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Abstract
The major histocompatibility (MHC) molecules are capable of presenting neoantigens resulting from somatic mutations 
on cell surfaces, potentially directing immune responses against cancer. This led to the hypothesis that cancer driver muta-
tions may occur in gaps in the capacity to present neoantigens that are dependent on MHC genotype. If this is correct, it has 
important implications for understanding oncogenesis and may help to predict driver mutations based on genotype data. In 
support of this hypothesis, it has been reported that driver mutations that occur frequently tend to be poorly presented by 
common MHC alleles and that the capacity of a patient’s MHC alleles to present the resulting neoantigens is predictive of 
the driver mutations that are observed in their tumor. Here we show that these reports of a strong relationship between driver 
mutation occurrence and patient MHC alleles are a consequence of unjustified statistical assumptions. Our reanalysis of the 
data provides no evidence of an effect of MHC genotype on the oncogenic mutation landscape.
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Abbreviations
HLA  Human leukocyte antigens
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Introduction

The immune system has evolved to recognize aberrant 
and non-self molecules, resulting from pathogen infec-
tion, somatic mutations and malformed proteins. The major 
histocompatibility complex (MHC) plays a key role in this 
process. There are two classes of MHC molecules, class I 
(MHC-I) and class II (MHC-II), encoded, in human, by a 
cluster of genes on chromosome 6. The human MHC genes 
and proteins, which are often termed human leukocyte anti-
gens (HLA), are diverse, with over 15,000 alleles identified 
[1]. Somatic mutations in genes encoding self-proteins can 

result in an altered amino acid sequence, thereby generating 
so-called neo-antigens that have the potential to elicit an 
immune response upon presentation by the MHC to T-cells 
[2]. Through the killing of cells carrying immunogenic neo-
antigens, the immune system has been proposed to a play 
key role in shaping the cancer genome in a process referred 
to as immuno-editing [3, 4].

Dunn et al. first proposed the term immuno-editing to 
describe the dual ability of the immune system to defend 
the host by suppressing tumor growth and to shape the 
immunogenicity of tumors [5]. It is characterized by three 
phases—elimination, equilibrium and escape, collectively 
termed the three Es of cancer immuno-editing [5, 6]. The 
elimination phase involves the recognition and destruction 
of tumor cells by the immune system, before it is clinically 
detectable. Some cells are thought to escape elimination and 
enter into the equilibrium phase during which the immune 
system keeps tumor growth in check but cannot fully elimi-
nate it. The tumor may continue to develop mutations that 
enable it to evade immune responses, resulting in a popula-
tion of cells that are resistant to the immune response [4, 
6]. The final stage occurs when the cancer escapes immune 
control, leading to uncontrolled proliferation, due potentially 
to reduced immunogenicity of cancer cells or to mutations 
that create an immunosuppressive environment [3, 6].
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One of the mechanisms through which cancer evades the 
immune response is to acquire mutations that alter antigen 
presentation [7]. The most selective step of the process of 
antigen presentation to the immune cells is the binding of 
antigenic peptides to the MHC. This has been inferred by a 
variety of studies of the implications of mutating the HLA 
genes or the B2M gene, whose product, �2m , forms an inte-
gral part of MHC class I molecules [8–12]. Loss or muta-
tion of HLA or B2M genes is associated with an increase in 
tumor mutation burden [12]. A lack of neoantigens capable 
of eliciting an immune response could also allow cancers to 
avoid immune responses and several studies have reported 
selection against immunogenic somatic mutations in cancer 
[9, 13, 14], though the evidence for depletion of mutations 
that give rise to neoantigens has recently been questioned 
[15].

Here, we reanalyzed the data from two high-profile stud-
ies [16, 17] that reported that the driver mutations that are 
found in cancer patients can be predicted from the capac-
ity of the patient’s MHC molecules to bind the resulting 
neoantigens. The patient harmonic mean best rank (PHBR) 
score was proposed in [16, 17] as a measure of whether a 
neoantigen resulting from a somatic mutation can be bound 
by MHC molecules, given the HLA genotype of a patient. 
The score is derived from predicted binding affinities of 
the patient’s MHC molecules for the peptides spanning the 
mutation. The conclusions of both studies are based on an 
analysis of 1018 cancer driver mutations in patients from 
the cancer genome atlas (TCGA). The focus of the 2017 
study is on MHC class I alleles, and the primary focus of 
the 2018 study is on presentation of cancer neoantigens by 
MHC class II molecules. The data for both comprised a 
binary matrix of mutation occurrences (indicating whether 
the driver mutation in each column has been observed in 
the patient in each row) and a matrix of PHBR scores cor-
responding to 9176 and 5942 patients for MHC class I and 
class II alleles, respectively. We reanalyzed these data and 
found that the conclusion of both papers that cancer driver 
mutations emerge preferentially in gaps in the patient’s 
capacity to present neoantigens on MHC molecules is not 
robust. We found that there is no evidence from the data that 
the driver mutations seen in a patient are influenced by the 
patient’s MHC class I or class II genotypes.

Methods

Data

We performed a reanalysis of cancer driver mutations in 
TCGA and their predicted immunogenicities, reported in 
[16, 17]. Both papers calculate a score that is used to predict 
the extent to which neoantigens are presented on MHC-I or 

MHC-II molecules, given the patient genotype. The score 
is calculated by considering all peptides of a specific length 
or range of lengths that contain the mutation. A rank-based 
presentation score was obtained for each peptide using Net-
MHCpan3.0 [18], and for each of the patient’s HLA alleles 
the best rank value was retained. The PHBR score is then the 
harmonic mean (across the patient’s HLA alleles) of these 
best-rank scores (see [16, 17] for details). This score was 
calculated for class I MHC alleles in [16] where it was based 
on peptides with lengths ranging from 8 to 11 amino acids 
and for class II alleles in [17], where it was based on pep-
tides of length 15 amino acids. We applied the methodology 
as described to the TCGA data to obtain a binary matrix of 
driver mutation occurrences across patients and matrices of 
PHBR-I and PHBR-II scores across patients for each driver 
mutation. In order to ensure our results were precisely com-
parable to the published results, we also requested the data 
matrices that were the basis of the original studies and these 
were kindly provided by the authors (following confirmation 
of the appropriate data access permissions).

Logistic regression models relating mutation 
occurrences to PHBR scores

Following the notation of [16], consider a mutation matrix, 
with entriesyij ∈ {0, 1} , indicating the presence or absence 
of driver mutation j in patient i and a matrix of PHBR-I or 
PHBR-II scores with real-valued entries,xij , corresponding 
to the score of mutation j, given the MHC alleles of indi-
vidual i. Two mixed effects logistic regression models were 
used in [16] to relate the log odds of yij= 1  to the log of xij. 
The first model, referred to as the within-mutation model, 
has a normally-distributed random effect, βj, that models 
differences in the frequencies of different driver mutations:

The second model, referred to as the within-patient model, 
uses a random effect, �i , to model differences in the abun-
dance of driver mutations between patients, but does not 
model differences in the frequencies with which different 
driver mutations occur:

Simulation

We designed a simple simulation scenario to illustrate how 
spurious results can be obtained from the within-patient 
model due to a failure to account for non-independence of 
the PHBR scores across patients (some driver mutations tend 
to have higher scores across patients, while others have lower 
scores, leading to the high degree of correlation in the scores 

(1)logit(P(yij = 1|xij)) = �j + �log(xij)

(2)logit(P(yij = 1|xij)) = �i + �log(xij)
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of driver mutations between patients seen in Fig. 1a). The 
simulation consisted of 100 driver mutations, one of which 
had a high frequency (20% of 500 patients) and a relatively 
high PHBR score (normally distributed across patients with 
mean 10 and standard deviation 2). The remaining mutations 
occurred at low frequency (1%) and had normally distributed 
PHBR scores with mean 5 and standard deviation 2. We then 
fitted the within-patient model to this simulated dataset.

Relationship between MHC‑I coverage and cancer 
risk in UK Biobank

We retrieved HLA class I alleles from participants in the UK 
Biobank. These alleles were inferred using HLA*IMP:02 
[19]. Only alleles that were called with imputation posterior 
probability greater than 0.5 and only participants with six 
HLA class I alleles called were retained. This left a total of 
377,790 individuals. For each individual, we determined the 
driver mutation coverage as the number of driver mutations 
with PHBR-I scores < 2 , given the individual’s HLA geno-
type. We retrieved the self-reported cancer status (data field 
20001) for these individuals. Treating the self-report of any 

cancer type as a case, we fitted a logistic regression model 
to case status as a function of age, sex and PHBR-I coverage.

Results

Using the predicted immunogenicities of driver mutations 
derived by [16, 17], we re-investigated the relationship 
between immunogenicity and driver mutation occurrence 
across patients. In both [16, 17], the predicted capacity of 
the MHC to present cancer driver mutations was compared 
between patients with and without the mutation. Higher 
values of the PHBR score (corresponding to low predicted 
capacity to bind neoantigens resulting from the mutation) 
in the patients in which the driver mutations occur were 
presented as evidence that driver mutations preferentially 
arise in patients who lack the MHC alleles that are capa-
ble of presenting them to T cells. In these comparisons of 
groups of PHBR scores, one group consists of the scores of 
driver mutations in patients in which the mutation is present 
(the Mutation group) and the other group (the No Muta-
tion group) consists of PHBR scores of the driver muta-
tions in the patients without the mutation. A given driver 

Fig. 1  (a) Scatterplot of log PHBR-I scores of all driver mutations, 
calculated using the HLA genotypes of two randomly selected 
patients from TCGA. (b) Median and interquartile range of PHBR-
I score in the No Mutation (blue) and Mutation (orange) groups for 
the real data and for data in which the MHC genotypes have been 

randomized between patients. (c) Median and interquartile range 
of PHBR-I scores in the No Mutation (blue) and Mutation (orange) 
groups in bins of mutation recurrence. The number of observations 
corresponding to each bin is provided in Supplementary Table S1
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mutation can appear many times in the Mutation group in 
these comparisons—once for each patient in which it occurs. 
This is problematic, because the PHBR scores of mutations 
are highly correlated (Fig. 1a, Fig. S1) and, thus, the data 
points are not independent. For example, a driver mutation 
that occurs in 500 patients will contribute 500 PHBR scores 
to the Mutation group and N – 500 scores to the No Muta-
tion group, where N is the total number of patients. If the 
PHBR score of the mutation is generally high or generally 
low across patients, it will clearly have a disproportionate 
impact on the distribution of PHBR scores in the Mutation 
group.

The correlation in PHBR scores between patients is not 
solely due to sharing of HLA alleles. Even the PHBR scored 
using HLA alleles from different allele groups is signifi-
cantly correlated (Fig. S2), but the scores of driver muta-
tions were effectively treated as independent observations by 
the studies that reported an effect of HLA alleles on driver 
mutations. MartyPyke et al. [17] used a statistical test (the 
Mann–Whitney U test) to compare the median PHBR-II 
score between the Mutation and No Mutation groups and 
reported a higher median score in the Mutation group with a 
p-value < 2.2 × 10−16 . This was interpreted as evidence that 
the patient HLA genotype influences the driver mutations 
that occur in cancer patients. However, the fundamental 
assumption of the test is that the observations in each group 
are independent and this assumption is clearly violated. We 
found that the differences between the Mutation and No 
Mutation groups are, in fact, just as large when the MHC 
genotypes are randomized between patients, indicating that 
this difference is not driven by patient genotype (Fig. 1b). 
Moreover, when we compared PHBR scores, grouped by 
driver mutation frequency (so that each driver mutation con-
tributes the same number of observations to the Mutation 
group in each comparison), we saw no consistent differences 
(Fig. 1c).

In 100 randomizations of the HLA class I genotypes, the 
median PHBR-I score of the Mutation group in the rand-
omized data in fact exceeded the median of the Mutation 
group in the real data 94 times (the difference was not sta-
tistically significant; p = 0.12 for the two-sided randomiza-
tion-based test for a difference in PHBR-I scores between 
the groups). Similarly, when we shuffled the HLA class II 
genotypes, the median PHBR-II score of the Mutation group 
in the shuffled data exceeded that of the real data 36 times; 
again, there was no significant difference in median score 
between groups ( p = 0.72 ). Thus, comparison of PHBR 
scores between the Mutation and No Mutation group does 
not provide any support for the hypothesis that driver muta-
tions occur preferentially in patients with MHC molecules 
that are not capable of binding the resulting neoantigens. In 
[16, 17], PHBR scores of driver mutation occurrences were 
also compared against scores of occurrences for different 

mutation classes (e.g., germline mutations and passenger 
mutations). Because they contribute many times to the 
Mutation group, the existence of a small number of highly 
recurrent cancer driver mutations with high PHBR scores 
(i.e., low binding affinity) may be sufficient to skew all of 
these comparisons. This problem is compounded by the fact 
that the 1,018 driver mutations that are the basis of this study 
occur on just 168 different genes and PHBR scores are sta-
tistically significantly correlated between mutations in the 
same gene, particularly for class II alleles (Fig. S3). The 
number of distinct genes among the most highly recurrent 
cancer driver mutations is smaller still (Fig. 2a).

Regression models relating log‑PHBR score 
to mutation probability

In addition to comparing PHBR scores between the Muta-
tion and No Mutation groups, [16] proposed two mixed 
effects logistic regression models to relate the log odds that a 
driver mutation is found in a patient to the log of the PHBR-I 
score for the mutation, given patient MHC genotype. In one 
model (referred to as the within-mutation model), a random 
effect is used to correct for differences in the frequency with 
which different driver mutations occur. In the other model 
(referred to as the within-patient model), the random effect 
models differences in the abundance of driver mutations 
between patients, but there is no correction for differences 
in the frequency of different driver mutations. Mathematical 
descriptions of both models are reproduced in the Methods.

In [16], there was no significant effect of log PHBR-I on 
the log odds of driver mutations using the within-mutation 
model. Although the results of the within-mutation model 
are not reported in [17], log PHBR-II is not significantly 
associated with driver mutation occurrence with this model 
either. The failure of the within-mutation model to detect 
an effect of log PHBR-I on the probability of a driver muta-
tion was explained in [16] as resulting from the fact that 
the impact of immune presentation on the probability of a 
mutation was captured by the random effect. In other words, 
the tendency for a driver mutation not to be recognized by 
common HLA alleles resulted in a high driver mutation 
frequency and this was captured by the random effect in 
the model. This is not a strong argument, however, because 
the median PHBR score does not explain much, if any, of 
the variance in driver mutation frequency in the cancer 
patients (Fig 2b, c). Even if the variation in driver mutation 
frequency was entirely driven by MHC class I genotype, 
it should not fully capture the relationship between driver 
mutation occurrence and MHC genotype. That is, the rare 
driver mutations should still be found associated with the 
rare MHC genotypes that are not capable of presenting them 
and the common driver mutations should be found asso-
ciated with the relatively more common MHC genotypes 
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that cannot present them. This should be detectable with the 
within-mutation model, even after accounting for differences 
in driver mutation frequencies.

In contrast to the lack of a signal from the model that 
accounted for differences in frequencies between driver 
mutations, Marty and colleagues [16] reported a very strong 
effect of log PHBR-I on the log odds of driver mutations 
using the within-patient model (which accounts for differ-
ences in driver mutation burden between patients). Quoting 
a P-value of < 2.2 × 10−16 , the authors estimate an increase 
of 28% in the log odds of occurrence of a mutation with 
each unit increase in log PHBR-I (95% CI: [25%, 31%]). 
However, this result is affected by the same failure to take 
account of the non-independence of observations of the 
same driver mutation that led to the spurious between-
group comparisons of PHBR scores discussed above. This 
can be seen from the fact that the results are not affected 
by randomization of the patient genotypes. We randomly 
shuffled the patient genotypes for the real data so that, for 
each patient, driver mutations were scored with the HLA 
genotypes of a randomly selected patient. We then fitted 
the within-patient model to the shuffled data. When we did 
this, we found that the increase in the log odds of a driver 
mutation occurrence per unit increase in log PHBR-I was 
25.1% (standard error 1%), slightly higher than we obtained 
using the real data (we obtained an estimate of 24.7% when 
we implemented the within-patient model on the PHBR-I 
data, a little below the 28% reported by [16]). The differ-
ence between the real and shuffled data was not statistically 
significant ( p = 0.69 ). Similarly, the relationship between 
PHBR-II was just as strong using the shuffled and unshuffled 

data (27.0% and 26.9% increase in the log odds of mutation 
occurrence per unit log PHBR-II for the shuffled and unshuf-
fled data, respectively). Again, these results provide no indi-
cation of a relationship between the patient HLA genotypes 
and driver mutation occurrence.

We performed a simple simulation to demonstrate how 
the spurious results obtained with the within-patient model 
can come about. We simulated the case of a single driver 
mutation that occurs at high frequency and has a high PHBR 
score across patients. The remaining mutations occurred at 
lower frequency and had a lower PHBR score distribution 
(details of the simulation are provided in Methods). Because 
the within-patient model of [16, 17] treats PHBR scores of 
a given mutation as though they were independent observa-
tions (despite the strong correlation in the scores of different 
mutations between patients seen in Fig. 1a), this single com-
mon driver mutation with a high PHBR score was sufficient 
to give a highly significant association between PHBR score 
and driver mutation occurrence ( P = 2 × 10−52 ). This trivial 
example illustrates how failure to account for the high degree 
of correlation in the immunogenicities of driver mutations 
across patients can give highly misleading results.

No evidence that driver mutations in cancer patients 
are adapted to patient MHC genotypes

Under a null model of no effect of MHC genotype on driver 
mutation occurrence, the probability that the patient can 
present a given driver mutation can be estimated from the 
proportion of all patients that can present that mutation. This 
provides a straightforward means to compare the observed 
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to expected total number of driver mutations with PHBR 
scores below the threshold for presentation. If the driver 
mutation landscape is shaped by patient-specific MHC bind-
ing capacity and if this is captured by PHBR scores, then the 
observed number of driver mutations that can be presented 
in the patients in which they occur should be smaller than 
the expected number. For MHC-I, the observed number of 
driver mutations with PHBR-I scores below the threshold 
for presentation of 2 applied in [16] was, in fact, slightly 
(but not statistically significantly) larger than the expected 
number (3,669 compared to 3,657.5 ± 68.8 ; p = 0.73 from 
the cumulative distribution function of the Poisson-binomial 
distribution). For MHC-II, the observed number of driver 
mutations with PHBR-II scores below the threshold of 10 
applied in [17] was slightly (and again not statistically sig-
nificantly) below the expected number (1,119 compared 
to 1,142.3 ± 36.4 ; p = 0.21 ). Similar results were obtained 
when the thresholds that were used to define strong bind-
ing (0.5 and 2 for MHC-I and MHC-II, respectively) were 
applied ( p = 0.92 and p = 0.71 , respectively). These results 
provide no suggestion that driver mutations occur signifi-
cantly less often in patients with MHC alleles that are capa-
ble of binding them.

Prediction of driver mutation occurrence from MHC 
genotype

The study of [16] includes the claim that the PHBR scores 
derived from patient MHC-I genotype could be used to pre-
dict the driver mutations that are observed in cancer patients; 
however, this claim is never tested directly. For each driver 
mutation, we fitted a logistic regression model to relate 
the log odds of a driver mutation occurring to the patient-
specific log PHBR-I score. For example, the most common 
driver mutation in the dataset, V600E in BRAF, occurs in 
561 individuals. When we fitted a logistic regression model, 
treating the log odds of occurrence of this mutation as the 
response variable and with log PHBR-I for V600E, cancer 
type and population of origin of the patient as predictor vari-
ables, there was no significant effect of log PHBR-I on the 
occurrence of this mutation ( P = 0.67 ). It could be argued 
that common mutations are common because they cannot 
be presented by common HLA alleles (i.e., they have gener-
ally high PHBR scores across patients). While it is the case 
that V600E in BRAF has a high mean PHBR-I score, there 
were still 704 patients whose MHC-I alleles were predicted 
to be capable of presenting this mutation (PHBR-I < 2 , the 
threshold used in [16] to indicate MHC class I binding). Of 
these patients, 5.5% actually carried the V600E mutation 
in BRAF, almost identical to the frequency of the muta-
tion in the patients with PHBR-I ≥ 2 (6.2%; P = 0.57 from 
Fisher’s exact test). We fitted logistic regression models for 
each driver mutation and found that no driver mutation was 

significantly predicted by log PHBR-I, after correction for 
multiple testing (minimum P value = 0.003 ; adjusted P = 1 , 
using the Holm method). We repeated this procedure using 
PHBR-II scores and again found no significant association 
with driver mutation occurrence following correction for 
multiple testing (minimum P value = 0.004 ; adjusted P = 1 ). 
There is, therefore, no evidence that patient HLA alleles are 
predictive of the driver mutations that occur in the patient.

The association between driver mutation frequency 
and PHBR scores

The strong associations previously reported between 
driver mutations and immune presentation scores could be 
explained by a small number of driver mutations with high 
frequencies that have high PHBR scores (and therefore are 
not well presented by HLA alleles). [16] implies that the 
high frequency of some driver mutations is caused by the 
fact that these mutations are not well presented by common 
HLA alleles, thus enabling them to occur in many individu-
als. This is illustrated by a significant correlation between 
the frequency of driver mutation occurrence (within bins of 
driver mutation frequency) and median PHBR-I scores in 
the bin (this relationship can be seen in the upward trend of 
the median values from left to right in Fig. 1c). Although 
1018 driver mutations were included in the studies of [16, 
17], they are associated with just 168 different genes. Based 
on an analysis of 1000 randomly sampled pairs of germline 
mutations from the same genes, we found that the PHBR 
scores of mutations in the same gene are positively corre-
lated (Fig. S3), likely reflecting amino acid or domain con-
tent of the proteins. For example, peptides of proteins with 
a large proportion of hydrophobic residues may be more 
likely to be presented on MHC molecules [15, 20, 21]. 
The driver mutations with the highest frequencies across 
patients are dominated by a relatively small number of genes 
(Fig. 2a). If a subset of these genes tend to have relatively 
high PHBR scores this could induce a correlation between 
driver mutation frequency across patients and median PHBR 
score. Indeed, when we restricted to only the highest fre-
quency driver mutation for each driver gene, the relationship 
between PHBR-I score and driver mutation frequency was 
no longer significant (Spearman � = 0.24 ; P = 0.28 ). Thus, 
the reported association between driver mutation frequency 
and median PHBR-I score is not robust.

No evidence that driver mutation coverage predicts 
cancer risk

If the frequency of driver mutations across cancer patients 
was determined to a large extent by the binding affinities of 
common HLA alleles, we would expect the number of recur-
rent cancer driver mutations that can be bound by a patient’s 
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MHC molecules to be associated with cancer risk. In [17], 
the driver mutation coverage is defined as the number of 
driver mutations that can be presented by the patient’s MHC 
molecules. This can be calculated for MHC-I (for which a 
threshold of PHBR-I < 2 was used to indicate binding) and 
for MHC-II (for which the threshold was PHBR-II < 10 ). 
MHC-I (but not MHC-II) coverage was found to be cor-
related with age of diagnosis for TCGA patients [16, 17]. 
Interestingly, the strongest correlations between PHBR-
I coverage and age at diagnosis are for cervical and liver 
cancers, two cancers that are strongly associated with viral 
infections [22–24], suggesting that the relationship between 
coverage and age at diagnosis may reflect HLA-dependent 
differences in susceptibility to these viral infections. To test, 
more generally, whether there is any relationship between 
PHBR-I coverage and cancer risk we fitted a logistic regres-
sion model to the log odds of cancer status (a binary variable 
to indicate whether the individual has self-reported a diag-
nosis of cancer of any type) to PHBR-I coverage for 377,790 
participants from the UK Biobank. Treating age and sex 
as covariates, we found no significant association between 
PHBR-I coverage and cancer risk (p = 0.15). The lack of an 
association between cancer risk and driver mutation cover-
age does not support a model in which cancer driver muta-
tions occur in gaps in the capacity of the individual’s MHC 
molecules to bind the associated neoantigens.

Discussion

The relationship between MHC genotype and the driver 
mutations that are found in cancer patients, reported by [16, 
17], is unchanged when the MHC genotypes of patients are 
shuffled. This includes the effect of log PHBR score on the 
occurrence of a driver mutation, as inferred from the within-
patient model, as well as the difference in median PHBR 
scores between the Mutation and No Mutation groups. It is 
therefore clear that any effect of PHBR scores on the driver 
mutation landscape is not dependent on individual level 
MHC genotypes. It is still conceivable that MHC genotype 
affects the driver mutation landscape at the population level, 
such that poorly presented driver mutations are relatively 
common; however, it is implausible that the population level 
effect could arise in the absence of any association between 
PHBR score and driver mutation occurrence within indi-
vidual patients. If immune responses cause driver mutations 
that can be recognized by common MHC alleles to be rare, 
we would expect these driver mutations to be more frequent 
among individuals with MHC alleles that are incapable of 
presenting them. No such effect of MHC genotype on driver 
mutation occurrence within individuals was apparent from 
the data. Furthermore, the relationship that was reported 
between driver mutation frequency and median PHBR score 

of the mutation is weak and no longer significant when we 
restricted to a single driver mutation per driver gene. This 
restriction is necessary, given the correlation we observed 
between PHBR scores derived from the same gene, even for 
germline mutations.

If, as [16] suggests, cancer arises in gaps in an individ-
ual’s capacity to present driver mutations, then we would 
expect the number of such gaps that an individual has for 
cancer driver mutations to be a strong risk factor for can-
cer development. Indeed, [17] reports an effect of MHC-I 
driver mutation coverage on age at cancer diagnosis, where 
coverage was defined as the number of driver mutations in 
the study that were predicted to be bound by the patient’s 
MHC class I molecules. We tested this using data from the 
UK Biobank. Given the size of the data set (377,790 indi-
viduals, including 32,802 with a self-reported cancer diag-
nosis) even a weak relationship between MHC-I coverage 
and cancer risk should be detectable; however, we found 
no significant effect of coverage on cancer status when we 
fitted a logistic regression model that included sex and age 
as covariates. If the reported effect of MHC genotype on 
driver mutation landscape was robust, this would be an 
important negative result, as it addresses the proposal by 
[16] that PHBR-I scores of driver mutations may prove use-
ful for assessing risk of development of certain cancers. This 
negative result has not previously been reported, to the best 
of our knowledge.

Several studies have reported a depletion of immuno-
genic nonsynonymous mutations in cancer [9, 13, 14]. 
However, a recent reanalysis of somatic mutations in can-
cer that took account of the cancer mutation profiles found 
no evidence of selection against cancer neoantigens [15], 
raising questions about whether the availability of neoan-
tigens is the limiting factor in the immune response against 
cancer. In support of this, a previous study reported that 
the quantity of neoantigens is not the limiting variable 
in immunologically cold tumors [25]. This contrasts with 
studies of the efficacy of immunotherapy which have gen-
erally reported a positive association with tumor muta-
tion burden [26–28]. The reported depletion of cancer 
neoantigens [9, 13, 14] applies to all nonsynonymous 
immunogenic mutations and not specifically to driver 
mutations. However, [16, 17] reported no evidence of an 
influence of patient MHC on passenger mutations. This 
finding is surprising, given that both driver and passenger 
mutations (particularly clonal, nonsynonymous, immu-
nogenic passenger mutations) should have the capacity 
to elicit immune responses. In principle, this could be 
explained by downregulation of genes carrying immu-
nogenic mutations. Indeed, a recent study [29] suggested 
that the extent of depletion of neoantigens depends on 
the expression level of the gene. While for neoantigens 
resulting from passenger mutations, this downregulation 
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might be accomplished without affecting cancer cell pro-
liferation, the requirement of the cancer cells for continued 
expression of genes carrying driver mutations may prevent 
downregulation of these genes. One difficulty in attempt-
ing to reconcile these findings in this way is that the effect 
of MHC genotype on the driver mutation landscape was 
reported for both oncogenes and tumor suppressor genes 
(and was stronger for the latter group in [17]). It is not 
clear that the requirement for expression of the gene that 
carries the driver mutation should apply to driver muta-
tions in tumor suppressor genes, where loss of function is 
the expected mode of action.

Our reanalysis of cancer driver mutations from the TCGA 
indicates that there is no evidence that selection exerted 
by the immune response influences the driver mutations 
observed in cancer. This result complements the recently 
reported lack of overall depletion of neoantigens among 
somatic mutations observed in cancer [15]. It remains pos-
sible, however, that the capacity of the MHC to present neo-
antigens at the cell surface does have an appreciable influ-
ence on the driver mutations observed in cancer, but that this 
capacity is not sufficiently well captured by the PHBR score. 
Given the experimental evidence for the capacity of PHBR-I 
and PHBR-II scores to predict MHC-I and MHC-II binding 
affinity [16, 17], this seems unlikely. Alternatively, it is pos-
sible that the availability of immunogenic non-synonymous 
mutations is not what limits the capacity of the immune 
response to prevent cancer development. The wide range of 
mutation burdens in human cancers [30] and the relation-
ship between mutation burden and the efficacy of immune 
checkpoint inhibitors [26–28] argue against this suggestion, 
unless the immune response to the developing cancer is dis-
tinct to the response following immune checkpoint inhibitor 
therapy. The lack of a relationship between MHC genotype 
and driver mutation content suggests that if the immune sys-
tem plays a major role in cancer prevention, this does not 
involve the prevention of specific driver mutations in a way 
that depends strongly on MHC genotype.
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