.0%, and 0.7% (Fig. 4A and B). The Z-scores of the initial 
and refined model were − 4.44 and − 4.58, respectively, 
suggesting that the overall quality falls within the X-ray-
derived structure region. (Fig. 4C and D).

Physicochemical, immunogenic, antigenic, 
allergenic, solubility, and properties of final vaccine 
construct

The physicochemical properties of a vaccine must be deter-
mined to assess efficiency and safety. The theoretical pI 

values were found to be 9.98, which suggested that the can-
didate is thermostable. The GRAVY score is − 0.53 which 
specifies the candidate is hydrophilic and can interact with 
the aqueous environment. The instability index was calcu-
lated as 33.40, which classified the protein as being stable. 
Antigenicity, immunogenicity, allergenicity, and solubility 
were determined to be antigenic, high immunogenic, non-
allergenic, and good soluble (Table 3). These evaluations 
suggest that our vaccine construct might be an ideal vaccine 
for BLV.

Molecular docking of vaccine with receptor

The interaction between the TLR3 and refine final vac-
cine was evaluated using the ClusPro v-2.0 online server, 
and a total of 30 models were generated by ClusPro v-2.0 
online server. Among the top-ten complexes generated when 
examining the interaction between the vaccine and TLR-4, 
model 0 was characterized as having the best lowest energy 
(− 1038.8) and interaction member was 50 (Fig. 5). The vac-
cine–receptor complex view and interaction were visualized 
by Discovery Studio 2020 and PBDSum.

Fig. 3  A Vaccine construct of BLV. B The secondary structural properties of the vaccine. C Initial 3-D model of the final vaccine. D Refine the 
3-D model of the final vaccine
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Molecular dynamics simulation of vaccine–TLR3 
complex

The root-mean-square deviation (RMSD) of both the vaccine 
complex and vaccine was calculated. The average RMSD 
value for the vaccine complex were 6.188 Å, which demon-
strates the structural stability during the interaction. From 
Fig. 6A, it can be observed that the vaccine complex has the 
initial increase of RMSD descriptors till 75 ns, and after that, 
it stopped its upper trend. A lower degree of fluctuation was 

observed for both, which may be responsible for structural 
integrity and/or to allow firm binding. Moreover, the pro-
tein flexibility across the amino acid residues was evaluated 
through the root-mean-square fluctuation (RMSF) score. The 
RMSF profile of the vaccine complex indicates maximum 
amino acid residues from complexes that an RMSF profile 
below 23.08 Å and greater change was observed for fewer 
residues. This result from Fig. 6B defines the vaccine com-
plex stability and stiffness.

Fig. 4  A–B Analysis of Ramachandran plot PROCHECK server. The MFR, AAR, GAR, and DR was represented the most favored, additional 
allowed, generously allowed, and disallowed regions of vaccine. C–D 3-D structure validation with a Z-score by Pro-SA server
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Immune simulation

The immunogenic profile of the multi-peptide vaccine is 
shown in Fig. 7. Immune simulation results showed that the 
secondary and tertiary response was generated considerably 
higher compared to the primary response (Fig. 7A). The 

antigenic concentration is decreased and the immunoglobu-
lin activity is significantly increased by revealed secondary 
and tertiary responses and multiple B-cell iso-types were 
found. This result indicates the formation of possible iso-type 
(Fig. 7B) and similar higher response displayed by helper T 
and cytotoxic T-cell population during vaccination (Fig. 7C, 
D). Higher macrophage activity was formed by the natural 
killer (NK) and dendritic cells (Fig. 7E, F).

Discussion

The neoteric maleficent emergence of BLV in human 
breast cancer creates a life-threatening situation to the 
worldwide public health cancer cases with increased 
mortality and morbidity of human life, which influenced 
us to design this multi-peptide vaccine. Since there is no 
evidence of a peptide vaccine against BLV, our vaccine 
candidate can be considered a good model to develop vac-
cine formulation against oncogenic delta-retrovirus, which 
may offer a better outcome than the conventional treatment 
[70]. To stimulate a strong immunogenic effect against 
BLV and its perilous contagious infection, we constructed 
this novel vaccine candidate with a rigorous assessment 

Table 3  Physicochemical properties, antigenic, immunogenic, aller-
genic, and soluble of the final vaccine protein

Evaluating parameters Assessment Remark

Number of amino acids 187 –
Molecular weight 20,716.03 Dalton Good
Theoretical pI 9.98 Basic
Chemical formula C931H1452N278O243S9 –
Total number of atoms 2913 –
Instability index 33.40 Stable
Grand average of hydro-

pathicity (GRAVY)
− 0.533 Hydrophilic

Antigenicity 0.7026 Antigenic
Allergenicity Probable non-allergen No
Immunogenicity Positive Immunogenic
Solubility 0.951102 Soluble

Fig. 5  The binding interaction between the designed vaccine candidate and TLR3 immune receptor
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of its stability, selectivity, and reduction of any undesired 
immune response ordained using computer immunology. 
Scientific consensus indicates the importance of a vaccine 

which lies in its safety and efficacy, so that it can deliver 
acquired immunity against viral invasion to exclude infec-
tious diseases [20, 71]. Our designed vaccine that maybe 
reflects the reorganization capabilities of these virus parti-
cles demonstrated an extraordinary significance to protect 
human breast cancer and cattle diseases.

As well, our designed vaccine has several advantages 
compared to conventional and single-epitope vaccines owing 
to the following distinctive characteristics: (a) comprising 
multiple MHC epitopes (both class I and II), so that can be 
recognized by several T-cell receptors; (b) contains overlap-
ping CTL, and HTL epitopes; (c) has of poly-epitopes from 
target virulent protein; (d) an immunostimulator (adjuvant) 
for providing the long-lasting immune response [72–76]. 
The multi-epitope vaccine design is a new field that has 
already gained importance, and vaccines developed using 
this method have not only demonstrated in vivo efficacy 
with protective immunity [77–79], but have also undergone 
phase-I clinical trials [79–82].

During antiviral immune responses, CTL and HTL cell 
responses will most likely be directed against both struc-
tural and non-structural proteins, since all viral proteins are 
available for processing and presentation on infected cells' 
HLA molecules [83, 84]. Therefore, we identified 5 CTL 
epitopes and 4 HTL epitopes as potential targets for vaccine 
development. In our approach, we find the best population 

Fig. 6  Molecular dynamic simulation of the multi-epitope vaccine 
complex. A The RMSD plot of the backbone atoms of the complexes. 
B The RMSF plot of the multi-epitope docked vaccine candidate

Fig. 7  Immunological response evaluation of vaccine in host using 
the C-IMMSIM online platform: A The virus, the immunoglobulins 
and the immune-complexes, B B-cell population, C TC cell popula-

tion, D TH cell population, E Concentration of cytokines and inter-
leukins, and F percentage (%) and amount (cells/mm3) of Th1 medi-
ated
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coverage in the world (98.04%) with both MHC-1 and 2 
alleles making it a good vaccine candidate for the popula-
tion worldwide. The vaccine’s effectiveness depends on the 
population in which the vaccination is used [85].

The top 5 antigenic CTL and 4 HTL epitopes were 
selected to design multi-epitopes vaccine with AAY and 
GPGPG linker, respectively. Linkers are used in vaccine 
construction for the incorporation between the epitopes 
and an adjuvant also uses to bust up the activities of vac-
cine construction [86, 87]. Finally, vaccine construction is 
accumulated 187 amino acid residues. Our vaccine con-
struct was predicted using a solubility assessing tool to be 
soluble inside host E. coli. Solubility is a vital characteristic 
of any recombinant vaccine as a physiochemical property 
[88–91]. The designed vaccine’s properties were found to 
be acidic, soluble, non-allergenic and highly antigenic. In 
multi-epitope vaccine design, allergenicity plays an impor-
tant role [92–94]. We evaluated the allergenicity before 
vaccine design; hence, no available allergenic epitopes in 
the vaccine construct. Therefore, the designed vaccine will 
not be an allergic reaction to the human body [95]. In our 
newly finding novel peptide vaccine, its binding affinity is 
predicted by molecular docking and we get the appropri-
ate interaction between the vaccine and TLR3 cell surface 
receptor [96]. The simulation trajectories with the TLR3 
receptor and the vaccine were calculated to gain knowledge 
about the well binding strength and contact [96]. Since the 
vaccine consisted of CTL and HTL epitopes, it could induce 
the activation of the respective immune cells in the host, 
which may further lead to the activation of other immune 
cells through complex signaling [97]. In the case of the 
immune simulation study, it was confirmed that our designed 
vaccine candidate could generate an appropriate immune 
response in secondary exposure after the final injection. The 
molecular dynamics simulation study of the vaccine candi-
date was conducted to confirm their stable nature at atom-
istic conditions. The simulation data by combining RMSD 
and RMSF descriptors from trajectories correlate with the 
structural rigidity of the vaccine complexes. The RMSD and 
RMSF profile of the vaccine candidates was below 6.188 Å 
for most of the simulation time. These results define the 
vaccine complexes integrity and less mobility at the simu-
lation conditions. Recently, many other studies are devoted 
to design multi-epitope vaccines against pathogens such as 
SARS-CoV-2 [51, 98], Kaposi sarcoma [99], onchocerciasis 
[46], Leishmania [50], and dengue [50]. We believed that 
BLV multi-epitope vaccine that we designed in this study 
could reduce the upstream processing efforts of the BLV 
vaccine development.

Conclusions

In this study, we computationally designed a multi-epitope 
vaccine against BLV as prophylaxis to human breast cancer. 
Our vaccine construct had a potential immune response and 
good physicochemical properties. Additionally, the vaccine 
is antigenic and immunogenic as well as has no allergenic 
and toxic effect on the human body. This novel vaccine 
contains a significant interaction and binding affinity with 
the TLR3 receptor. However, further investigations of both 
in vitro and in vivo are to ensure its true potential to fight 
BLV infection.
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