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Abstract
The importance of the tumour microbiome in different aspects of colorectal cancer (CRC) has been increasingly recognised, 
but many questions remain. The aim of this study was to explore the effect of specific CRC associated microbes on the tumour 
immune response, which has a considerable prognostic value in CRC. We applied specific qPCR to detect Parvimonas micra 
and Fusobacterium nucleatum in tumour tissues from an immunologically well-characterised cohort of 69 CRC patients. 
This cohort included detailed analyses of immune profiles based on flow cytometry and transcriptomics in tumour tissue 
and blood, along with comprehensive analyses of molecular subtypes. P. micra and F. nucleatum were detected in 24% and 
64% of tumour tissues, respectively. We found a significant association of P. micra with high-grade tumours and tumours 
of CMS1 subtype. F. nucleatum was significantly associated with right-sided tumours, microsatellite instability, and CMS1 
tumours. The immunological analyses revealed significant associations of P. micra with activated CD69+ T lymphocytes and 
increased antigen-presenting HLA-DR+ B lymphocytes. P. micra was also positively associated with M1 and M2 macrophage 
traits. The impact of P. micra tumour colonisation on the immune response was further assessed using transcriptomics in 
validation of our findings. No associations were found between F. nucleatum and immune profiles in this study. Our findings 
support novel associations between P. micra and the immune response in CRC. A better understanding of these interactions 
might help to identify important predictive and prognostic tools as well as new targets for therapy.
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Introduction

Colorectal cancer (CRC) is a heterogeneous disease that 
evolves through a complex interplay between environmental 
and genetic components. The role of the tumour microbi-
ome in CRC progression has been increasingly recognised 
as a contributing factor to patient prognosis and response 
to therapy [1]. Still, relatively little is known about the 

functional mechanisms behind different aspects of clinical 
outcome, and thus, further studies elucidating the spatio-
temporal presence of certain bacteria along with their inter-
actions with each other and the evolving tumour are cru-
cial. A driver-passenger theory has been proposed, where 
indigenous intestinal bacteria, often toxin producing, can 
induce epithelial DNA damage, inflammation, and the initia-
tion of CRC (bacterial drivers). Along with tumorigenesis, 
intestinal niche alterations favour colonisation of certain 
opportunistic bacteria (bacterial passengers). The bacterial 
passengers outcompete the initial driver bacteria, and might 
further accelerate tumour progression through, for example, 
inflammatory processes [2].

Metagenomic studies have shown alterations (dysbio-
sis) of both the gut and mucosal microbiota associated 
with CRC [1, 3, 4]. Interestingly, several of the bac-
teria associated with CRC are commonly found in the 
oral flora, including the anaerobic bacteria Fusobacte-
rium nucleatum and Parvimonas micra, and both these 
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bacteria have been associated with various inflammatory 
conditions in, for example, the oral cavity and gut, as 
well as CRC [3–11]. In a previous study using specific 
qPCR assays, we confirmed in two independent cohorts 
a greater abundance of F. nucleatum and P. micra in the 
faeces of CRC patients compared to healthy controls [12]. 
The pathogenesis of F. nucleatum in CRC has been quite 
extensively studied and found to be associated with a 
worsened prognosis [13–15]. For instance, F. nucleatum 
has been shown to express a unique adhesion molecule, 
FadA, which enables it to adhere to and invade colonic 
epithelial cells, and to induce E-cadherin-mediated acti-
vation of Wnt/β-catenin signalling [16]. In contrast, very 
little is known about the mechanisms through which P. 
micra influences CRC progression.

In parallel with environmental factors such as the 
contribution of the gut microbiome to CRC, tumour for-
mation has been associated with both genetic and epi-
genetic changes. The most robust classification today 
of CRC in terms of biological and clinical behaviour is 
the transcriptomics-based consensus molecular subtypes 
(CMSs) [17]. The CMS subgroups include CMS1 (hyper-
mutation, microsatellite instability (MSI), BRAF muta-
tion, CIMP high, immune activation), CMS2 (epithelial, 
significant WNT and MYC signalling), CMS3 (epithelial 
and evident metabolic dysregulation, KRAS mutation), 
and CMS4 (mesenchymal, prominent TGF-β activation, 
stromal invasion and angiogenesis).

The immune response is an important regulator of CRC 
progression and patients with tumours highly infiltrated 
by activated immune cells have a prognostic advantage 
[18]. Patients with MSI tumours (mainly found in CMS1) 
show increased local tumour immune cell infiltration and 
improved survival compared to patients with other tumour 
molecular subtypes [19]. The important prognostic role 
of the immune system in CRC, further suggests immu-
notherapy as a potential treatment modality. Cytotoxic T 
cells are negatively regulated by the immune checkpoint 
molecules, cytotoxic T lymphocyte-associated protein 
4 (CTLA-4) and programmed cell death protein (PD-1/
PDCD-1), and PD-1 and CTLA-4 inhibitors have been 
approved for CRC patients with metastatic MSI tumours 
and are associated with prolonged survival [20]. Notably, 
recent studies have proposed that the response to immu-
notherapy in CRC is partly affected by the gut microbiota 
[21].

In this study, we used specific qPCR assays to inves-
tigate the association between tumour colonisation of P. 
micra and F. nucleatum and immune events in an immu-
nologically well-characterised cohort of CRC patients. 
A better understanding of the interactions between gut 
microbes and the immune response might lead to impor-
tant improvements in future cancer care.

Materials and methods

Study cohort

Patients included in the study were from the Uppsala-Umeå 
Comprehensive Cancer Consortium (U-CAN) project [22]. 
Since 2010, the project has collected fresh frozen tissue, 
formalin-fixed paraffin-embedded tissue, blood, and clinical 
data from all patients diagnosed with CRC at the Umeå Uni-
versity Hospital, Umeå, Sweden. Between November 2015 
and July 2017, U-CAN patients were included in the Umeå 
Immune Profiling of Colorectal Cancer Project (UIP-CRC) 
that is described in detail elsewhere [23]. In brief, a total of 
69 patients were included in UIP-CRC. Of these, immune 
activity profiles were available from tumour tissue of 64 
patients and blood from 49 patients. Non-fasting plasma 
samples, taken at the time of diagnosis, were also available 
from 63 patients. Patients with rectal cancer who had under-
gone irradiation therapy prior to surgery were excluded. 
The UIP-CRC cohort has been well-characterised regard-
ing molecular determinants, including MSI status, BRAF 
and KRAS mutations status, and CMS subtype, as previously 
described [23].

Analyses of immune activity profiles in isolated 
mononuclear immune cells using flow cytometry

The analysis of immune activity profiles from UIP-CRC has 
been previously described [23]. In brief, immune markers 
were analysed on isolated mononuclear immune cells from 
tumour tissues of 64 patients and blood samples from 49 
patients using flow cytometry. Gating on the mononuclear 
cell population was done in the FSC/SSC window; thereaf-
ter, a gate was set to identify populations of T helper cells 
(CD3+/CD4+), cytotoxic T cells (CD3+/CD8+), monocytes/
macrophages (CD14+), NK cells (CD56+/CD16+/CD3−), or 
B cells (CD19+). Second gates were set using FMO (fluo-
rescence minus one) controls to evaluate the proportions 
of a population of gated cells expressing a specific marker 
(CD28, CD69, PD-1, CTLA-4, NKG2D, CD80, CD86, 
CD163, HLA-DR, or PD-L1). T regulatory cells (Tregs) 
were defined as CD4+CD25+CD127−.

Detection of microbial markers in tissue using 
quantitative real‑time PCR (qPCR)

Microbial factors were analysed by qPCR in fresh frozen 
tumour tissues and adjacent non-malignant tissues from 67 
of the patients. Two patients were excluded from qPCR anal-
yses due to a lack of fresh frozen tissues. DNA was extracted 
from a 2–3 mm cube of fresh frozen tissue using the AllPrep 
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DNA/RNA/miRNA Universal kit (Qiagen). Prior to extrac-
tion, the tumour tissue was homogenised using a Precellys 
24 homogenizer (Bertin Technologies) with 1.4 mm ceramic 
beads. The qPCR assays for P. micra, F. nucleatum and the 
universal qPCR assay for the 16S rRNA gene, have previ-
ously been established and described with references to the 
relevant literature [12]. The PGT gene assay was acquired 
from Flanagan et al. [13] and Castellarin et al. [24]. Primers 
and probes of the different assays are listed in Supplemen-
tary Table 1.

All reactions were run in duplicates utilising the Quant-
Studio™ 6 Flex Real-Time PCR System (Applied Biosys-
tems). Cycle conditions for all assays used were: 2 min at 
50 °C, 10 min at 95 °C, and 40 cycles of: 95 °C for 15 s, 
and 60 °C for 1 min. Markers not amplified within 38 cycles 
were defined as negative. In cases where there was a dis-
crepancy in quantification cycle (Cq) values between the 
duplicates (SD > 0.5), the sample was rerun in duplicates to 
obtain a stable duplicate. Samples with discrepancies in Cq 
values between duplicates after three runs were excluded. 
These exclusions included one tumour tissue sample and two 
adjacent non-malignant tissue samples for F. nucleatum and 
one adjacent non-malignant tissue sample for the universal 
16 s rRNA assay. In the analysis of PGT, one non-malignant 
tissue sample was excluded due to limited amounts of DNA. 
No exclusions were made for P. micra. The level of P. micra 
and F. nucleatum was presented as a relative quantification 
with the human gene PGT or the 16S rRNA gene as refer-
ences and calculated using the 2—ΔCq method.

Transcriptomic‑based analyses

The RNA sequencing analysis for the UIP-CRC cohort has 
been previously described [23]. DESeq2 was used for dif-
ferential gene expression analysis [25]. The DESeq2 analysis 
was modelled in three different ways, (1) as a function of P. 
micra positive samples, (2) as a function of F. nucleatum 
positive samples, and (3) as a function of four groups; P. 
micra positives, F. nucleatum positives, samples positive for 
both P. micra and F. nucleatum, and samples negative for 
both P. micra and F. nucleatum. A P-adjusted value < 0.05 
was used to filter significantly differentially expressed 
genes. GO enrichment analysis for biological processes 
[26, 27] was performed to functionally annotate differen-
tially expressed genes using the R package clusterProfiler 
[28]. Principal component analyses (PCA) were used to 
illustrate clusters of samples based on similarities according 
to P. micra and F.nucleatum positivity. CIBERSORTx was 
utilised to classify immune infiltration based on transcrip-
tomics in P. micra positive and P. micra negative samples, 
enabling the analysis of immune cell type abundances in 
mixed tissues. The abundance of immune cells was com-
puted using the leukocyte signature matrix LM22 [29]. The 

statistical programming language R, version 4.0.0 and 4.0.4 
were used for the bioinformatics and statistical analyses [30]. 
For illustrations, the ggplot2 packages were used [31].

Plasma analyses

Non-fasting EDTA plasma samples were collected at the 
time of diagnosis and stored at − 80 °C. Plasma samples 
were analysed using the Olink Immuno-Oncology panel 
(v3.111), Olink Biosciences, Uppsala, Sweden), which 
includes detection of 92 proteins by Proximity Exten-
sion Assay technology. The analysis was performed by 
SciLifeLab, Uppsala, Sweden, and targeted proteins were 
detected through qPCR [32]. The qPCR results were ana-
lysed as normalised protein expression (NPX) values on a 
log2-scale. A detailed description of assay characteristics, 
including quality control, detection limits, performance, and 
validation, can be found at https://​www.​olink.​com.

Statistical methods

Statistical analyses were performed using IBM SPSS Statis-
tics 26 (SPSS Inc.). Fisher's exact test was used to compare 
categorical variables, and the Mann–Whitney U test was 
used to compare differences in continuous variables between 
two groups. For more than two groups, the Kruskall–Wallis 
test was used for comparisons of continuous variables. The 
Wilcoxon signed-rank test was used for pairwise dependent 
continuous variables, and correlations between continuous 
variables were analysed using the Spearman's rank cor-
relation test. P values < 0.05 were considered statistically 
significant.

Results

Distribution of P. micra and F. nucleatum in tumour 
tissue and adjacent non‑malignant tissue of CRC 
patients

The clinical characteristics of the 67 study patients are pre-
sented in Table 1. The levels of P.micra and F. nucleatum 
were determined by qPCR in fresh frozen tumour tissue and 
adjacent non-malignant tissue. To find the optimal refer-
ence gene for relative quantification, we initially used both 
a universal qPCR assay for the 16S rRNA gene and a qPCR 
assay for the human gene PGT. Spearman’s rank correlation 
tests revealed that the relative levels using either the 16S 
rRNA gene or PGT as reference were highly correlated for 
both P. micra and F. nucleatum (Spearman’s rank correlation 
coefficient (rs) = 0.992, P < 0.001 for P. micra, rs = 0.923, 
P < 0.001 for F. nucleatum). Nonetheless, a significant posi-
tive correlation was found for non-normalised levels of P. 

https://www.olink.com
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micra and F. nucleatum with the 16S rRNA gene (rs = 0.541, 
P = 0.030 and rs = 0.453, P = 0.003, respectively), whereas 
no significant correlation was found for P. micra and F. 
nucleatum with human PGT (rs = − 0.247, P = 0.356 and 
rs = − 0.103 and P = 0.518, respectively). Therefore, for sub-
sequent analyses, P. micra and F. nucleatum were quantified 
relative to PGT.

P. micra was detected in the tumour tissue of 16 (23.9%) 
patients and in the adjacent non-malignant tissue of 18 
(29.6%) patients. Of the 16 patients positive for P. micra in 
tumour tissue, 13 (81.3%) patients were also positive for P. 
micra in non-malignant tissue (Fig. 1a). F. nucleatum was 
detected in the tumour tissue of 42 (63.6%) patients and in 
the adjacent non-malignant tissues of 32 (49.2%) patients. 
A total of 27 (42.2%) patients were found to be positive for 
F. nucleatum in both the tumour tissue and the adjacent non-
malignant tissue (Fig. 1b).

When comparing the levels of microbial markers 
between tumour tissue and adjacent non-malignant tissue, 
no significant difference was found for P. micra (P = 0.100) 

(Fig. 2a). In contrast, F. nucleatum was found at higher lev-
els in tumour tissue than in adjacent non-malignant tissue 
(P < 0.001) (Fig. 2b). Interestingly, of the 16 patients with P. 
micra positive tumours, 13 patients had tumours that were 

Table 1   Clinical characteristics of study patients in relation to P. micra and F. nucleatum in tumour tissue

Fisher’s exact test was used to compare categorical variables
*Calculations based on the relative levels of P. micra and F. nucleatum, using the Mann–Whitney U test to compare two independent samples 
and the Kruskal–Wallis test to compare several independent samples

P. micra P value F. nucleatum P value

Total Positive Negative Total Positive Negative

n = 67 n = 16 n = 51 n = 66 n = 42 n = 24

Age, n (%)
 ≤ 59 8 (11.9) 0 (0.0) 8 (15.7) 0.154/0.126* 7 (10.6) 4 (9.5) 3 (12.5) 0.864/0.784*
 60–69 12 (17.9) 2 (12.5) 10 (19.6) 12 (18.2) 8 (19.0) 4 (16.7)
 70–79 30 (44.8) 7 (43.8) 23 (45.1) 30 (45.5) 18 (42.9) 12 (50.0)
 ≥ 80 17 (25.4) 7 (43.8) 10 (19.6) 17 (25.8) 12 (28.6) 5 (20.8)

Gender, n (%)
 Female 28 (41.8) 5 (31.3) 23 (45.1) 0.393/0.405* 28 (42.4) 21 (50.0) 7 (29.2) 0.125/0.064*
 Male 39 (58.2) 11 (68.8) 28 (54.9) 38 (57.6) 21 (50.0) 17 (70.8)

Location, n (%)
 Right colon 35 (52.2) 6 (37.5) 29 (56.9) 0.381/0.569* 34 (51.5) 26 (61.9) 8 (33.3) 0.071/0.004*
 left colon 14 (20.9) 4 (25.0) 10 (19.6) 14 (21.2) 6 (14.3) 8 (33.3)
 Rectum 18 (26.9) 6 (37.5) 12 (23.5) 18 (27.3) 10 (23.8) 8 (33.3)

Stage, n (%)
 I 10 (14.9) 1 (6.3) 9 (17.6) 0.346/0.377* 10 (15.2) 3 (7.1) 7 (29.2) 0.112/0.298*
 II 27 (40.3) 5 (31.1) 22 (43.1) 27 (40.9) 18 (42.9) 9 (37.5)
 III 25 (37.3) 9 (56.3) 16 (31.4) 24 (36.4) 17 (40.5) 7 (29.2)
 IV 5 (7.5) 1 (6.3) 4 (7.8) 5 (7.6) 4 (9.5) 1 (4.2)

Tumour grade, n (%)
 High grade 19 (28.4) 8 (50.0) 11 (21.6) 0.053/0.034* 18 (27.3) 13 (31.0) 5 (20.8) 0.566/0.430*
 Low grade 48 (71.6) 8 (50.0) 40 (78.4) 48 (72.7) 29 (69.0) 19 (79.2)

Tumour type, n (%)
 Non-mucinous 58 (86.6) 12 (75.0) 46 (90.2) 0.201/0.184* 57 (86.4) 35 (83.3) 22 (91.7) 0.469/0.598*
 Mucinous 9 (13.4) 4 (25.0) 5 (9.8) 9 (13.6) 7 (16.7) 2 (8.3)

P. micra F. nucleatum

Tumour
tissue
(n=67)

Non-malignant
adjacent tissue

(n=67)

Tumour
tissue
(n=66)

Non-malignant
adjacent tissue

(n=65)

n=15 n=27 n=5

a b

n=3 n=13 n=5

Fig. 1   The distribution of P. micra and F. nucleatum in tumour tissue 
and adjacent non-malignant tissue of patients with CRC. Venn dia-
grams are used to illustrate the presence of a P. micra or b F. nuclea-
tum in the indicated tissues



2569Cancer Immunology, Immunotherapy (2022) 71:2565–2575	

1 3

also positive for F. nucleatum (Fig. 3). We further found a 
trend towards a correlation between the levels of P. micra 
and F. nucleatum in tumour tissue (rs = 0.232, P = 0.060).

Associations between P. micra and F. nucleatum 
and clinicopathological and molecular parameters

We next analysed the associations of P. micra and F. nuclea-
tum with the clinicopathological and molecular character-
istics of the study patients (Tables 1 and 2, respectively). P. 
micra was significantly associated with high-grade tumours 
(Table 1) and tumours of the CMS1 subtype (Table 2). F. 
nucleatum was significantly associated with right-sided 
tumours (Table 1) and tumours of the MSI subtype, with 

14 of the 16 (87.5%) MSI tumours being positive for F. 
nucleatum (Table 2). Similarly to P. micra, the level of F. 
nucleatum was also significantly associated with CMS1 
tumours (Table 2). No correlations between P. micra or F. 
nucleatum and age, gender, stage, tumour type (mucinous/
non-mucinous), and KRAS or BRAF mutation were found 
(Tables 1 and 2).

P. micra is correlated with tumour immune profiles

The tumour infiltration of T helper cells (CD4+), cytotoxic 
T cells (CD8+), B lymphocytes (CD19+), NK cells (CD56+/
CD16+), and macrophages (CD14+), along with markers for 
their activation/inhibition, was previously analysed in this 
cohort [23]. Tumour tissue colonisation of P. micra was 
related to several of the analysed immune markers (Table 3). 
A tendency was found for a correlation between a higher 
level of P. micra and an increased percentage of infiltrating 
T cells (P = 0.051 for CD4; P = 0.076 for CD8), and for the 
fraction of activated CD69+ cytotoxic T cells this correla-
tion was significant (P = 0.003). However, no correlation was 
found with the fractions of PD-1+ or CTLA-4+ cytotoxic T 
cells (Table 3). A high level of P. micra was also positively 
correlated with the fraction of antigen-presenting human 
leukocyte antigen (HLA)-DR+ B cells (P = 0.005), but not 
with the overall percentage of B cells. Also for macrophages, 
no correlation was found for P. micra to the overall per-
centage of macrophages. However, a high level of P. micra 
was positively correlated with the fraction of HLA-DR+ 
(P = 0.003), as well as with the fractions of CD163+ mac-
rophages (P = 0.019) and PD-L1+ macrophages (P = 0.051). 
No correlation was found between the level of F. nucleatum 
in tumour tissue and the tumour immune activity profile 
(Supplementary Table 2).

GO enrichment analysis of differentially expressed genes 
in P. micra positive tumours compared to P. micra negative 
tumours revealed significantly enriched biological processes 
related mostly to the immune response and included both 
innate and adaptive immune events (Fig. 4a). At the top of 
the list of biological processes that marked P. micra posi-
tive tumours was T cell activation (Fig. 4a), which included 
increased levels of CD4, CD8a, T-box transcription factor 
(Tbx) 21 (expressed by Th1 cells), IFN-γ, immunomodu-
latory molecules such as CTLA-4, PD-1 and PD-L1, but 
also costimulatory molecules such as HLA-DR, CD86 and 
CD80 (Fig. 4b). The complete list of differentially expressed 
genes according to P. micra and F. nucleatum can be found 
in Supplementary Table 3 and 4, respectively. Only one 
significantly enriched biological process was found for F. 
nucleatum positive tumours and that was bicarbonate trans-
port (Supplementary Fig. 1). We further assessed the role of 
P. micra in CRC immunity using transcriptomic analyses of 
immune cell abundances by CIBERSORTx. Indeed, P. micra 
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Fig. 2   The levels of P. micra and F. nucleatum in tumour tissue and 
non-malignant adjacent tissue of patients with CRC. Scatter plots 
are used to illustrate the relative levels of a P. micra (Pm) and b F. 
nucleatum (Fn) in the tumour tissues compared to the adjacent non-
malignant tissues. Horisontal lines indicate mean relative expression 
calculated by the 2−ΔCq method using PGT as the reference
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Fig. 3   The distribution of P. micra and F. nucleatum in the tumour 
tissue of patients with CRC. Circle diagrams are used to illustrate the 
presence or absence of P. micra and/or F. nucleatum in the tumour 
tissues of patients analysed for both microbial markers (n = 66)
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showed significant associations to T cells (mainly CD8+), 
as well as M1 and M2 macrophages, validating the findings 
from our flow cytometry analyses (Fig. 4c). Furthermore, 
the strongest correlations of immune cells found in P. micra 
positive tumours were those of T cells and macrophages 
(Fig. 4d). Since 13 out of 16 P. micra positive tumours were 
also positive for F. nucleatum, we assessed tumour transcrip-
tomes in relation to P. micra and F. nucleatum positivity 
based on similarities. Even though the sample size was too 
low to draw any definite conclusions, samples positive for 
both P. micra and F. nucleatum diverged the most from sin-
gle positive or negative samples. This observation indicates 
a changed transcriptomic profile for double positive samples. 
(Fig. 4e).

P. micra is correlated to systemic immune markers

The correlations of P. micra to tumour immune activity pro-
files were not mirrored in the cellular fraction of blood (Sup-
plementary Table 5). To evaluate the correlation of P. micra 
to systemic immune markers, plasma from 63 of the patients 
was analysed using the OLINK Immuno-Oncology Panel 
of 92 systemic markers (Supplementary Table 6). A higher 
level of P. micra was correlated with a higher level of inter-
leukin-8 (IL-8) (P = 0.010), carbonic anhydrase IX (CAIX) 
(P = 0.015), and tumour necrosis factor (TNF) superfam-
ily member 14 (TNFSF14) (P = 0.022). Furthermore, a 
higher level of P. micra was correlated with lower levels 

of the cytotoxic and regulatory T cell molecule (CRTAM) 
(P = 0.016), and with lower levels of the apoptosis regula-
tors Fas ligand (FASL) (P = 0.025) and TNF receptor super-
family member 21 (TNFRSF21) (P = 0.040). Interestingly, 
CRTAM and TNFSF14 were found by GO enrichment 
analyses to be linked to T cell activation and to be more 
highly expressed in P. micra positive tumours (Fig. 4b). No 
correlations were found for F. nucleatum with the plasma 
markers that were analysed.

Discussion

In this study, we investigated the tumour colonisation of two 
CRC associated microbes from the oral microflora, P. micra 
and F. nucleatum, and their relations to tumour molecular 
determinants and the tumour immune response in CRC. We 
found associations with tumour molecular traits for both P. 
micra and F. nucleatum, including associations with tumours 
of CMS1 subtype. Furthermore, we found novel associations 
between P. micra and tumour immunity.

Summarising the associations found for the investigated 
microbes with tumour molecular characteristics, a high level 
of P. micra was associated with high-grade tumours, which 
has not been previously described. No association with 
tumour grade was found for F. nucleatum. F. nucleatum was 
more often found colonising right-sided tumours, which is in 
line with previous findings [33]. In a study by Azadeh et al., 

Table 2   Molecular characteristics of study patients in relation to P. micra and F. nucleatum in tumour tissue

Fisher’s exact test was used to compare categorical variables
MSI microsatellite instability, MSS microsatellite stable, CMS consensus molecular subtype
*Calculations based on the relative levels of P. micra and F. nucleatum, using the Mann–Whitney U test to compare two independent samples 
and the Kruskal–Wallis test to compare several independent samples

P. micra F. nucleatum

Total Positive Negative P value Total Positive Negative P value

n = 67 n = 16 n = 51 n = 66 n = 42 n = 24

BRAF mutation status, n (%)
 Wild type 44 (66.7) 10 (62.5) 34 (68.0) 0.764/0.691* 43 (66.2) 25 (61.0) 18 (75.0) 0.289/0.093*
 Mutant 22 (33.3) 6 (37.5) 16 (32.0) 22 (33.8) 16 (39.0) 6 (25.0)

KRAS mutation status, n (%)
 Wild type 45 (72.6) 12 (75.0) 33 (71.7) 1.000/0.967* 44 (72.1) 29 (76.3) 15 (65.2) 0.388/0.399*
 Mutant 17 (27.4) 4 (25.0) 13 (28.3) 17 (27.9) 9 (23.7) 8 (34.8)

MSI status, n (%)
 MSS 49 (75.4) 10 (62.5) 39 (79.6) 0.193/0.099* 48 (75.0) 26 (65.0) 22 (91.7) 0.019/0.006*
 MSI 16 (24.6) 6 (37.5) 10 (20.4) 16 (25.0) 14 (35.0) 2 (8.3)

CMS status, n (%)
 CMS 1 20 (37.0) 8 (72.7) 12 (27.9) 0.002/0.009* 20 (37.0) 16 (47.1) 4 (20.0) 0.072/0.013*
 CMS 2 23 (42.6) 0 (0.0) 23 (53.5) 23 (42.6) 10 (29.4) 13 (65.0)
 CMS 3 6 (11.1) 2 (18.2) 4 (9.3) 6 (11.1) 4 (11.8) 2 (10.0)
 CMS 4 5 (9.3) 1 (9.1) 4 (9.3) 5 (9.3) 4 (11.8) 1 (5.0)
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a difference in crypt mucosa associated bacteria between 
left and right-sided colon cancers was recognised, with F. 
nucleatum more often being present in right-sided tumours 
whereas P. micra was associated with left-sided tumours 
[34]. No association of P. micra with left-sided tumours was 
found in the present study, nor in our previous study using 
faecal samples [12]. Instead, both P. micra and F. nuclea-
tum were linked to CMS1 tumours, often associated with 
a right-sided tumour location and an MSI subtype [35]. A 
similar association of P. micra and F. nucleatum with CMS1 
tumours was previously shown by Purcell et al. [36]. For 

F. nucleatum, a significant association was also seen with 
tumours of the MSI subtype, an association previously estab-
lished in the literature [15].

Because tumours of the CMS1 subtype are defined by 
increased immune infiltration [35], we next investigated 
the tumour colonisation of P. micra and F. nucleatum in 
relation to tumour immune activity profiles. Interestingly, 
a high level of P. micra in tumour tissue was found to be 
linked to a higher fraction of activated immune components, 
including CD69+ cytotoxic T cells and antigen-presenting 
HLA-DR+ B cells. High levels of P. micra were further 
positively correlated to the fractions of both activated M1 
macrophages (HLA-DR+) and inhibitory M2 macrophages 
(CD163+ and PD-L1+). These findings suggest an initial 
activation of the macrophage response that is subsequently 
skewed towards immune suppression, which would be in line 
with the reported plasticity of macrophage subsets [37]. F. 
nucleatum has been suggested in a previous study to promote 
M2 macrophage polarisation [38]. Our findings of a poten-
tial role of P. micra in tumour immunity were strengthened 
by GO enrichment analyses, demonstrating associations 
to many immune-related events. A more detailed analysis 
of immune signatures using transcriptomic data further 
validated our findings. Surprisingly, F. nucleatum was not 
found to be linked to tumour immune profiles in our study. 
F. nucleatum was shown in a preclinical mouse study to 
induce a proinflammatory tumour microenvironment and to 
recruit tumour-infiltrating immune cells, including M2-like 
tumour associated macrophages and dendritic cells, along 
with Tregs, and T helper 17 cells, which can promote tumour 
progression [7]. Mima et al. further concluded that human 
CRC tumours enriched for F. nucleatum, presented with 
lower densities of CD3+ T cells [33]. F. nucleatum has also 
been shown to interact with the immune inhibitory recep-
tors TIGIT and CEACAM1, thus protecting CRC cells from 
cytotoxicity by NK cells and tumour-infiltrating lympho-
cytes [39, 40]. The reasons for the discrepancies between 
these studies and ours are not clear, but may partly reflect 
the relatively small sample size in our study, or the different 
methodologies used in the studies. Taken together, our find-
ings suggest a novel role for P. micra in tumour immunity in 
CRC, which may potentially be stronger or at least dissimilar 
from the effects induced by F. nucleatum. Further studies 
using larger cohorts are needed to address the relative con-
tributions of P. micra and F. nucleatum in CRC immunity.

In this study, we found a trend towards a correlation 
between the level of P. micra and F. nucleatum, which was 
also evidenced in our previous study [12], as well as in a 
study by Jun Yu et al. [11], analysing the presence of these 
bacteria in faecal samples. Additionally, P. micra and F. 
nucleatum display synergistic effects in bacterial biofilm 
formation [41]. In a study by Drewens et al., they found a 
considerable enrichment of the human oral microbiota in 

Table 3   The correlation between levels of P. micra in tumour tissue 
and immune markers

Correlations were calculated using the relative levels of P. micra. 
Immune markers in bold are presented as the percentage of positive 
cells within tumour isolated mononuclear cells. Remaining immune 
markers (not in bold) are defined as the percentage of cells (in bold) 
expressing a specific marker
rs Spearman’s rank correlation coefficient
*P value < 0.05

P. micra

rs P value

T helper cells
 CD4 0.265 0.051
 CD28 − 0.104 0.449
 CD69 0.239 0.079
 PD-1 0.198 0.147
 CTLA-4 − 0.054 0.694
 Treg 0.005 0.972

Cytotoxic T cells
 CD8 0.241 0.076
 CD28 0.155 0.259
 CD69 0.398 0.003*
 PD-1 0.150 0.273
 CTLA-4 − 0.068 0.620
 NKG2D 0.024 0.869

NK cells
 CD56/CD16 − 0.042 0.754
 NKG2D 0.058 0.663
 CD69 0.137 0.301

B cells
 CD19 0.103 0.495
 CD86 0.120 0.425
 CD80 − 0.012 0.939
 HLA-DR 0.410 0.005*
 CD69 0.123 0.414

Macrophages
 CD14 − 0.057 0.699
 HLA-DR 0.422 0.003*
 CD163 0.341 0.019*
 PD-L1 0.286 0.051
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right-sided tumours, including both P. micra and F. nuclea-
tum [6], and bacterial biofilms in the gut mucosa have been 
shown to be a consistent feature of these tumours [42]. 
The tumour colonisation of P. micra may thus actually be 
a marker for a higher degree of dysbiosis associated with 
CRC disease. Thus, the more specific role of P. micra in 
tumour progression and immunity needs to be addressed in 
future mechanistic studies.

Recent studies have reported that the effectiveness of 
immunotherapy might partly depend on the gut microbiota 
[21]. In melanoma, the gut microbiota has been shown to 
modulate the response to anti-PD-1 immunotherapy [43]. 
Here, no significant correlation of P. micra or F. nucleatum 
was found with the fraction of cytotoxic T cells expressing 
the immune checkpoint molecules CTLA-4 and PD-1 using 
flow cytometry. However, gene expression profiling showed 
that CTLA-4 and PD-1 expression was significantly greater 
in tumours colonised by P. micra (Fig. 4b). Further studies in 
larger cohorts are needed to investigate the possible involve-
ment of P. micra in response to immunotherapy.

None of the described associations of P. micra with cellu-
lar immunity found in the tumour compartment, were found 
in the cellular blood fraction. This finding is supported by 
transcriptomics studies, suggesting that markers from blood 
do not in general translate well to tissues, including tumours 
[44, 45]. However, non-cellular systemic markers may still 
be potential candidates for future therapeutic decisions. In 
this study, we found an association between P. micra and six 
of the plasma markers analysed, including a positive correla-
tion with IL8, CAIX, and TNFSF14 and a negative correla-
tion with CRTAM, FASL, and TNFRSF21. The relevance 
of these markers in clinical decisions regarding P. micra 
needs to be further evaluated. No associations were found 
for F. nucleatum with systemic markers, further suggesting 
a greater impact of P. micra on immunity in CRC.

A strength of this study is the very detailed immune 
and molecular analyses. However, even though our results 
are biologically and clinically relevant, they should be 
interpreted with some caution due to the relatively small 
sample size and the large number of statistical tests per-
formed. Additional limitations of the study include the 

lack of a validation cohort. Thus, further studies on larger 
patient cohorts are needed to better elucidate the role of 
P. micra in tumour progression and immunity in CRC.

In conclusion, our findings suggest novel associations 
between tumour colonisation of P. micra and tumour 
immunity in CRC. Further studies on the role of P. micra 
and F. nucleatum, as well as other microbial species, in 
CRC progression are needed. An improved understanding 
of the spatio-temporal presence of tumour microbes, and 
the mechanism by which they regulate tumour progression, 
may lead to the identification of important biomarkers for 
CRC disease and outcome, as well as putative targets for 
future therapy.
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Fig. 4   Transcriptomic-based classification of immune profiles 
according to microbial content in tumour tissues of CRC patients. 
a GO enrichment analysis for biological processes of differentially 
expressed genes between P. micra positive and P. micra negative 
tumours based on clusterProfiler, b selected genes included in the top 
GO term T cell activation, c classification of immune cells according 
to P. micra positivity by CIBERSORTx, d Correlations of immune 
cells in P. micra positive tumour tissues, and (E) PCA similarity plot 
according to P. micra and F. nucleatum positivity. *P values < 0.05, 
**P values < 0.01 and ***P values < 0.001. Results from figures a, b 
are based on the DESeq2 model 1, and results from figure E are based 
on DESeq2 model 3
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