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Abstract
Background  Lung adenocarcinoma (LUAD) is a common pulmonary malignant disease with a poor prognosis. There were 
limited studies investigating the influences of the tumor immune microenvironment on LUAD patients’ survival and response 
to immune checkpoint inhibitors (ICIs).
Methods  Based on TCGA-LUAD dataset, we constructed a prognostic immune signature and validated its predictive capa-
bility in the internal as well as total datasets. Then, we explored the differences of tumor-infiltrating lymphocytes, tumor 
mutation burden, and patients’ response to ICI treatment between the high-risk score group and low-risk score group.
Results  This immune signature consisted of 17 immune-related genes, which was an independent prognostic factor for LUAD 
patients. In the low-risk score group, patients had better overall survival. Although the differences were non-significant, 
patients with low-risk scores had more tumor-infiltrating follicular helper T cells and fewer macrophages (M0), which were 
closely related to clinical outcomes. Additionally, the total TMB was markedly decreased in the low-risk score group. Using 
immunophenoscore as a surrogate of ICI response, we found that patients with low-risk scores had significantly higher 
immunophenoscore.
Conclusion  The 17-immune-related genes signature may have prognostic and predictive relevance with ICI therapy but 
needs prospective validation.

Keywords  Lung adenocarcinoma · Immunotherapy · The tumor immune microenvironment · Immune checkpoint 
inhibitor · Tumor mutation burden · Prognostic model
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PD-L1	� Programmed cell death-ligand 1
TAM	� Tumor-associated macrophage
TCGA​	� The Cancer Genome Atlas
TLR8	� Toll-like receptor 8
TMB	� Tumor mutation burden
Treg	� Regulatory T cell

Background

In the United States, lung cancer is the first leading cause of 
cancer-related deaths in 2019 [1]. According to histology, 
lung cancer could be classified into small cell lung cancer 
(15% of all cases) and non-small cell lung cancer (NSCLC) 
(85% of all patients). NSCLC is further divided into three 
subtypes: adenocarcinoma, squamous carcinoma, and large 
cell carcinoma. Among these three subtypes, lung adenocar-
cinoma (LUAD) is most common and accounts for approxi-
mately 40% of lung cancer [2]. In the past decades, due to 
the advances of cancer genomics, a group of gene altera-
tions is identified as driver gene mutations for LUAD, such 
as mutations in epidermal growth factor receptor (EGFR), 
c-MET, KRAS, anaplastic lymphoma kinase (ALK) [3–7]. 
Then, multiple agents targeting driver gene mutations have 
been developed. Unfortunately, after receiving targeting 
treatments, such as EGFR-tyrosine kinase inhibitors, most 
patients eventually become resistant to targeting therapy, 
partly because of secondary mutations in tumors [5].

Cancer immunology and immunotherapy provide a novel 
perspective for cancer therapeutics [8]. LUAD tends to have 
a high tumor mutation burden (TMB) and strong immu-
nogenicity [9]. Therefore, LUAD is an ideal indication of 
immunotherapy [9]. In the clinic, immune checkpoint inhibi-
tors (ICIs) targeting programmed cell death 1 (PD-1) and 
programmed cell death-ligand 1 (PD-L1) exhibit a potent 
and durable anti-tumor activity in LUAD patients [10]. 
However, the overall response rate of ICI is relatively low, 
and only a subset of LUAD patients could benefit from ICI 
treatment [11]. Up to now, a series of biomarkers have been 
verified to herald the efficacy of ICI treatment including 
TMB, PD-L1 expression level, neoantigens, gut microbiota, 
the status of immune cells [8]. Generally, most biomarkers 
reflect the status of the tumor immune microenvironment in 
a certain aspect. Recently, some computer algorithms, such 
as TIMER and CIBERSORT, make it feasible to estimate 
the immune profiling of cancer by transcriptome sequenc-
ing files [12, 13]. Constructing a comprehensive immune 
profiling-based model would be meaningful to predict the 
efficacy of ICI [14].

Actually, the immune landscape of cancer heralds the 
effect of immunotherapy and closely relates to patients’ 
prognosis [15]. Multiple previous studies indicated that some 
immune-related genes (IRGs) are prognostic biomarkers for 

colorectal cancer, ovarian cancer, and hepatocellular carci-
noma [16–18]. There are few studies investigating the pre-
dictive value of IRGs and immune profiling in LUAD. In this 
study, we constructed an immune signature based on IRGs 
and explored the relationship between this immune signa-
ture and LUAD patients’ clinic-pathologic features as well 
as clinical outcomes. Additionally, we mapped the immune 
landscape, analyzed TMB, and predicted the response to ICI 
treatment in patients with different risk scores.

Materials and methods

Data acquiring and cleaning

LUAD patients’ transcriptome sequencing data and clinical 
information were download from UCSC Xena the Cancer 
Genome Atlas (TCGA) LUAD cohort (https​://xenab​rowse​
r.net/). The mutation profiling was acquired from TCGA data 
portal (https​://porta​l.gdc.cance​r.gov/) by R software (ver-
sion: 4.0.0) with package TCGAbiolinks [19]. Data cleaning 
was conducted by R software. The list of IRGs was down-
loaded from ImmPort database (https​://immpo​rt.niaid​.nih.
gov) [20].

Differentially expressed genes

To screen out the IRGs participating in the oncogenesis, 
we analyzed the differentially expressed genes between 
LUAD and corresponding normal tissues. By package 
edgeR, abnormally expressed genes were selected as pre-
viously described (adjusted p value < 0.05 and |log2 (fold 
change)|> 1) [21]. Differentially expressed IRGs were the 
intersection between IRGs and differentially expressed 
genes.

Pathway and function enrichment analysis

To explore the biological significances of these differentially 
expressed IRGs, we performed pathway and function enrich-
ment analysis with the online tool DAVID Bioinformatics 
Resources 6.8 (https​://david​.ncifc​rf.gov/). Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and gene ontology (GO) 
enrichment analyses were performed. Pathways and terms 
with false discovery rate < 0.05 were considered as signifi-
cantly enriched objects. The visualization was performed 
by package ggplot2.

Constructing an IRG‑related immune signature 
for LUAD

The TCGA LUAD patients were randomly divided into a 
training set (2/3 for all patients) and a test set (1/3 for all 

https://xenabrowser.net/
https://xenabrowser.net/
https://portal.gdc.cancer.gov/
https://immport.niaid.nih.gov
https://immport.niaid.nih.gov
https://david.ncifcrf.gov/
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patients). We used the training set to identify prognosis-
related immune genes and constructed a prognostic risk 
model. Then, the predictive power and robustness of the 
model were validated by the test set and total patients. We 
first screened out prognosis-related immune genes by uni-
variate Cox proportional hazard regression. To avoid over-
fitting, all genes with p value < 0.05 were involved in the 
subsequent least absolute shrinkage and selection operator 
(LASSO) analysis with package glmnet. After the filtration 
by LASSO model, the selected genes were used to construct 
the immune-related risk model by multivariate Cox propor-
tional hazards model: risk score = level of gene a * coef-
ficient a + level of gene b * coefficient b + level of gene c * 
coefficient c + …… + level of gene n * coefficient n [15]. In 
the model, the risk score reflected the prognosis of LUAD 
patients: the lower the score, the better the prognosis. Setting 
the median of risk score as the cutoff value, the patients were 
classified into a high-risk group and a low-risk group. The 
predictive power was calculated by Kaplan–Meier survival 
curves, and log-rank p value < 0.05 was regarded as statisti-
cally significant (with packages survival and survminer). To 
assess the predictive capability of this immune signature, 
time-dependent receiver operating characteristic curves were 
used (package survivalROC).

Calculating the ratio of tumor‑infiltrating immune 
cells

CIBERSORT could calculate the ratios of infiltrated immune 
cells from tissue transcriptional profiles by a deconvolution 
algorithm [13]. Based on TCGA LUAD transcriptional pro-
files and R script of CIBERSORT, we calculated the ratios 
of 22 types of tumor-infiltrating immune cells.

TMB analysis

LUAD patients’ somatic variants data were analyzed and 
visualized by package maftools (the pipeline of MAF file: 
muse) [22]. Then, we calculated the TMB of each patient 
(mutations per million bases).

Predicting the patients’ response to ICI

The Cancer Immunome Atlas (https​://tcia.at/) analyzed the 
immune landscapes and antigenomes of 20 solid tumors. 
Tumor immunogenicity was quantitatively scored from 0 to 
10, which was termed immunophenoscore (IPS) [23]. The 
IPS value was positively correlated to tumor immunogenic-
ity. It has been verified that IPS could predict the patients’ 
response to ICI treatment [23]. We extracted data of IPS 
for the following analysis. Additionally, we compared the 
mRNA levels of immune checkpoints and their ligands in 
high-risk score group and low-risk score group.

Statistical analysis

Differences among variables were tested by Student’s t test 
and Chi square test. Univariate and multivariate cox regres-
sion analyses were used to assess the influences of the 
immune signature and multiple clinic-pathological param-
eters on patients’ survival. Statistical analysis was performed 
by R software (4.0.0). The heat maps were plotted by pack-
age pheatmap. A two-sided p < 0.05 was regarded as statisti-
cally significant.

Results

The characteristics of patients

RNA-sequencing profiles and clinic-pathological data of 
497 LUAD patients were downloaded from UCSC Xena 
TCGA-LUAD dataset. Patients were randomly divided into 
a training set (331 patients) and a test set (166 patients). For 
most clinic-pathological parameters, there was no significant 
difference between the training set and test set (Table 1).

Identifying differentially expressed genes

With the cutoff value adjusted p < 0.05 and |log2 (fold 
change)|> 1, 783 differentially expressed genes were 
screened out. Among them, 545 genes were upregulated, 
while 238 genes were downregulated in tumors (Fig. 1a). 
Based on the list of differentially expressed genes, 88 dif-
ferentially expressed IRGs were selected (Fig. 1b). Pathway 
and function enrichment analyses were performed by the 
online annotation tool DAVID. The top five most enriched 
KEGG pathways were: cytokine–cytokine receptor interac-
tion, neuroactive ligand–receptor interaction, regulation of 
lipolysis in adipocytes, PI3K-Akt signaling pathway, and 
rheumatoid arthritis (Fig. 1c). The top five most enriched 
GO- molecular function terms were: hormone activity, hepa-
rin binding, growth factor activity, cytokine activity, and 
chemokine activity (Fig. 1d).

A 17‑gene immune signature can predict 
the prognosis of LUAD patients

To explore the prognostic value of selected IRGs, we 
conducted a univariate Cox regression analysis. 32 genes 
were significantly associated to the overall survival (OS) 
in the training set. To avoid overfitting, we further con-
ducted a LASSO analysis and 17 of 32 genes were pre-
dictors for patients’ prognosis (Fig. 2a–b). Then, based 
on the training set, we conducted a multivariate Cox pro-
portional hazards regression analysis and established a 
predictive model: risk score = (​VI​PR1​*-​0.0​8876) + (BIR

https://tcia.at/
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C5*0.16676) + (GDF10*0.12945) + (ADRB2*0.03706) 
+ (IL20RB*0.06621) + (LGR4*0.15962) + (INHA*0.062
04) + (CD19*0.01529) + (S100P*0.04467) + (IGKV1.8*-
0 .05711)  + ( IGKV1D.43*-0 .02639)  + (ADRB1*-
0 . 3 0 8 3 1 )  +  ( H T R 3 A * 0 . 0 1 4 4 6 )  +  ( A D M 2 * -
0 . 0 9 1 7 9 )   +   ( T L R 8 * - 0 . 1 9 0 5 3 )   + 
(GREM1*0.08239) + (IGHV3.64*-0.10157) (Fig.  2c). 
Seven genes were protective factors (IGKV1D.43, IGKV1.8, 
VIPR1, ADM2, IGHV3.64, TLR8, and ADRB1) while ten 
genes were risk factors (BIRC5, LGR4, GDF10, GREM1, 
IL20RB, INHA, S100P, ADRB2, CD19, and HTR3A).

According to the formula mentioned above, the risk 
score of each patient in the training set was calculated. 
Patients were classified into the high-risk group and low-
risk group using the median risk score as the cutoff value. 
Patients in the high-risk group had a significantly poorer OS 
(P < 0.0001) (Fig. 3a). The areas under the curves (AUCs) 
of this immune signature were 0.74 for 3-year OS and 0.70 
for 5-year OS (Fig. 3b). Besides, we ranked patients’ risk 
scores and overviewed their distributions (Fig. 3c). Patients’ 
risk scores and survival times were presented in the dot plot 
(Fig. 3d). The heat map exhibited the expression patterns 
of 17 IRGs in patients with different risk scores (Fig. 3e).

The predictive capability of this immune signature was 
further verified in the testing set. According to the predictive 
signature, each patient in the testing set was divided into the 
high-risk group and low-risk group as previously described. 

Survival analysis showed that patients with low-risk scores 
had longer OS (p = 0.039) (Fig. 4a). The AUC of 3-year OS 
was 0.58, and the AUC of 5-year OS was 0.52 (Fig. 4b). 
The distribution of risk score, patients’ survival status, and 
survival were presented by scatter plots (Fig. 4c–d). The 
expression of 17 selected genes was visualized by heat map 
(Fig. 4e).

Besides, the robustness of the 17-IRG signature was 
assessed in the total set. The high-risk score was an unfa-
vorable factor of LUAD patients (p < 0.0001) (Fig. 5a). The 
AUC of 3-year OS was 0.69, and the AUC of 5-year OS was 
0.64 (Fig. 5b). The distribution of risk score, patients’ vital 
status, OS time, and 17 IRGs expression were also presented 
in Fig. 5c–e.

The 17‑gene immune signature is an independent 
prognostic factor for LUAD patients

We performed a univariate Cox regression analysis to assess 
the influences of patients’ clinic-pathological factors and 
immune signature risk score on patients’ OS in the total 
set (Table 2). The results indicated that bigger tumor size, 
lymph node metastasis, distant metastasis, advanced TNM 
stage, and high-risk score were unfavorable factors for OS. 
Then, we performed a multivariate Cox regression analy-
sis. It was found that the risk score of the 17-IRG signature 

Table 1   The clinical 
characteristics of LUAD 
patients

NA not available
Patients with not available data were excluded in statistical analysis

Variables Group Total set (n = 497) Training set 
(n = 331)

Test set (n = 166) P value

Vital status Alive 317 206 111 0.36
Dead 180 125 55

Survival time 911.24 898.1 937.43 0.66
Clinical stage I 267 187 80 0.17

II 118 75 43
III 80 48 32
IV 25 17 8
NA 7 4 3

T stage T1-T2 433 288 145 0.64
T3-T4 61 43 18
NA 3 0 3

N stage N0 321 223 98 0.11
N1-N3 165 102 63
NA 11 6 5

M stage M0 331 226 105 0.97
M1 24 17 7
NA 142 88 54

Age  < 65 218 142 76 0.61
 ≥ 65 279 189 90
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was an independent prognostic factor (HR = 2.2, 95% CI 
1.51 ~ 3.2; p < 0.0001).

The associations between 17‑IRG signature 
and patients’ clinic‑pathological parameters

We analyzed the relationships between this 17-IRG signa-
ture and patients’ clinic-pathological parameters, includ-
ing tumor burden, tumor size, lymph node status, distant 
metastasis, TNM stage, and age at diagnosis (Fig. 6a–f). The 
results showed that this 17-IRG risk score was significantly 

higher in patients with higher tumor burden, bigger tumor 
size, lymph node metastasis, advanced TNM stage, and age 
below 65. Besides, the risk score was higher in patients with 
distant metastasis, and the difference was on the verge of 
statistical significance (p = 0.070).

The 17‑IRG signature and tumor immune 
microenvironment

Based on the CIBERSORT algorithm, we calculated the 
proportions of 22 types of immune cells in each LUAD 
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sample. Then, we compared the differences in proportions 
of immune cells between the high-risk score group and low-
risk score group. It was found that the ratios of plasma cell, 
monocyte, and resting mast cell were significantly higher 
in the low-risk score group. On the contrary, the propor-
tions of activated memory CD4+ T cell, resting NK cell, 

macrophage (M0), activated dendritic cell, activated mast 
cell, and neutrophil were significantly higher in the high-
risk score group (Fig. 7a). In 22 types of immune cells, high 
macrophage (M0) level was significantly related to poor OS 
while increased follicular helper T cell, plasma cell, and 
resting mast cell were related to better OS (on the verge of 
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statistical significance, p = 0.058, 0.15, 0.20, respectively) 
(Fig. 7b–e).

The immune signature and TMB

The mutation profiles of each LUAD patient were analyzed. 
For the total set, the top 20 most significantly mutated genes 

were TTN, TP53, MUC16, RYR2, CSMD3, LRP1B, TNR, 
MUC17, CSMD1, ANK2, FAT3, ZNF536, NAV3, COL11A1, 
KRAS, XIRP2, SPTA1, FLG, ZFHX4, USH2A (Fig. 8a). Sub-
sequently, we calculated the TMB of each sample and found 
TMB was markedly higher in the high-risk score group 
(p = 0.0020) (Fig. 8b). However, we observed that TMB was 
not related to patients’ OS (p = 0.75) (Fig. 8c).
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The immune signature and patients’ response to ICI 
treatment

IPS is a machine learning-based scoring scheme, which 
could predict patients’ response to immune checkpoint 
inhibitor in silico [23]. Given that the information on 

ICI treatment was not available in TCGA LUAD dataset, 
we used two subtypes of IPS values (IPS-PD-1/PD-L1/
PD-L2_pos and IPS-CTLA-4_pos) as the surrogates of 
the LUAD patients’ responses to anti-PD-1/PD-L1 and 
anti-CTLA-4 treatment. In this predictive model, the 
relative probabilities to respond to anti-PD-1/PD-L1 and 

p < 0.0001
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anti-CTLA-4 treatment were higher in the low-risk score 
group (p = 0.0002 and p < 0.0001) (Fig. 8d–e). The results 
indicated that patients with low immune signature score 
might be suitable for ICI treatment. Besides, we compared 
the expression levels of immune checkpoints and their 
ligands between the high-risk score group and low-risk 
score group (Fig. 8f–h). Patients with low-risk scores had 
modestly increased PD-L1 (mean expression level: 1.94 
in the low-risk score group and 1.88 in the high-risk score 
group) and significantly elevated PD-1 (p = 0.002) and 
CTLA-4 (p < 0.0001).

Discussion

In the present study, we constructed a prognostic immune 
signature using TCGA LUAD dataset. This signature 
consisted of 17 IRGs. Among the 17 genes, it has been 
reported that BIRC5, S100P, and ADRB2 could preciously 
predict the outcomes of NSCLC patients [24–26]. For 
other IRGs, such as LGR4, GDF10, GREM1, IL20RB, 
INHA, VIPR1, and ADM2, they had been verified to par-
ticipate in carcinogenesis and affect patients’ prognoses in 

Table 2   Univariate and multi-
variate Cox regression analysis

Variables Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age (≥ 65 vs. < 65 years) 1.09 (0.809 ~ 1.47) 0.57
T stage (T3-T4 vs. T1-T2) 2.28 (1.55 ~ 3.35)  < 0.0001 1.7 (1.06 ~ 2.8) 0.029
N stage (N1-N3 vs. T0) 2.64 (1.96 ~ 3.56)  < 0.0001 2.1 (1.44 ~ 3.2)  < 0.0001
M stage (M1 vs. M0) 2.13 (1.24 ~ 3.65) 0.01 1.4 (0.71 ~ 2.6) 0.34
TNM stage (stage III-IV vs. I-II) 2.63 (1.93 ~ 3.59)  < 0.0001 1.2 (0.73 ~ 2.0) 0.44
Risk score (high vs. low) 2.52 (1.85 ~ 3.43)  < 0.0001 2.2 (1.51 ~ 3.2)  < 0.0001
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Fig. 7   The relationships between tumor-infiltrating immune cells and 
risk scores, as well as patients’ overall survival. a The association 
between tumor-infiltrating immune cells and the immune risk signa-

ture. The associations between overall survival and (b) Macrophages 
(M0), (c) Follicular helper T cells, (d) Plasma cells, (e) Resting mast 
cells



1716	 Cancer Immunology, Immunotherapy (2021) 70:1705–1719

1 3

NA

14%
15%
14%
14%
14%
16%
16%
16%
17%
17%
19%
19%
23%
23%
26%
30%
29%
31%
33%
36%

0 201

Score
TNR

MUC17
CSMD1
ANK2
FAT3

ZNF536
NAV3

COL11A1
KRAS
XIRP2
SPTA1
FLG

ZFHX4
USH2A
LRP1B
CSMD3
RYR2

MUC16
TP53
TTN
0

1255

Missense_Mutation

Nonsense_Mutation

Splice_Site

Translation_Start_Site

Multi_Hit

Score

Low scoreHigh score

A

0

5

10

15

20

25

Tu
m

or
 m

ut
at

io
n 

bu
rd

en
 (p

er
M

B
)

Low score High score

B
p = 0.0020

p = 0.75
0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000 8000
Time (days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y High TMB

Low TMB
C

D

5

6

7

8

9

10

Th
e 

re
la

tiv
e 

pr
ob

ab
ili

ty
 to

 re
sp

on
d

to
 a

nt
i-P

D
-1

/P
D

-L
1 

tre
at

m
en

t

Th
e 

re
la

tiv
e 

pr
ob

ab
ili

ty
 to

 re
sp

on
d

to
 a

nt
i-C

TL
A

-4
 tr

ea
tm

en
t

High scoreLow score
Score

p= 0.0002

E

5

6

7

8

9

10

High scoreLow score
Score

p<0.0001

F G

0

2

4

6

PD
-L

1 
m

R
N

A

High scoreLow score
Score

p = 0.51
H

0

1

2

3

4

PD
-1

 m
R

N
A

High scoreLow score
Score

p = 0.002

0

1

2

3

4

C
TL

A
-4

 m
R

N
A

High scoreLow score
Score

p<0.0001



1717Cancer Immunology, Immunotherapy (2021) 70:1705–1719	

1 3

other cancers, although the relevant studies were rare in 
lung cancer [27–34]. Notably, most selected IRGs could 
regulate cancer initiation and development by simultane-
ously modulating the status of the tumor immune micro-
environment and the malignant biological properties of 
tumor cells [35]. For example, LGR4 (encoded by LGR4) 
and its ligands R-spo1-4 are not only a vital axis for tumor 
growth and metastasis but also promotes macrophage 
M2 polarization and tumor-associated macrophage 
(TAM) formation [35]. Besides, ADRB2-encoded protein 
β2-adrenergic receptor (β2-AR) are widely expressed on 
activated and memory CD8+ T cells [36]. β2-AR could 
mediate cancer immunosuppression by reprogramming 
the metabolism of activated T cells [36, 37]. Addition-
ally, as an innate pattern recognition receptor, Toll-like 
receptor 8 (TLR8) (encoded by TLR8) could enhance 
cytokines secretion and promote anti-tumor immunity 
[38]. Activated TLR8 pathway remarkably reshapes the 
tumor immune microenvironment by decreasing infiltrat-
ing myeloid-derived suppressor cells (MDSCs), regulatory 
T cells (Tregs), and immunosuppressive markers, such as 
CTLA-4 [38]. Meanwhile, stimulating TLR8 signal could 
increase the numbers of tumor-infiltrating M1 monocytes 
and T cells [38].

Generally, previous predictive models for prognostic strati-
fication focused on the intrinsic features of tumors, such as 
tumor size, lymph node metastasis, and distant metastasis. 
Actually, some elements of innate immunity and adaptive 
immunity actively participate in cancer development as well 
[39]. Effectors including cytotoxic T cells, B cells, and NK 
cells destroy tumor cells while Tregs, MDSCs, and TAMs can 
orchestrate immune escape and tumor growth [40]. A study 
in human colon cancer showed that the immunologic param-
eters (tumor-infiltrating immune cells’ types, locations, and 
numbers) could more effectively predict patients’ survival than 
traditional histopathological methods [41]. ‘Immunoscore’ is a 
quantitative forecasting tool based on tumor immune contex-
ture which is under clinical studies in multiple cancer types as 
a supplement for the current histopathological staging system 
[42, 43]. Similar to ‘Immunoscore,’ our immune signature 
could also reflect the tumor immune microenvironment status 
and herald patients’ survival based on RNA-sequencing data. 
Apart from patients’ survival, this immune signature was also 

a predictor for patients’ response to ICI treatment. Because 
the information on ICI treatment was not available in TCGA 
LUAD dataset, we used IPS as a surrogate for ICI treatment 
efficacy. IPS was developed mainly based on TCGA RNA-seq 
profiles, which can quantitatively predict patients’ response to 
anti-PD-1/PD-L1 and anti-CTLA-4 therapies [23]. The IPS 
values were significantly higher in the low-risk score group, 
which indicated that this 17-IRG signature might be useful 
for patient selection before ICI treatment. Up till now, PD-L1 
expression, TMB, mismatch repair deficiency, microsatellite 
instability had been applied to select patients prior to ICI ther-
apy [8]. In the present study, the predictive capability of this 
immune signature is independent of TMB. On the contrary, we 
found that the TMB was markedly lower in the low-risk score 
group. Considering that IPS is a complicated model contain-
ing multiple factors, we supposed that other variables, such 
as upregulated immune checkpoint signals, might contribute 
to the enhanced treatment effect in the low-risk score group.

According to the cancer-immunity cycle theory, anti-
cancer immune response consists of multiple stepwise pro-
cesses, including releasing antigens of cancer cells, captured 
and processed by antigen presentation cells, activation of T 
cells, trafficking and infiltrating of T cells into tumor, rec-
ognizing and killing cancer cells [44]. During cancer devel-
opment, one or more steps are hampered, such as increased 
expressions of immune checkpoints and their ligands, 
impaired T cell infiltration, as well as antigenic modulation 
[44, 45]. Therefore, in the condition that immune checkpoint 
is not the only rate-limiting step, patients might get little 
benefit from ICI treatment. In the present study, patients 
with low-risk scores had higher expressions of immune 
checkpoint molecules. Increased levels of immune check-
points, such as PD-1 and CTLA-4, indirectly indicated the 
preexisted T cell activation for the low-risk score group. 
Thus, patients with low-risk scores might be more sensitive 
to ICI treatment.

In spite of some positive results, some questions still 
remained. First, this immune signature was constructed 
based on public datasets. The predictive capability needs fur-
ther verification in randomized controlled trials. Besides, we 
used the IPS value to mimic patients’ response to ICI treat-
ment. Although the correlation between IPS and response 
to ICI therapy had been validated in several independent 
datasets, IPS values still could not completely replace real 
treatment response.

Conclusion

We constructed a 17-IRG prognostic model to predict LUAD 
patients’ survival and response to ICI treatment. Patients 
with low-risk scores had better prognosis and may be pre-
dicted to benefit with ICI therapy. This immune signature 

Fig. 8   The mutation profile, TMB, relative probabilities to respond 
to immune checkpoint inhibitors, and the levels of immune check-
point molecules in low-risk and high-risk groups. a Mutation profile 
of LUAD patients in low-risk and high-risk groups. b The difference 
of tumor mutation burden between low-risk and high-risk groups. c 
The association of tumor mutation burden and patients’ overall sur-
vival. d–e The relative probabilities to respond to anti-PD-1/PD-L1 
and anti-CTLA-4 treatment in the low-risk score and high-risk score 
group. The expressions of (f) PD-L1, (j) PD-1, and (h) CTLA-4 in 
low-risk and high-risk groups

◂
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might be valuable for prognostic stratification and patient 
selection before ICI treatment. We believe this predictive 
model should be prospectively validated.
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