Skip to main content

Advertisement

Log in

ITGB2 as a prognostic indicator and a predictive marker for immunotherapy in gliomas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Glioma is the most common primary tumor in the brain, accounting for 81% of intracranial malignancies. Nowadays, cancer immunotherapy has become a novel and revolutionary treatment for patients with advanced, highly aggressive tumors. However, to date, there are no effective biomarkers to reflect the response of glioma patients to immunotherapy. In this study, we aimed to assess the clinical predictive value of ITGB2 in patients with glioma.

Methods

The correlation between ITGB2 expression levels and glioma progression was explored and validated using data from CGGA, TCGA, GEO datasets, and patient samples from our hospital. Univariate and multivariate cox regression models were developed to determine the predictive role of ITGB2 on the prognosis of patients with glioma. The relationship between ITGB2 and immune activation was then analyzed. Finally, we predicted the immunotherapy response in both high and low ITGB2 expression subgroups.

Results

ITGB2 was significantly elevated in gliomas with higher malignancy and predicted poor prognosis. In multivariate analysis, the hazard ratio for ITGB2 expression (low versus high) was 0.71 with 95% CI (0.59–0.85) (P < 0.001). Furthermore, we found that ITGB2 stratified glioma patients into high and low ITGB2 expression subgroups, exhibiting different clinical outcomes and immune activation status. At last, we demonstrated that glioma patients with high ITGB2 expression levels had better immunotherapy response.

Conclusions

This study demonstrated ITGB2 as a novel predictor for clinical prognosis and response to immunotherapy in gliomas. Assessing expression levels of ITGB2 is a promising method to discover patients that may benefit from immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. These data can be found here: http://gliovis.bioinfo.cnio.es/ and http://tisch.comp-genomics.org/home/. The supplementary material for this article can be found online. All processed data and R codes used in this study can be obtained from the corresponding author on reasonable request.

Abbreviations

ACC:

Adrenocortical carcinoma

BLCA:

Bladder urothelial carcinoma

BP:

Biological process

BRCA:

Breast invasive carcinoma

CC:

Cellular component

CESC:

Cervical squamous cell carcinoma and endocervical adenocarcinoma

CGGA:

Chinese glioma genome atlas

CHOL:

Cholangiocarcinoma

COAD:

Colon adenocarcinoma

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

DEG:

Differential expressed gene

DLBC:

Lymphoid neoplasm diffuse large B-cell lymphoma

DSS:

Disease-specific survival

ESCA:

Esophageal carcinoma

GBM:

Glioblastoma multiforme

GEO:

Gene expression omnibus

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

HNSC:

Head and neck squamous cell carcinoma

ImmuCellAI:

Immune cells abundance identifier

ICB:

Immune checkpoint blockades

IDO1:

Indoleamine 2,3-dioxygenase

IHC:

Immunohistochemistry

ITGB2:

Integrin beta-2

KEGG:

Kyoto encyclopedia of genes and genomes

KICH:

Kidney chromophobe

KIRC:

Kidney renal clear cell carcinoma

KIRP:

Kidney renal papillary cell carcinoma

LCML:

Chronic myelogenous leukemia

LGG:

Brain lower-grade glioma

LIHC:

Liver hepatocellular carcinoma

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

MESO:

Mesothelioma

MF:

Molecular function

OS:

Overall survival

OV:

Ovarian serous cystadenocarcinoma

PAAD:

Pancreatic adenocarcinoma

PCPG:

Pheochromocytoma and paraganglioma

PD-1:

Programmed cell death 1

PDL-1 (CD274):

Programmed cell death 1 ligand 1

PFI:

Progression-free interval

PRAD:

Prostate adenocarcinoma

READ:

Rectum adenocarcinoma

SARC:

Sarcoma

SKCM:

Skin cutaneous melanoma

SubMap:

Subclass mapping

STAD:

Stomach adenocarcinoma

TCGA:

The cancer genome atlas

TGCT:

Testicular germ cell tumors

THCA:

Thyroid carcinoma

THYM:

Thymoma

TIICs:

Tumor-infiltrating immune cells

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

TIM3 (HAVCR2):

(T-cell immunoglobulin and mucin domain-containing protein 3/hepatitis A virus cellular receptor 2)

TIS:

T-cell inflammation

UCEC:

Uterine corpus endometrial carcinoma

UCS:

Uterine carcinosarcoma

UVM:

Uveal melanoma

References

  1. Ostrom QT et al (2018) Epidemiology of intracranial gliomas. Prog Neurol Surg 30:1–11

    Article  PubMed  Google Scholar 

  2. Ostrom QT et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16(7):896–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bush NAO, Chang SM, Berger MS (2017) Current and future strategies for treatment of glioma. Neurosurg Rev 40(1):1–14

    Article  PubMed  Google Scholar 

  5. Zeng T, Cui D, Gao L (2015) Glioma: an overview of current classifications, characteristics, molecular biology and target therapies. Front Biosci (Landmark edition) 20:1104–1115

    Article  CAS  Google Scholar 

  6. Cui H et al (2016) NF-YC in glioma cell proliferation and tumor growth and its role as an independent predictor of patient survival. Neurosci Lett 631:40–49

    Article  CAS  PubMed  Google Scholar 

  7. Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  CAS  PubMed  Google Scholar 

  8. Parry RV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adorno-Cruz V, Liu H (2019) Regulation and functions of integrin α2 in cell adhesion and disease. Gen Dis 6(1):16–24

    CAS  Google Scholar 

  10. Jung S, Yuki K (2016) Differential effects of volatile anesthetics on leukocyte integrin macrophage-1 antigen. J Immunotoxicol 13(2):148–156

    Article  CAS  PubMed  Google Scholar 

  11. Varga G et al (2007) Active MAC-1 (CD11b/CD18) on DCs inhibits full T-cell activation. Blood 109(2):661–669

    Article  CAS  PubMed  Google Scholar 

  12. Lukácsi S et al (2017) The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol Lett 189:64–72

    Article  PubMed  Google Scholar 

  13. Yakubenko VP, Yadav SP, Ugarova TP (2006) Integrin alphaDbeta2, an adhesion receptor up-regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 107(4):1643–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bednarczyk M et al (2020) β2 integrins-multi-functional leukocyte receptors in health and disease. Int J Mol Sci 21(4):1402

    Article  CAS  PubMed Central  Google Scholar 

  15. Cooper J, Giancotti FG (2019) Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35(3):347–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu M et al (2018) LncRNA ITGB2-AS1 could promote the migration and invasion of breast cancer cells through up-regulating ITGB2. Int J Mol Sci 19(7):1866

    Article  PubMed Central  Google Scholar 

  17. Chang CM et al (2013) Innate immunity gene polymorphisms and the risk of colorectal neoplasia. Carcinogenesis 34(11):2512–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma J et al (2013) Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β2 to tumor cells. J Immunol (Baltimore, Md.: 1950) 191(6):3453–3461

    Article  CAS  Google Scholar 

  19. Almeida J et al (2019) Adipocyte proteome and secretome influence inflammatory and hormone pathways in glioma. Metab Brain Dis 34(1):141–152

    Article  CAS  PubMed  Google Scholar 

  20. Rajaraman P et al (2009) Common variation in genes related to innate immunity and risk of adult glioma. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 18(5):1651–1658

    Article  CAS  Google Scholar 

  21. Gladitz J, Klink B, Seifert M (2018) Network-based analysis of oligodendrogliomas predicts novel cancer gene candidates within the region of the 1p/19q co-deletion. Acta Neuropathol Commun 6(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou P et al (2015) No association of VAMP8 gene polymorphisms with glioma in a Chinese han population. Int J Clin Exp Pathol 8(5):5681–5687

    PubMed  PubMed Central  Google Scholar 

  23. Chen Y et al (2015) VAMP8 facilitates cellular proliferation and temozolomide resistance in human glioma cells. Neuro Oncol 17(3):407–418

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Liu X (2019) The UCSCXENATOOLS R package: a toolkit for accessing genomics data from UCSC xena platform, from cancer multi-omics to single-cell RNA-seq. J Open Sour Softw 4(40):1627

    Article  Google Scholar 

  25. Bowman RL et al (2017) GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol 19(1):139–141

    Article  CAS  PubMed  Google Scholar 

  26. Sun D et al (2020) TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res 49(D1):D1420–D1430

    Article  PubMed Central  Google Scholar 

  27. Neftel C et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7

    Article  Google Scholar 

  29. Jia Q et al (2018) Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun 9(1):5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. García-Mulero S et al (2020) Lung metastases share common immune features regardless of primary tumor origin. J Immunother Cancer 8(1):e000491

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li C et al (2021) GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res 49(W1):W242–W246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu G et al (2012) Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang H et al (2019) A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat Genet 51(7):1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu L et al (2018) TIP: a web server for resolving tumor immunophenotype profiling. Can Res 78(23):6575–6580

    Article  CAS  Google Scholar 

  35. Auslander N et al (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24(10):1545–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miao YR et al (2020) ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci (Weinheim, Baden-Wurttemberg, Germany) 7(7):1902880

    CAS  Google Scholar 

  37. Hoshida Y et al (2007) Subclass mapping: identifying common subtypes in independent disease data sets. PloS One 2(11):e1195

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grabowski MM et al (2021) Immune suppression in gliomas. J Neurooncol 151(1):3–12

    Article  PubMed  Google Scholar 

  39. Varga G et al (2010) LFA-1 contributes to signal I of T-cell activation and to the production of T(h)1 cytokines. J Invest Dermatol 130(4):1005–1012

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X et al (2020) ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics 10(26):12044–12059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lanitis E et al (2017) Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol Off J Eur Soc Med Oncol 28(Suppl_12):xii18–xii32

    Article  CAS  Google Scholar 

  42. Baumert BG et al (2016) Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033–26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 17(11):1521–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Douw L et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8(9):810–818

    Article  PubMed  Google Scholar 

  44. Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397

    Article  CAS  PubMed  Google Scholar 

  45. Laurence MG et al (2017) Oncogenic activities of IDH1/2 mutations: from epigenetics to cellular signaling. Trends Cell Biol 27(10):738–752

    Article  Google Scholar 

  46. Bady P et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation beadchip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124(4):547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van den Bent MJ et al (2013) MGMT-STP27 methylation status as predictive marker for response to PCV in anaplastic oligodendrogliomas and oligoastrocytomas. A report from EORTC study 26951. Clin Cancer Res Off J Am Assoc Cancer Res 19(19):5513–5522

    Article  Google Scholar 

  48. Wick W et al (2013) Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 81(17):1515–1522

    Article  CAS  PubMed  Google Scholar 

  49. Staedtke V, aDzaye OD, Holdhoff M (2016) Actionable molecular biomarkers in primary brain tumors. Trends Cancer 2(7):338–349

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khan IN et al (2018) Current and emerging biomarkers in tumors of the central nervous system: possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 52(1):85–102

    Article  CAS  PubMed  Google Scholar 

  51. Xiao Y et al (2019) Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 25(16):5002–5014

    Article  CAS  Google Scholar 

  52. Chen Y-P et al (2017) Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications. Theranostics 7(14):3585–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gil Del Alcazar CR, Alečković M, Polyak K (2020) Immune escape during breast tumor progression. Cancer Immunol Res 8(4):422–427

    Article  PubMed  PubMed Central  Google Scholar 

  55. Del Paggio JC (2018) Immunotherapy: cancer immunotherapy and the value of cure. Nat Rev Clin Oncol 15(5):268–270

    Article  PubMed  Google Scholar 

  56. Patel JM et al (2019) Peritumoral administration of DRibbles-pulsed antigen-presenting cells enhances the antitumor efficacy of anti-GITR and anti-PD-1 antibodies via an antigen presenting independent mechanism. J Immunother Cancer 7(1):311

    Article  PubMed  PubMed Central  Google Scholar 

  57. López-Soto A, Gonzalez S, Folgueras AR (2017) IFN signaling and ICB resistance: time is on tumor’s side. Trends Cancer 3(3):161–163

    Article  PubMed  Google Scholar 

  58. Jiang P et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24(10):1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res CR 38(1):255

    Article  PubMed  Google Scholar 

  60. Wei SC et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120-1133.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Zhenyu Song from Fudan University for his generous and outstanding help in this research design. We thank openbiox community and Hiplot team (https://hiplot.com.cn) for providing technical assistance and valuable tools for data analysis and visualization.

Funding

This research was funded by Natural Science Foundation of Shanghai (18ZR1430400).

Author information

Authors and Affiliations

Authors

Contributions

HX, AZ and XH collected clinical data. HX, WW performed data analysis. HX, AZ and ML designed and wrote the manuscript. WW and ML contributed to discussion.

Corresponding authors

Correspondence to Wei Wang or Meiqing Lou.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the Human Investigation Ethical Committee of Shanghai General Hospital, and the written informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1.

ITGB2 expression and correlation with immune signatures in pan-cancer. (a) ITGB2 has a significant relationship with tumor microenvironment in various tumors. Supplementary Figure 2. ITGB2 involved in remodeling tumor immune microenvironment.(a) U-MAP plot demonstrating clustering obtained from single cell RNA sequencing (GSE131928). Clusters annotations: CD8Tex, Mono/Macro, AC-like Malignant, MES-like Malignant, OPC-like Malignant, NPC-like Malignant, Oligodendrocyte. (b-c) ITGB2 specifically expressed in Mono/Macro and CD8Tex. (d-e) GEPIA2021 demonstrated that ITGB2's expression was significantly higher in M2 macrophages compared to M0 and M1 macrophages. Supplementary Figure 3. Gene function enrichment analysis between ITGB2 high and low subgroups. (a) KEGG results for differential expression genes between ITGB2 high and low subgroups. The X-axis represents gene counts and the Y-axis represents different enriched pathways (log2 fold change> 1.5). (b) GO (Gene Ontology) results for differential expression genes (Cut-off criteria for DEGs significance was adj. p value< 0.05 and the absolute value of the log2 fold change> 1.5). The X-axis represents gene ratio and the Y-axis represents different enriched pathways (BP: biological progress; CC: cellular component; MF: molecular function). (c) The plot of top three GO pathways for differential expression genes. (d) Rank-based gene set enrichment analysis shows significantly activated immune related pathways in ITGB2 high subgroup compared with ITGB2 low subgroup (LFC, log fold change). Supplementary Figure 4. Validation of correlation between ITGB2 and immune checkpoints in CGGA and TCGA cohorts. (a) The correlation between PDCD1, CD274, CTLA4 and ITGB2 in TCGA dataset. (b) Correlation between mRNA expression of ITGB2 and PDCD1, CTLA4, TIM3 (HAVCR2), IDO1 and TIGIT in tumor tissues obtained from glioma patients (n = 20). (c) The correlation between TIGIT, IDO1, TIM3(HAVCR2) and ITGB2 in CGGA dataset. (d) The correlation between TIGIT, IDO1, TIM3(HAVCR2) and ITGB2 in TCGA dataset. Supplementary Figure 5. Association between ITGB2 expression and immunotherapeutic response. (a) ROC curves for ITGB2 in predicting the immunotherapy response of glioma patients. (PDF 10377 KB)

Supplementary Sheet 1.

Marker genes of 28 immune cells. Supplementary Sheet 2. Marker genes of 25 immune-related pathways. Supplementary Sheet 3. Marker genes of the steps of the cancer immunity cycle. Supplementary Sheet 4. Marker genes of immunotherapy-predicted pathways. Supplementary Sheet 5. Marker genes of TIICs (Based on ImmuCellAI). Supplementary Sheet 6. Marker genes of TIS scores. Supplementary Sheet 7. GSEA result of ITGB2 high vs low subgroup. (XLSX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, A., Han, X. et al. ITGB2 as a prognostic indicator and a predictive marker for immunotherapy in gliomas. Cancer Immunol Immunother 71, 645–660 (2022). https://doi.org/10.1007/s00262-021-03022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03022-2

Keywords

Navigation