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Abstract
Immunotherapy has experienced remarkable growth recently. Tertiary lymphoid structures (TLSs) and B cells may play a 
key role in the immune response and have a survival benefit in some solid tumors, but there have been no reports about their 
role in endometrial cancer (EC). We investigated the clinicopathological and pathobiological characteristics of the tumor 
microenvironment (TME) in EC. Patients with EC at Kyoto University Hospital during 2006–2011 were retrospectively 
included. In 104 patients with EC who met study inclusion criteria, 81 (77.9%) had TLSs, which consisted of areas rich in 
CD20+ B cells, CD8+ T cells, CD4+ T cells, and CD38+ plasma cells. The absence of TLS was independently associated 
with tumor progression (HR, 0.154; 95% CI, 0.044–0.536; P = 0.003). Patients with TLSs that included CD23+ germinal 
centers had better PFS. All tumor infiltrating lymphocytes were counted in the intratumor site. The number of CD20+ B 
cells was significantly larger in patients with TLSs than in those without TLS (P < 0.001). CD20+ B cells numbers were 
positively correlated with other TLSs. The larger number of CD20+ B cell was associated with better PFS (P = 0.015). TLSs 
and B cell infiltration into tumors are associated with favorable survival outcomes in patients with EC. They may represent 
an active immune reaction of the TME in endometrial cancer.

Keywords  Tertiary lymphoid structures · B cells · Endometrial cancer · Survival outcomes · Immunohistochemistry · 
Immune response

Introduction

Endometrial cancer (EC) is one of the most common gyneco-
logic malignancies in the world [1]. The most important risk 
factors for EC are all related to an unbalanced increase in 
circulating estrogen, such as irregular menstruation, obesity, 

and exposure to tamoxifen [2]. Atypical endometrial hyper-
plasia (AEH) prior to EC is a continuously changing dis-
ease process. AEH is a precancerous lesion of EC, so most 
patients with EC can be diagnosed at an early stage [3]. 
However, the prognosis of patients with advanced EC and 
poorly differentiated histology is relatively poor, which 
makes therapy challenging [4]. Primary surgery followed 
by chemotherapy or radiotherapy has been the long-stand-
ing standard treatment for patients with EC, with or without 
hormonotherapy.

Recently, immunotherapy and targeted therapy have 
become alternative adjuvant treatment options as genetic 
evaluation in EC has become more widespread [5, 6]. Immu-
notherapy has experienced a remarkable growth in the last 
few years, including the use of immune checkpoint inhibitors 
and research on adoptive cellular transfer [5]. With the use 
of anti-programmed death 1 (PD-1) and anti-programmed 
death ligand 1 (PD-L1) agents, significant breakthroughs 
have been made in targeted immunotherapy involving T 
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cells [7, 8]. Tumor cells interacting with immune cells in 
the tumor microenvironment (TME) mediate tumor forma-
tion, local invasion, and metastasis [9]. Tertiary lymphoid 
structures (TLSs), also called ectopic lymphoid tissues are B 
cell-rich structures in tumors that have recently been in the 
spotlight [10, 11]. There are many reports that TLSs exist 
in chronic inflammatory conditions, including autoimmune 
diseases, chronic infections, chronic graft rejection, and a 
variety of solid tumors [12]. TLSs serve as an effective site 
for tumor reactions in the human immune system and trigger 
an inflammatory response via infiltrating immune cells [13]. 
Recent studies have shown that proinflammatory cytokines 
and corticosteroid intake in the TME lead to TLSs [14]. The 
B cell pathway plays a key role in TLS formation and func-
tion [15]. The presence of TLSs has been demonstrated to 
be associated with beneficial survival outcomes in malignan-
cies such as breast cancer [16, 17], lung cancer [18, 19], and 
colorectal cancer [20, 21]. However, there are no detailed 
reports about the relationships among TLS formation, local 
immune status, and clinical outcomes in patients with EC.

Therefore, we aim to investigate the clinicopathological 
and pathobiological characteristics of the TME in EC, in 
order to explore whether TLSs are present in EC and affect 
survival outcomes. We used immunohistochemistry (IHC) to 
explore the relationship between TLSs and tumor infiltrating 
lymphocytes (TILs), especially B cells.

Materials and methods

Patients and samples

This retrospective study included patients with EC who 
underwent primary treatment (total hysterectomy and bilat-
eral salpingo-oophorectomy with or without pelvic lymphad-
enectomy and para-aortic lymph node dissection) at Kyoto 
University Hospital during 2006–2011. Patients with any of 
the following characteristics were excluded: (1) incomplete 
surgery and residual tumor; (2) neoadjuvant chemotherapy 
or neoadjuvant radiotherapy; and (3) rare pathological types 
other than endometrioid adenocarcinoma, uterine serous 
carcinoma (USC), or mixed type (endometrioid and serous 
adenocarcinoma). All patients provided written informed 
consent. This study was approved by the ethics committee 
of Kyoto University Hospital.

The following data were extracted from electronic medi-
cal records from the Hospital Information King System: 
patient information, clinicopathological characteristics, 
adjuvant treatment, risk factors, and survival outcomes. Risk 
factors included tumor size, depth of myometrial invasion, 
lymphovascular space invasion (LVSI), parametrial involve-
ment, lymph node metastasis, and microcystic, elongated, 
and fragmented (MELF) pattern. Progression-free survival 

(PFS) and overall survival (OS) were the most important 
results for this study. PFS was defined as the time interval 
between the date of the first diagnosis and the date of disease 
progression. OS was defined as the time interval between the 
date of the first diagnosis and the date of death [22]. In terms 
of histology, low-grade disease consisted of G1 or G2 endo-
metrioid adenocarcinoma, and high-grade disease consisted 
of G3 endometrioid adenocarcinoma, USC, or mixed type.

We included 10 randomly selected patients with normal 
endometrium (including 5 cases in the proliferative stage and 
5 cases in the secretory phase) and 10 patents with AEH as 
control groups in this study.

Immunohistochemistry

IHC was performed to detect CD8, CD20, CD4, CD38, and 
CD23 expression in patient samples using a standard proto-
col. The IHC conditions for each molecule in this study are 
shown in Table S1. Paraffin-embedded tumor blocks were 
cut into 4-μm-thick sections and then heated in a tissue-
drying oven for 60 min at 60 °C. The tissue sections were 
deparaffinized in xylene in three steps of 15 min, 10 min, 
and 10 min, respectively. Next, the tissue sections were 
dehydrated with 99% (vol/vol) alcohol for 5 min, followed 
by 99% (vol/vol) ethanol for 2 min, 99% (vol/vol) ethanol 
for 2 min, and 70% (vol/vol) ethanol for 2 min and then 
rinsed with water. The antigen retrieval buffer consisted of 
10 mM citrate buffer (pH 6.0) for all molecules. All sections 
were treated with methanol containing 0.3% (vol/vol) H2O2 
for 15 min to block endogenous peroxidase activity, except 
for CD4, where methanol containing 3% (vol/vol) H2O2 
was used. The sections were treated with normal mouse or 
rabbit serum (Histofine SAB-Po kit, #424,022 or 424,032, 
NICHIREI Biosciences Inc.) to block nonspecific binding of 
IgG. The sections were further incubated with correspond-
ing primary antibody overnight at 4 °C. Next, the sections 
were stained with corresponding biotinylated secondary 
antibodies (NICHIREI Biosciences Inc.) for 30 min, fol-
lowed by incubation with a streptavidin-peroxidase solution 
for 30 min. DAB (Sigma #D4418) was used to visualize 
peroxidase activity. Hematoxylin was used as a counterstain. 
Human tonsil tissue samples were used as positive controls 
for each molecule. Finally, the sections were dehydrated 
with alcohols in various percentages and xylene before cov-
erslips were applied. All sections were washed in phosphate 
buffered saline (PBS), except for CD23, where PBS with 
0.3% (vol/vol) Triton X-100 was used.

Evaluation of TLS and immunohistochemistry

A gynecological pathologist and two gynecological oncolo-
gists who have abundant experience in pathology indepen-
dently examined the slides with hematoxylin–eosin (HE) 
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staining and IHC without any clinical information about 
the patient. A third reviewer was involved in a discussion 
to resolve differences. The presence, location, formation, 
and maturation of TLSs were assessed on each slide for all 
patients based on HE staining and IHC expression under the 
microscope. A TLS was defined as the area of ectopic lym-
phocyte aggregation larger than a microscopic field at 400x 
(0.03125 mm2). The TLS number was defined as the amount 
of TLS at 400 × microscopic field in one slide.

Tumor infiltrating cells were divided into infiltrating 
lymphocytes in a tumor site and infiltrating lymphocytes 
in stroma within a tumor area according to their location. 
In this study, all TILs were counted in the intratumor site. 
We did not count immune cells in TLSs as TILs. CD8+ T 
cells, CD20+ B cells, and CD4+T cells can be evaluated 
by the positive cell count method based on membrane pro-
teins. For example, the evaluation steps for CD8+ T cells 
were: (1) distinguishing the intratumor area; (2) select-
ing and counting 10 fields with a large number of CD8+ T 
cells with a 400 × magnification microscope; (3) selecting 
5 fields with the most CD8+ T cell infiltration from the 10 
fields in the previous step; and (4) taking the average value 
from these 5 fields as the number of CD8+ T cells on the 
slide. Finally, high and low expression of each molecule 
was divided by the mean value from the corresponding IHC 
evaluation results for each patient. To evaluate IHC results 
of CD38+ plasma cells (PCs), a semi-quantitative PC score 
was employed. In detail, the number of PCs was calculated 
by combining staining intensity and percent positive area. 
Staining intensity ranged from 0 to 3 (0, negative; 1, weak; 
2, moderate; and 3, strong). The following scores were 
applied: score = 0, 0–5% of immune cells; score = 1, 6–20% 
of immune cells (moderate or strong intensity) or 6–100% 
of immune cells (weak intensity) (B); score = 2, 21–75% of 
immune cells (moderate or strong intensity); and score = 3, 
76–100% of immune cells (moderate or strong intensity) (D) 
[23]. Low CD38+ PC density was defined as a PC score of 0 
or 1. High CD38+ PC density was defined as a PC score of 
2 or 3. Positive or negative expression of CD23 determined 
if germinal centers (GCs) were present in TLSs.

Bioinformatics analysis

The expression profiles of RNA-sequencing data for EC 
were downloaded as Excel files from University of Califor-
nia–Santa Cruz (UCSC) Xena (https://​xenab​rowser.​net/​datap​
ages/) in March 2020; they were based on raw data derived 
from the latest data from the Cancer Genome Atlas (TCGA). 
The mRNA gene data were transformed using the standard 
fragments per kilobase of transcript per million mapped 
reads standard method. The corresponding clinical infor-
mation and survival data were also downloaded in the same 
way. High and low expression of each target gene was based 

on the median value of RNA-seq expression. The relation-
ship between gene expression and PFS or OS was analyzed.

Statistical analysis

All statistical analyses were performed using SPSS (version 
23.0; SPSS Inc., Chicago, IL, USA) and GraphPad Prism 
(version 7.0; GraphPad Software Inc., San Diego, USA). 
Student’s t test and the Mann–Whitney U test were used 
to compare continuous variables. Pearson’s chi-squared test 
and Fisher’s exact test were used to compare categorical 
variables. Continuous variables with normal distributions 
were presented as means ± standard deviation (SD). Non-
normally distributed variables were presented as medi-
ans ± interquartile range (IQR) [24]. Survival analysis was 
performed with Kaplan–Meier curves, which were compared 
using the log-rank test. The association between each varia-
ble and survival was evaluated in a univariate Cox regression 
model. All variables with P < 0.05 and other meaningful 
variables based on the univariate analysis were included in 
a multivariate Cox proportional hazards regression model. 
Associations were evaluated based on hazard ratios (HRs) 
and 95% confidence intervals (CIs). Statistical significance 
was set at P < 0.05.

Results

Presence of TLS in EC and TLS classification

Figure S1 shows the flow diagram for patient selection. 
Ultimately, 104 patients with EC who met inclusion crite-
ria were included in this study. We clearly observed some 
TLSs, as clusters of B cells, both inside tumors and in tumor 
stroma. Except for areas rich in CD20+ B cells, TLSs con-
sisted of CD8+ T cells, CD4+ T cells, and CD38+ PCs, with 
or without GCs (Fig. 1). B cells were the most dominant 
TLS component.

TLS stage and location were evaluated. TLSs can be 
divided into two stages according to morphological structure 
and CD23 expression, as shown in Fig. 1: early stage, char-
acterized by diffuse TLSs without CD23+ GCs and mature 
stage, characterized by aggregated TLSs with CD23+ GCs. 
TLS was also grouped into tumor infiltrative TLSs (iTLSs) 
and tumor border TLS (bTLSs) by location, as shown in 
Fig. 2. iTLSs were relatively rare, but bTLSs were nearly 
ubiquitous.

Comparison of TLSs and TILs in EC, normal 
endometrium, and AEH

No TLSs were observed in patients with normal endo-
metrium. TLSs were observed in only two patients with 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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AEH. TLSs were more common in patients with EC than 
in patients with normal endometrium or AEH (P < 0.001) 
(Fig. 3), which indicated that TLS is a particular structure 
in tumor tissues. The number of CD8+ T cells (P < 0.001), 
CD20+ B cells (P < 0.001), CD4+ T cells (P < 0.001), and 
the density of CD38+ PCs (P < 0.001) were significantly 
higher in patients with EC than in patients with normal 
endometrium or AEH.

Clinicopathological characteristics and prognostic 
value of TLS

The 104 patients with EC were divided into two groups 
(Table 1) based on the analysis of slides: the TLS group 
(N = 81, 77.9%) and the no-TLS group (N = 23, 22.1%). No 

significant differences were observed between groups in age 
(P = 0.469), histology (P = 0.611), International Federation 
of Gynecology and Obstetrics (FIGO) stage (P = 0.266), 
adjuvant chemotherapy (P = 0.535), and risk factors except 
positive ascites fluid cytology (P = 0.001). Therefore, almost 
all the variables were similar in the survival analysis.

In univariate analysis, eight factors were associated with 
PFS, and two factors were associated with OS (Table 2). 
In multivariate analysis, high-grade histology was associ-
ated with inferior PFS (HR, 3.729; 95% CI, 1.212–11.474; 
P = 0.022) and OS (HR, 5.121; 95% CI, 1.092–24.010; 
P = 0.038). TLS absence was independently associated with 
PFS in patients with EC (HR, 0.154; 95% CI, 0.044–0.536; 
P = 0.003), but not OS. Figure 4 shows the Kaplan–Meier 
curves for PFS (panel A) for all study patients. We evaluated 
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Fig. 1   Representative cases of TLS formation and maturation stage. 
TLS consisted of CD20+ B cell-rich area, CD8+T cells, CD4+T cells, 
and PCs. TLS can be divided into two stages according to the mor-
phological structure and expression of CD23: A early stage, charac-

terized by diffused TLS without CD23+GC; B mature stage, char-
acterized by aggregated TLS with CD23+GC. (Abbreviations: TLS, 
tertiary lymphoid structures; HE: Hematoxylin–eosin; GC, germinal 
center; PC: plasma cell)
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Table 1   The clinical and 
pathological characteristics 
between TLS and non-TLS 
group in overall included 
patients

Data are presented as number (%) or mean (± SD) or median (± IQR). (Abbreviations: TLS, Ter-
tiary lymphoid structures; LVSI, lymphovascular space invasion; MELF, microcystic, enlarged and 
fragmented.*p < 0.05)

Characteristics Total
(N = 104)

Non-TLS group
(N = 23)

TLS group
(N = 81)

P

Age (Mean ± SD) 57.3 (± 9.1) 59.2 (± 11.1) 0.469
 ≤ 50 year 20 (19.2) 15 (65.2) 46 (56.8)
 > 50 year 84 (80.8) 8 (34.8) 35 (43.2)

Histology 0.611
 G1 36 (34.6) 11 (47.8) 25 (30.9)
 G2 15 (14.4) 3 (13.0) 12 (14.8)
 G3 27 (26.0) 5 (21.7) 22 (27.2)
 Serous 16 (15.4) 3 (13.0) 13 (16.0)
 Mixed type 10 (9.6) 1 (4.3) 9 (11.1)

FIGO stage 0.266
 I 67 (64.4) 14 (60.9) 53 (65.4)
 II 8 (7.7) 1 (4.3) 7 (8.6)
 III 26 (25.0) 6 (26.1) 20 (24.7)
 IV 3 (2.9) 2 (8.7) 1 (1.2)

Tumor size 0.333
 ≤ 2 cm 21 (20.2) 3 (13.0) 18 (22.2)
 > 2 cm 83 (79.8) 20 (87.0) 63 (77.8)

Invasion depth 0.329
 None or < 1/2 59 (56.7) 11 (47.8) 48 (59.3)
 ≥ 1/2 45 (43.3) 12 (52.2) 33 (40.7)

Positive LVSI 38 (36.5) 9 (39.1) 29 (35.8) 0.770
Positive parametrial involvement 18 (17.3) 4 (17.4) 14 (17.3) 0.990
Positive lymph node metastasis 18 (17.3) 3 (13.0) 15 (18.5) 0.757
Positive distant metastasis 15 (14.4) 6 (26.1) 9 (11.1) 0.071
Positive ascites cytology 20 (19.2) 10 (43.5) 10 (12.3) 0.001*
Positive MELF pattern 12 (11.5) 4 (17.4) 8 (9.9) 0.320
Receiving pelvic/para-aortic lym-

phadenectomy
88 (84.6) 20 (90.0) 68 (84.0) 0.724

Receiving adjuvant treatment 62 (59.6) 15 (65.2) 47 (58.0) 0.535
Survival outcome
 Recurrence 20 (19.2) 10 (43.5) 10 (12.3)
 Death 13 (12.5) 3 (13.0) 10 (12.3)
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the relationship between the presence of TLSs and survival 
outcomes by histology subgroup. In the low-grade histology 
(P = 0.006) (Fig. 4B) and high-grade histology (P = 0.004) 
(Fig. 4C) subgroups, patients with TLSs had better PFS 
than patients without TLSs. There were positive correla-
tions between intratumoral CD20 + B cells and intratumoral 
CD8 + T cells, intratumoral CD4 + T cells, as well as plasma 
cells in patients with low-grade histology (Figure S2).

In addition, we compared the relationship between the 
TLS stage and survival outcomes in 81 TLS patients. There 
was no significant difference of PFS in overall TLS patients 
(P = 0.206, Fig. 4D) and low-grade histology subgroup 
(P = 0.061, Fig. 4E). However, the TLS patients with GCs 
had better PFS than those without GCs (P = 0.039, Fig. 4F) 
in high-grade histology. Moreover, by TLS location, there 
were four subtypes of patients. Figure 2 shows that patients 
with only iTLSs had the best PFS, followed by patients with 
both iTLSs and bTLSs. Patients without TLSs had the worst 
PFS (P = 0.009). There were no significant differences in OS 
by TLS location (P = 0.822). Similar results were obtained 
for PFS.

Correlation between CD20+ B cells and TLS, as well 
as other TILs

CD8+ T cells, CD20+ B cells, CD4+ T cells, and CD38+ 
PCs were common in endometrial tumors. The number of 
CD20+ B cells increased as the number of TLSs increased 
(Fig. 5A). The TLS group had significantly larger number of 
CD20+B cells than the no-TLS group (Fig. 5B). The num-
ber of CD20+ B cells was positively correlated with CD8+ 
T cells (P < 0.001, r = 0.415), CD4+ T cells (P = 0.014, 
r = 0.0.240), and CD38+ PCs (P < 0.001, r = 0.322) (Fig. 5C, 
D, and E). Figure 6 and Table S2 show the relationships 
between intratumoral TILs and survival outcomes in all 
study patients and by histology subgroup. The larger num-
ber of CD20+ B cells (P = 0.015), CD8+ T cells (P = 0.016), 
and higher density of CD38+PCs (P = 0.012) were associ-
ated with better PFS, while the smaller number of CD4+ 
T cells was associated with better OS (P = 0.031). Similar 
results were observed with data from the TCGA database. 
The larger number of CD20+ B cells (P = 0.076) and CD8+ 
T cells (P = 0.006), respectively, tended to be associated with 
better PFS (Fig. 6D and E).

Discussion

Recently, several immune checkpoint inhibitors are the focus 
of a new treatment strategy for treating different types of 
gynecologic malignancies [25–27]. TLSs, as clusters of 
immune cells, play a key role in the TME and is related to 
beneficial survival outcomes in several solid tumors. TLS PF
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upregulation may lead to significant antitumor responses. 
Cabrita et al. indicated that TLSs play a key role in the 
immune microenvironment in melanoma, by conferring dis-
tinct T cell phenotypes [28]. Figenschau et al. reported that 
breast carcinomas frequently contain TLSs, and the pres-
ence of these structures is associated with aggressive tumors 
[29]. In HER2-positive and triple-negative breast cancer, 
the presence of TLSs is associated with superior survival 

[30]. Caro et al. found that TLSs cooperate with TILs in 
a coordinated antitumor immune response in patients with 
low-risk, early-stage colorectal cancer [31]. Dieu-Nosjean 
et al. first reported the presence of TLSs in non-small cell 
lung cancer (NSCLC); they named those structures tumor-
induced bronchus-associated lymphoid tissue (Ti-BALT). 
Mature dendritic cell (DC-LAMP+) is a specific marker of 
Ti-BALT. And the number of DC is highly correlated with 
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the infiltration of CD4+ and T-bet+ Th1 cells in tumors, 
which is also related to survival outcomes [18]. Since there 
is a close relationship between TLSs and antitumor response 
in tumor samples, we naturally focused on TLS in EC. We 
found that the presence of TLSs in EC is associated with 
favorable survival outcomes.

Traditional secondary lymphoid organs (SLOs), including 
the spleen, lymph nodes, and tonsils, are important parts of 
the immune system [32]. TLSs have a similar structure as 
typical SLOs, with some slight differences. TLSs consist of 
B cell-rich regions, as well as T cells, PCs, follicular helper 
T (Tfh) cells, follicular dendritic cells (FDCs), and GCs 
[33]. There are also special lymph vessels characterized by 
high endothelial venules (HEVs) [34]. In chronic inflam-
matory conditions, such as autoimmune diseases, chronic 
infections, chronic graft rejection, and tumors, TLSs can 
serve as effective sites for tumor reactions in the TME and 
trigger an inflammatory response by infiltrating immune 
cells independently of SLOs [35].

TLS were divided into different stages according to CD23 
expression. TLSs in the mature stage were associated with 
better survival outcomes. The presence of GCs within TLSs 
is correlated with exacerbated autoimmune response due 
to the generation of autoreactive B cells and HEVs. Other 
researchers have reported similar findings. Florian et al. 
divided TLSs into three subtypes based on the number of 
FDCs and mature B cells: (1) early TLSs, composed of dif-
fuse, mixed B cells and T cells or dense lymphocyte clusters 
without FDCs and GC reactions; (2) primary follicular-like 
TLSs, which are dense lymphocyte clusters with FDCs but 
no GC reactions; and (3) secondary follicular-like TLSs, 

which are dense lymphocyte clusters with FDCs and active 
GC reactions [21]. Similarly, Silina et al. evaluated 138 
patients with NSCLC and divided TLSs into three to four 
subtypes based on CD21 and CD23 expression [36]. They 
found that GC formation was impaired and TLS number 
had no prognostic value in patients treated with neoadjuvant 
chemotherapy. GCs gradually grow as TLSs develop, even-
tually becoming activated mature GCs.

Except the stage, TLSs can be classified by tumor loca-
tion. In our study, patients with iTLSs had better survival 
outcomes than patients with bTLSs. Hiraoka et al. have 
also reported that there were two different localizations of 
pancreatic ductal carcinoma-associated TLSs, intratumoral 
and peritumoral. iTLS was associated better outcomes, 
independent of other survival factors. This finding can be 
explained by the antitumor microenvironment present in 
tumor tissues with intratumoral TLSs, which was suggested 
to be in an active state of cellular immune reaction and B cell 
reaction, as determined by the presence of TILs and tumor 
cytokines. These subtypes and classifications of TLSs can 
help us understand the relationships between the role of an 
immune reaction and antitumor ability in the TME.

Because TLS is an independent factor affecting sur-
vival, we further investigated how infiltrating immune 
cells around TLSs regulate the TME. We found a strong 
positive correlation between TLSs and intratumoral 
CD20+ B cells. When we evaluated the role of CD20+ B 
cells in survival, strikingly, high number of CD20+B cells 
was associated with favorable PFS. Thus, we hypothesize 
that B cells lead to a beneficial survival effect associated 
with TLSs. B cell-related pathways play a key role in 
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the generation and formation of TLSs. At present, the B 
cell-related pathways associated with TLSs, known as the 
CCL19/CCL21/CCR7 axis or the CXCL13/CXCR5 axis, 
are attracting much attention [15]. The chemokine family 
related to B cells is necessary and sufficient for induc-
ing TLS formation. It has been reported that the CCL19/
CCL21/CCR7 axis functions in immune cells and helps 
cells migrate to SLOs or other tumor sites and activate 
the host cell response [37]. CCL19 or CCL21 produced by 
tumor cells is associated with tumor invasion and immune 
tolerance [38]. The CXCL13/CXCR5 axis is activated by 
the interaction of B cells and Tfh cells to accelerate the 
GC reaction; it participates in the migration of tumor B 
cells and Tfh cells in the TME [39]. In a recent report, 
TLSs-related gene signature (including CXCL13, CCL19) 
score was relatively higher in DNA polymerase epsilon 
(POLE) and microsatellite instability (MSI) subtypes than 
in other subtypes in TCGA data set of EC [40] And we 
could verify this result with another data set of endome-
trial cancer (n = 100, Clinical Proteomic Tumor Analysis 
Consortium [CPTAC]) [41] by the same method as the pre-
vious article [40] with single sample gene set enrichment 
analysis, and we also could get a same tendency of TLSs 
distribution in POLE and MSI subtypes (data not shown).

DCs, B cells, and Th17 cells are capable of producing 
these cytokines and are important for the special lymphoid 
tissue inducer cells during TLS formation [42]. Therefore, B 
cells and B cell-related pathways need to be further explored 
as new targets for immunotherapy. How to induce the forma-
tion of TLSs and how to inhibit tumorigenesis with TLSs 
via B cell-related pathways are future research directions.

Conclusion

In conclusion, TLSs exist in endometrial tumor tissue 
and are associated with favorable survival outcomes. TLS 
absence is an independent risk factor for disease progres-
sion in patients with EC. TLSs consist of areas rich in 
CD20+ B cells, CD8+ T cells, CD4+ T cells, and CD38+ 
PCs. TLSs can be divided into two stages according to the 
number of CD23+GCs, and the TLS patients with GCs had 
better PFS than those without GCs in high-grade histol-
ogy. Patients with TLSs had significantly higher CD20+ 
B cell number than patients without TLSs. High CD20+ B 
cell number was associated with better PFS. TLSs play an 
important role in the human immune system in EC. TLSs 
and corresponding B cell pathways may become new anti-
tumor targets after the T cell therapy revolution.
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