Skip to main content

Advertisement

Log in

Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors

  • Research Report
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSCs) are widely implicated in negative regulation of immune responses in cancer. Inhibition of class I histone deacetylases (HDAC) with entinostat has anti-MDSC activity. However, as single agent, it did not delay tumor growth in EL4 and LLC tumor models. Here, we found that entinostat reduced immune suppressive activity of only one type of MDSC—polymorphonuclear, PMN-MDSC, whereas it had no effect on monocytic M-MDSC or macrophages. M-MDSC had high amount of class II HDAC—HDAC6, which was further increased after the treatment of mice with entinostat. Inhibition of HDAC6 with ricolinostat reduced suppressive activity of M-MDSC, but did not affect PMN-MDSC or delayed tumor growth. However, combination of entinostat and ricolinostat abrogated suppressive activity of both populations of MDSC and substantially delayed tumor progression. Thus, inactivation of MDSC required targeting of both major subsets of these cells via inhibitors of class I and class II HDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19:108–119. https://doi.org/10.1038/s41590-017-0022-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schrijver IT, Theroude C, Roger T (2019) Myeloid-Derived Suppressor Cells in Sepsis. Front Immunol 10:327. https://doi.org/10.3389/fimmu.2019.00327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Penaloza HF, Alvarez D, Munoz-Durango N, Schultz BM, Gonzalez PA, Kalergis AM, Bueno SM (2019) The role of myeloid-derived suppressor cells in chronic infectious diseases and the current methodology available for their study. J Leukoc Biol 105:857–872. https://doi.org/10.1002/JLB.MR0618-233R

    Article  CAS  PubMed  Google Scholar 

  4. Safarzadeh E, Orangi M, Mohammadi H, Babaie F, Baradaran B (2018) Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol 233:3024–3036. https://doi.org/10.1002/jcp.26075

    Article  CAS  PubMed  Google Scholar 

  5. Gabrilovich DI (2017) Myeloid-Derived Suppressor Cells. Cancer. Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297

    Article  CAS  Google Scholar 

  6. Bronte V, Brandau S, Chen S-H et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  Google Scholar 

  7. Condamine T, Dominguez GA, Youn JI et al (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaf8943

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mastio J, Condamine T, Dominguez G et al (2019) Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. J Exp Med 216:2150–2169. https://doi.org/10.1084/jem.20181952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gato M, Blanco-Luquin I, Zudaire M et al (2016) Drafting the proteome landscape of myeloid-derived suppressor cells. Proteomics 16:367–378. https://doi.org/10.1002/pmic.201500229

    Article  CAS  PubMed  Google Scholar 

  10. Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R (2012) Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE 7:e30815. https://doi.org/10.1371/journal.pone.0030815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen L, Orillion A, Pili R (2016) Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 8:415–428. https://doi.org/10.2217/epi.15.118

    Article  CAS  PubMed  Google Scholar 

  12. Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM, Adema GJ (2014) HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget 5:6558–6572. https://doi.org/10.18632/oncotarget.2289

    Article  PubMed  PubMed Central  Google Scholar 

  13. Orillion A, Hashimoto A, Damayanti N et al (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res 23:5187–5201. https://doi.org/10.1158/1078-0432.CCR-17-0741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christmas BJ, Rafie CI, Hopkins AC et al (2018) Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunol Res 6:1561–1577. https://doi.org/10.1158/2326-6066.CIR-18-0070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomita Y, Lee MJ, Lee S, Tomita S, Chumsri S, Cruickshank S, Ordentlich P, Trepel JB (2016) The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncoimmunology 5:e1219008. https://doi.org/10.1080/2162402X.2016.1219008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramalingam S, Ordentlich P, Wang L, Tamang D, Sullivan AH, Church SE, Rozelle D, Meyers ML, Hellmann MD (2019) Identification of gene signatures associated with response in a phase 2 trial of entinostat (ENT) plus pembrolizumab (PEMBRO) in non-small cell lung cancer (NSCLC) patients whose disease has progressed on or after anti-PD-(L)1 therapy. In: AACR annual meeting proceedings.

  17. Sullivan RJ, Moschos SJ, Johnson ML, Opyrchal M, Ordentlich P, Brouwer S, Sankoh S, Meyers ML, Agarwala SS (2019) Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma previously treated with anti-PD-1 therapy. In: AACR annual meeting proceedings.

  18. Ohno H, Kubo K, Murooka H, Kobayashi Y, Nishitoba T, Shibuya M, Yoneda T, Isoe T (2006) A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol Cancer Ther 5:2634–2643. https://doi.org/10.1158/1535-7163.MCT-05-0313

    Article  CAS  PubMed  Google Scholar 

  19. Mitchem JB, Brennan DJ, Knolhoff BL et al (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73:1128–1141. https://doi.org/10.1158/0008-5472.CAN-12-2731

    Article  CAS  PubMed  Google Scholar 

  20. Mok S, Tsoi J, Koya RC, Hu-Lieskovan S, West BL, Bollag G, Graeber TG, Ribas A (2015) Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer 15:356. https://doi.org/10.1186/s12885-015-1377-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sluijter M, van der Sluis TC, van der Velden PA, Versluis M, West BL, van der Burg SH, van Hall T (2014) Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS ONE 9:e104230. https://doi.org/10.1371/journal.pone.0104230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conway JG, McDonald B, Parham J et al (2005) Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580. Proc Natl Acad Sci USA 102:16078–16083. https://doi.org/10.1073/pnas.0502000102

    Article  CAS  PubMed  Google Scholar 

  23. Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D (2013) CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology 2:e26968. https://doi.org/10.4161/onci.26968

    Article  PubMed  PubMed Central  Google Scholar 

  24. MacDonald KP, Palmer JS, Cronau S et al (2010) An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116:3955–3963. https://doi.org/10.1182/blood-2010-02-266296

    Article  CAS  PubMed  Google Scholar 

  25. Kumar V, Donthireddy L, Marvel D et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(654–68):e5. https://doi.org/10.1016/j.ccell.2017.10.005

    Article  CAS  Google Scholar 

  26. Knox T, Sahakian E, Banik D et al (2019) Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep 9:6136. https://doi.org/10.1038/s41598-019-42237-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng F, Lienlaf M, Perez-Villarroel P et al (2014) Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Mol Immunol 60:44–53. https://doi.org/10.1016/j.molimm.2014.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Syndax Pharmaceuticals and by animal, genomics, and flow cytometry core facilities of Wistar Cancer Center Support NIH Grant P50 CA168536. All authors state no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gabrilovich.

Ethics declarations

Ethical approval

All procedures were performed and approved in strict accordance with the Institutional Animal Care and Use Committee (IACUC) at the Wistar Institute, and with the NIH Guide for the Care and Use of Laboratory Animal guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, A., Fukumoto, T., Zhang, R. et al. Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors. Cancer Immunol Immunother 69, 1929–1936 (2020). https://doi.org/10.1007/s00262-020-02588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02588-7

Keywords

Navigation