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Abstract
Here, we report a novel experimental setup to perform adoptive transfer of gene-edited B cells using humanized immune 
system mice by infusing autologous HIS mouse-derived human B cells “educated” in a murine context and thus rendered 
tolerant to the host. The present approach presents two advantages over the conventional humanized PBMC mouse models: 
(i) it circumvents the risk of xenogeneic graft-versus-host reaction and (ii) it mimics more closely human immune responses, 
thus favoring clinical translation. We show that the frequencies and numbers of transduced B cells in recipient’s spleens one 
week post-transfer are within the range of the size of the pre-immune B cell population specific for a given protein antigen 
in the mouse. They are also compatible with the B cell numbers required to elicit a sizeable immune response upon immu-
nization. Altogether, our findings pave the way for future studies aiming at assessing therapeutic interventions involving B 
cell reprogramming for instance by an antibody transgene in a “humanized” hematopoietic setting.

Keywords Humanized immune system · B cell adoptive transfer · Cell therapy · Gene therapy

Introduction

B cells are key players of adaptive immunity, not only 
because they produce antibodies, but also owing to their 
status of antigen-presenting cells and to their immunoregu-
lation capacity via cytokine production. The development 
of gene-edited B cells has become increasingly considered 
for the treatment of a wide range of diseases [1]. Among 
the many applications of genetically modified B cells, two 
have appeared as particularly promising in terms of thera-
peutic intervention. The first one relates to hematopoietic 

stem cell transplantation (allo-HSCT). One of the main 
drawbacks of HSCT is the delayed immune reconstitution, 
especially of the B cell compartment, which takes several 
months (up to 1–2 years) and results in increased suscepti-
bility of the patients to opportunistic bacterial, fungal and, 
most importantly, viral infections. Recently, the concomitant 
injection of allogenic B cells and HSCs has been used to 
counteract immune defects and to rapidly confer humoral 
immune protection to transplanted patients [2]. The second 
promising therapeutic approach concerns the reinfusion of 
reprogramed autologous B cells to confer protective immu-
nity without vaccination. It relies on viral vectors that can 
deliver transgenes encoding neutralizing antibodies in host-
derived B lymphocytes. This procedure is superior to so-
called passive immunization inasmuch as it enables patients 
to produce therapeutic antibodies for a longer, if not for life-
long periods as compared to the injection of short-lasting 
humanized antibodies. Moreover, the use of reprogrammed 
B cells for therapeutic purposes is not limited to antibody 
production since B cells have also been genetically modified 
to produce regulatory cytokines [3], tolerogenic molecules 
[4], or non-immune therapeutic proteins such as factor VIII 
[3, 5]. Overall, the reinfusion of autologous B cells that have 
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been reprogrammed beforehand would be particularly ben-
eficial for the treatment of chronic infectious diseases [6–8], 
cancers [9, 10] or autoimmune diseases [11]. The term 
“instructive immunotherapy” has been coined to describe 
the immediate and robust immune protection achieved by 
infusion of genetically reprogrammed immune effector cells. 
Last but not least, a good manufacturing practices (GMP) 
protocol was developed in 2017 to allow a novel B cell-
based strategy aiming to support humoral antiviral immune 
responses based on adoptive transfer of autologous memory 
B cells [2, 12].

Several immunocompetent or transgenic mouse mod-
els are already being used to study such immunotherapies; 
yet, there is an unmet need for humanized in vivo models 
that can more closely mimic human immune responses or 
improve safety before clinical translation. Here, we report 
a novel experimental setup to perform adoptive transfer of 
transduced B cells using humanized immune system (HIS) 
mice by infusing autologous HIS mouse-derived human B 
cells “educated” in a murine context and thus rendered toler-
ant to the host. Despite its relative complexity, this model 
will prove useful for testing clinically relevant therapeutic 
strategies and for addressing fundamental questions regard-
ing the immunological consequences of reinfusing repro-
grammed B cells to the host.

Methods

Lentiviral vector production and titration

Lentiviral vectors (LVs) encoding the green fluorescent 
protein (GFP) under the B cell-specific FEEK promoter 
[13] were generated by transient transfection of 293 T cells 
through calcium phosphate precipitation as previously 
described [14].

Mouse experiments

Immunodeficient NOD  Scid–/–γc
–/– (NSG) mice were housed 

under specific pathogen-free conditions. Experiments were 
carried out in accordance with the European Union and 
French National Committee recommendations, under agree-
ment APAFIS#9827–2,017,031,516,233,716 v3. Young 
NSG (4–5 weeks old) were humanized for the hematopoietic 
system by intravenous (i.v.) retro-orbital injection of 1 ×  105 
HSCs  (CD34+ cord blood cells, HIS mice) under anesthe-
sia. Human  CD34+ cells were purified by positive selec-
tion from cord blood obtained from the Lyon Sud Hospital 
(Lyon, France) upon informed consent or were purchased 
from Lymphobank. Mice were conditioned by [15] intra-
peritoneal injection of busulfex (20 mg/kg) 36 h before HSC 
injection. Infused  CD34+ cells were pre-activated in vitro by 

a cytokine cocktail of Flt3 (100 ng/ml), SCF (100 ng/ml) and 
TPO (30 ng/ml) during 24 h prior to infusion [14]. Blood 
samples were harvested every 3 weeks starting from 8 weeks 
post-humanization, to follow the kinetics of humanization 
by flow cytometry. Animals above > 40% humanization were 
enrolled for further adoptive transfer experiments. Human 
immune reconstitution levels were determined using the fol-
lowing calculation method: humanization level = % human 
 CD45+ cells/(% human  CD45+ cells + % murine  CD45+ 
cells).

For in vitro transduction, human  CD19+ B-cells were 
isolated from donor spleens by magnetic positive selection 
 (CD19+ isolation) and pre-stimulated during 16–20 h with 
cross-linked hCD40L (2 µg/ml), hIL-4 (2 ng/ml) and hBAFF 
(10 ng/ml) in StemMACS medium. They were then trans-
duced for 6 h with protamine sulfate (8 µg/ml) and a GFP-
encoding lentiviral vector used at a multiplicity of infection 
(MOI) of 10 to 20. B cells were then washed twice in PBS 
before i.v. injection into the retro-orbital sinus of HIS recipi-
ent mice under isoflurane anesthesia. Each mouse received 
up 1 ×  106 transduced B cells. Mice were sacrificed 7 days 
post-adoptive transfer for blood and spleen collection and 
analysis. In parallel, 1 ×  105 cells were kept in culture for 
three days to perform FACS analysis of GFP-positive cells.

Flow cytometry

Frequencies of human hematopoietic cells in humanized 
mice blood or splenocytes were determined with a cock-
tail of antibodies directed against mouse CD45-VioBlue, 
huCD3-APC, huCD19-PE-Vio770, huCD20-PE-Vio770, 
huCD45-VioGreen, hCD27-VioGreen, hIgD-VioBlue and 
hIgM-APC (all from Miltenyi Biotec). Briefly, cells were 
resuspended in PBS containing 2% FCS and incubated with 
an optimal dilution of fluorochrome-conjugated antibod-
ies for 30 min after FcR blocking (Miltenyi Biotec) before 
being washed twice in PBS containing 2% FCS. Data were 
acquired on the FACSCanto-II (BD Biosciences) and ana-
lyzed with the FlowLogic™ software.

Statistical analysis

All data were analyzed with GraphPad Prism 8 (Graph-Pad 
Software).

Combined Results and Discussion

We aimed at developing an efficient protocol for adop-
tive transfer of autologous modified B cells using HIS 
mice (Fig. 1). For this purpose, 1 ×  106 B cells isolated 
from splenocytes of humanized mice were transduced 
with a BAEV GP (Baboon endogenous virus envelope 
glycoprotein)-pseudotyped lentiviral vector encoding GFP 
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and subsequently infused by i.v. route in recipient autolo-
gous HIS mice. Spleens of donor mice (8 to 15 donor mice 
were used depending on the cohort) were pooled and sub-
mitted to positive selection with anti-huCD19 Abs. Between 
4 ×  106 to 5 ×  108 human B cells were obtained after selec-
tion depending on both the cohort and the humanization rate 
of donor mice (Sup Fig. 1a–c). B cell purity after magnetic 
sorting ranged between 81 and 93%. It has previously been 
published that the human immune system in the peripheral 
blood is mainly composed of B cells until 10–14 weeks and 
that T cells start to reach the periphery at this time [16]. 
As expected, at this late stage of humanization (> 20 weeks 
post-humanization), we detected more than 80% of human 
cells in the spleen, mostly T cells (> 60%  CD3+ cells), except 
for the cohort #C for which the humanization rate was lower 
(Sup Fig. 2). As previously described for other humanized 
mouse models [17], most splenic B cells exhibited a naïve 
phenotype  (CD20+  CD27−  IgM+  IgD+) (Sup Fig. 3).

Our previous results showed that the transduction effi-
ciency of human B cell with such pseudotyped viral particles 
is up to 50% [5], which is comparable to the efficiencies 
observed here (Sup Fig. 1d–e). One week after adoptive 
transfer (AT), we analyzed GFP-transduced B cells in the 
spleens of recipient mice using the gating strategy described 
in Fig. 2a. The phenotype of recovered B cells after AT is 
very similar of donor B cells, suggesting that the activation/
transduction step as well as the transfer does not affect the 
B cell phenotype since donor B cells and recipient splenic 
cells present the same markers (Sup Fig. 3). No  GFP+ B 
cells were detected in the peripheral blood of these mice 
(Sup Fig. 4). The AT efficiency in these experiments was 
calculated as the ratio between the number of splenic  GFP+ 
B cells one week after transfer and the number of  GFP+ 
B cells initially injected in the recipient. As illustrated by 
Fig. 2b, the AT efficiency ratio ranged from 1.2 to 10% 

(Fig. 2b). We observed differences of AT efficiency between 
each group, which could be explained by the source of B 
cells (i.e., the source of HSCs used for humanization, cohort 
#A, #B, #C or #D), by the batch of LVs (cohort #B, LV#2 
and cohort #B LV#3, same donor but 2 different LV batch) 
or by a potential differential impact of the pre-transduction 
activation procedure on subsequent B cell engraftment. As 
a point of comparison, this AT efficiency is within the range 
of the recovery rate of BCR transgenic mouse B cells fol-
lowing their adoptive transfer performed in immunocom-
petent recipients with a polyclonal or a quasi-monoclonal 
B cell repertoire [18]. Importantly, the rate of post-transfer 
recovery of transduced B cells is also comparable to that 
described for adoptive transfer of human T cells isolated 
from HIS mice into autologous HIS mice [19]. As shown in 
Fig. 2c, GFP-expressing cells accounted for 0.04–0.22% of 
human B cells in recipient’s spleens. By way of comparison, 
the frequency of B cells reactive against the (4-hydroxy-
3-nitrophenyl)acetyl (NP) hapten in naïve immunocom-
petent mice has been estimated to be around 0.025% [20]. 
Based on the total number of splenocytes, we estimated the 
absolute numbers of modified B cells to be between 3 ×  103 
and 3 ×  104 GFP-positive cells (Fig. 2d). These figures are 
within the range of the size of the pre-immune B cell popu-
lation specific for Phycoerythrin in the lymph nodes and 
spleen of naïve C57Bl/6 mice (4 ×  103 to 2 ×  104) as reported 
previously [21]. More importantly, in the classically used 
model of adoptive transfer of monoclonal NP-reactive B1-8 
transgenic B cells into AM 14 HEL-reactive BCR trans-
genic recipients, 1 ×  104 Ag-specific B cells are sufficient 
to give rise to a bona fide humoral anti-NP response after 
antigenic stimulation. In the present study, more than 80% 
of the infused recipient mice contained 1 ×  104 or more GFP-
expressing B cells. This suggests that if HIS-derived B cells 
are reprogrammed with a BCR transgene instead of GFP, 

Fig. 1  Set-up for adoptive transfer of modified B cells in HIS mice. 
Young NSG mice (4–5  weeks) were infused with pre-activated 
CD34 + cord blood cells. The humanization score was followed 
by flow cytometry for 16–20  weeks. B cells were isolated from the 
spleens of HIS donor mice displaying a humanization score above 
40% for  huCD45+ cells and superior to 5% for T cells. B cells were 

activated during 16 to 20 h prior to lentiviral transduction. Six hours 
after transduction, modified B cells were injected intravenously in 
recipient “autologous” HIS mice (i.e., humanized with the same 
source of CD34+ cells as donor HIS mice). Recipient mice were sac-
rificed one week after cell infusion and the ratios of GFP+ cells were 
analyzed by flow cytometry in the spleen
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the numbers of genetically modified B cells recovered post-
adoptive transfer in our present HIS mice model would be 
sufficient to initiate a sizeable immune response against the 
targeted Ag. Future experiments should address the issue as 
to whether reprogrammed B cells can integrate the memory 
B cell and long-lived plasma cell compartments, thus ensur-
ing long-term production of therapeutic Abs.

To conclude, we propose that humanized mice can be 
used as a suitable preclinical model to assess therapeutic 
interventions involving B cell reprogramming in a “human-
ized” hematopoietic setting. Such approaches are of par-
ticular interest for the treatment of many immune-mediated 
diseases, among which infections, allergies, autoimmune 
pathologies or cancers. One of the key issues will be to 
determine whether reprogrammed B cells can integrate the 
memory B cell and plasma cell compartments thereby ensur-
ing long-term production of therapeutic molecules.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 021- 03101-4.
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Fig. 2  Efficacy of the adoptive transfer of engineered B cells in HIS 
mice. Four cohorts of NSG mice were humanized with 4 different 
batches of  huCD34+ cells. B cells were isolated from donor mice and 
injected into autologous HIS recipients after lentiviral transduction 
(Cohort #A (n = 5), #B (n = 9), #C (n = 2), #D (n = 11)). Five differ-
ent LV batches were used for B cell transduction: LV #1 (n = 5), LV 
#2 (n = 7), LV #3 (n = 2), LV #4 (n = 2), LV #5 (n = 11). The control 
group was performed with non-transduced B cells (n = 7). (a) Gat-

ing strategy. Representative plots are presented. (b) Adoptive transfer 
(AT) efficacy calculated as the ratio of the numbers of infused  GFP+ 
B cells to the numbers of  GFP+ splenic B cells post-transfer. (c) Fre-
quencies of  huCD19+GFP+ cells among  huCD45+ splenocytes in 
recipient HIS mice analyzed by flow cytometry 7  days after B cell 
transfer. (d) Absolute numbers of  huCD19+GFP+ B cells in recipi-
ent’s spleens
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