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Abstract
Introduction  Metastatic renal cell cancer (mRCC) patients have a median overall survival (mOS) of approximately 28 
months. Until recently, mammalian target of rapamycin (mTOR) inhibition with everolimus was the standard second-line 
treatment regimen for mRCC patients, improving median progression-free survival (mPFS). Treatment with everolimus 
supports the expansion of immunosuppressive regulatory T cells (Tregs), which exert a negative effect on antitumor immune 
responses. In a phase 1 dose-escalation study, we have recently demonstrated that a low dose of 50 mg oral cyclophosphamide 
once daily can be safely combined with everolimus in mRCC patients and prevents the everolimus-induced increase in Tregs.
Materials and methods  In a multicenter phase 2 study, performed in patients with mRCC not amenable to or progressive 
on a vascular endothelial growth factor (VEGF)-receptor tyrosine kinase inhibitor (TKI) containing treatment regimen, we 
assessed whether the addition of this metronomic dosing schedule of cyclophosphamide to therapy with everolimus could 
result in an improvement of progression-free survival (PFS) after 4 months of treatment.
Results  Though results from this study confirmed that combination treatment effectively lowered circulating levels of Tregs, 
addition of cyclophosphamide did not improve the PFS rate at 4 months. For this reason, the study was abrogated at the 
predefined interim analysis.
Conclusion  Although the comprehensive immunomonitoring analysis performed in this study provides relevant information 
for the design of future immunotherapeutic approaches, the addition of metronomic cyclophosphamide to mRCC patients 
receiving everolimus cannot be recommended.
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Introduction

Renal cell cancer (RCC) has been diagnosed in more than 
84.000 new patients in the European Union each year and 
has resulted in almost 34.000 cancer deaths in 2012 [1]. 
Death due to RCC is mostly a consequence of metastatic 
disease, which occurs in 30% of patients at presentation and 
in an additional 30% of patients after initial nephrectomy 
[2]. Metastatic RCC (mRCC) is known to be resistant to 
chemotherapy. However, the prognosis of mRCC has greatly 
improved in the last decade with the registration of vari-
ous novel therapeutics, resulting in a current median overall 
survival (mOS) of 28–29 months [3–6]. New drugs have 
been mostly tested in patients with clear cell mRCC, while 
papillary, chromophobic and oncocytic RCC and RCC of 
the collecting duct have been studied less due to their lower 
prevalence [7]. Until recently, first-line treatment of clear 
cell mRCC patients predominantly consisted of drugs that 
block the intracellular domain of the vascular endothelial 
growth factor (VEGF) receptor, such as sunitinib or paz-
opanib, resulting in a median progression-free survival 
(mPFS) of 11 months [8–10], or the combination of inter-
feron-alfa (IFN-α) and bevacizumab, the latter binding circu-
lating VEGF, which resulted in an mPFS of 8.5–10 months 
[11–14]. Since 2007, drugs targeting the mammalian target 
of rapamycin (mTOR) pathway have been registered for 
the treatment of mRCC. Temsirolimus represents a first-
line treatment option in poor-risk mRCC patients, while 

everolimus became a standard Food and Drug Administra-
tion (FDA)-approved second-line treatment in 2009 [10, 
15–18]. The mTOR pathway influences cell growth, prolif-
eration and angiogenesis, and mTOR inhibitor everolimus 
leads to an mPFS of approximately 4 months when used as 
second-line treatment [16, 19]. Recently, the programmed 
cell death protein-1 (PD-1) checkpoint-inhibitor nivolumab, 
the c-Met and VEGF tyrosine kinase inhibitor (TKI) cabo-
zantinib and the combination of lenvatinib (a multi kinase 
inhibitor) and everolimus were shown to be more effective 
compared to everolimus monotherapy and have thereby 
replaced everolimus as the standard second-line therapeutic 
approach in mRCC patients [3, 4, 20, 21]. In addition, com-
bination therapy with PD-1 and cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) immune checkpoint inhibi-
tors nivolumab and ipilimumab was approved as a first-line 
treatment option for intermediate- and poor-risk patients 
[22].

One aspect potentially limiting the antitumor effect of 
mTOR inhibition by everolimus is their known stimula-
tory effect on regulatory T cells (Tregs) [23, 24]. Tregs are 
characterized by the expression of CD4, CD25 and the tran-
scription factor forkhead box P3 (Foxp3), and are known to 
exert immunosuppressive effects, which can be beneficial in 
preventing overt autoimmunity, but can hamper the develop-
ment of antitumor immune responses. Tumor cells or tumor-
associated macrophages can produce ligands that selectively 
attract Tregs through C–C chemokine receptor (CCR) type 
4, facilitating tumor cells to escape antitumor immunity [25, 
26]. Studies have shown that the frequency of circulating as 
well as (peri)tumoral Tregs is negatively associated with sur-
vival in cancer patients, including mRCC patients [27–29].

We and others have shown that treatment with everolimus 
resulted in an expansion of peripheral blood Tregs [30, 31]. 
As we hypothesized that the undesirable everolimus-induced 
expansion of Tregs in mRCC patients could be counter-
acted, we co-administered cyclophosphamide, which is an 
alkylating agent of the nitrogen mustard type that is known 
to selectively deplete Tregs (and not helper or cytotoxic T 
cells) [32–34]. The effect of cyclophosphamide on Tregs is 
not completely understood; however, several mechanisms 
have been proposed, including (a) induction of a DNA repair 
defect, (b) reduction of the ATP and glutathion content of 
Tregs and (c) causing a lack in the expression of the ATP-
binding cassette (ABC) transporters B1 (ABCB1) [33–36].

We first performed a phase 1 dose-escalation trial, in 
which we established the optimal dose of metronomic cyclo-
phosphamide that, when combined with the standard once 
daily oral dose of 10 mg of everolimus, was safe, well toler-
ated and effectively reduced circulating levels of Tregs [37, 
38]. In the present phase 2 study, we investigated whether the 
addition of the selected dose of metronomic cyclophospha-
mide would result in an improvement in mPFS as compared 
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to everolimus monotherapy. In addition, immunomonitoring 
was performed to evaluate whether immune effects could 
be related to clinical outcome. The immunomonitoring per-
formed in this study gives insight into the effects of mTOR 
inhibition and low-dose oral cyclophosphamide in cancer 
patients and thereby provides relevant information for the 
design of future treatments that incorporate or are based on 
mTOR inhibitors.

Materials and methods

Patients and treatment

The multicenter study was performed in medical centers 
that were part of the WIN-O (The Working group Immu-
notherapy of the Netherlands for Oncology) and included 
29 patients of 18 years or older with clear cell mRCC who 
were not amenable to, or had progressed on, a VEGF recep-
tor TKI regimen. As originally planned in the design of the 
study, 10 of the 25 patients had participated in the phase 1 
part of this study, where they had been treated with the same 
treatment regimen as in the here reported phase 2 study. For 
a more extensive description of the inclusion and exclusion 
criteria of the study, we refer to the published study protocol 
[39]. Follow-up was until death or until the time of analysis 
(9 months after inclusion of the last patient). A pre-planned 
interim analysis was performed after 24 patients were 
treated for at least 4 months, to assess whether the primary 
objective, an increase of progression-free survival (PFS) at 
4 months from 50 to 70% could be achieved. Since 12 out 
of 24 patients had progressed within the first 4 months of 
treatment, the study was terminated prematurely due to lack 
of efficacy. Secondary objectives that were studied included 
response rate, time to progression, overall survival and an 
assessment of the immunological effects of combination 
treatment.

Patients were treated with 10 mg everolimus and 50 mg 
cyclophosphamide orally, both once daily continuously. In 
case of severe toxicity, dose reductions were allowed accord-
ing to protocol. Adverse events (AE) were defined in accord-
ance with the International Conference on Harmonisation 
(ICH) Guideline for Good Clinical Practice (ICH E6:1.2). 
Severity of clinical AE was graded according to the National 
Cancer Institute Common Toxicity Criteria (CTC) grading 
system version 3.0 (NCI-CTCAE). Dose-limiting toxicities 
(DLT) were toxicities attributable to combination therapy 
within the first 28 days of therapy and defined as febrile 
neutropenia, neutropenic infection, other grade ≥ 3 hema-
tological toxicity, pneumonitis, nausea, vomiting, diarrhea, 
fatigue or any other grade ≥ 3 AE that, despite appropriate 
supportive care, failed to recover to grade ≤ 1 within 7 days 
[39]. Patients were evaluated at baseline and then every 4 

weeks until the end of study treatment by means of history, 
physical examination and laboratory evaluation (hematol-
ogy and chemistry). Moreover computed tomography scans 
(CT scan) of chest and abdomen were made at baseline and 
thereafter every 8 weeks. The objective response rate (ORR) 
was assessed clinically and radiologically, using Response 
Evaluation Criteria In Solid Tumors (RECIST, version 1.1).

Immunomonitoring

Immunomonitoring was performed at baseline and 4 weeks 
after the start of the study treatment period. Peripheral blood 
mononuclear cells (PBMC) were isolated by Lymphoprep 
(Axis-Shield, Oslo, Norway) density-gradient centrifuga-
tion, cryopreserved in liquid nitrogen, thawed and subse-
quently stained for 30 min at 4 °C with labeled antibod-
ies in phosphate-buffered saline (PBS) supplemented with 
0.1% bovine serum albumin (BSA) and 0.02% sodium azide. 
Based on the immunomonitoring results of the previously 
performed phase 1 study [37, 38], the following immune cell 
subsets were selected for monitoring in the present phase 2 
study: regulatory T cells (Tregs, CD4+CD25hiFoxP3hi), cyto-
toxic T cells (CTL, CD3+CD8+), B lymphocytes (CD19+), 
myeloid dendritic cells (cDC1, BDCA3+CD14−CD11c+ 
and cDC2, BDCA1+CD19−CD14−CD11c+) and plasma-
cytoid dendritic cells (pDC, BDCA2+CD11c−CD123+), 
immunoregulatory (CD56brightCD16dim) and cytotoxic 
(CD56dimCD16+) natural killer cells (NK), and granu-
locytic (Lin−CD14−CD33+HLA−DR−) and monocytic 
(Lin−CD14+HLA−DR−) myeloid derived suppressor cells 
(MDSC).

The following antibodies were used: FITC-labeled anti-
bodies against IgG1, CD4, CD14, CD16, BDCA1, BDCA2 
and BDCA3; PE-labeled antibodies against IgG1, CD8, 
CD19, CD40, CD56, CD86 and CD123; PerCP-labeled anti-
bodies against IgG1, CD3 and CD4; APC-labeled antibod-
ies against IgG1, CD3, CD11c, CD25 and PD-1 (all these 
antibodies were obtained from BD Biosciences, New Jersey, 
USA). Intracellular stainings were performed after fixation 
and permeabilization using a fixation/permeabilization kit 
according to the manufacturer’s protocol (eBioscience, Mas-
sachusetts, USA). The labeled antibodies used for intracel-
lular stainings were PE-labeled IgG1, IgG2a, CTLA-4 and 
Ki-67 (all BD Biosciences, New Jersey, USA). FoxP3 was 
stained with anti-FoxP3 mAbs, either PCH101 PE (eBiosci-
ence, Massachusetts, USA) or 259D Alexa Fluor 488 (Bio-
legend, San Diego, USA). All cells were analyzed on a BD 
FACS Calibur and analyzed using Kaluza Analysis Software 
(Beckman Coulter).
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Statistical analysis

Paired t tests were used to determine the statistical signifi-
cance of differences between time points or groups. PFS 
was defined as the time from baseline until progression or 
death. Overall survival (OS) was defined as the time from 
baseline until death. Both PFS and OS were analyzed using 
Kaplan–Meier curves. Correlations were measured using 
Pearson correlation coefficient. Findings were considered 
statistically significant when p values were ≤ 0.05, as indi-
cated with asterisks (*p ≤ 0.05, **p < 0.01, ***p < 0.001). 
Statistical analyses were performed using GraphPad Prism 
6.0 software.

Results

Baseline patient characteristics

The study included 29 patients with clear cell mRCC who 
were treated at 12 different centers in the Netherlands 
between November 2013 and October 2016. Of these 29 
patients, 25 patients were followed according to protocol; 
4 of 29 patients were excluded within the first 2 weeks of 
the start of treatment. Three of them withdrew consent and 
one patient had inadvertently taken an inappropriate dose 
of cyclophosphamide. Patient characteristics are shown in 
Table 1. Of the 25 patients included for study analysis, 60% 
were male, the median age of the study group was 66 years 
and 80% could be categorized in the favorable or intermedi-
ate IMDC risk group (prognostic model according to the 
International Metastatic Renal Cell Carcinoma Database 
Consortium, IMDC). The mean amount of white blood cells 
(WBC) was 6.4 × 109/L (± 0.38 SEM) and mean amount of 
lymphocytes was 1.45 × 109/L (± 0.13 SEM).

Treatment efficacy and safety

The median time of treatment of patients was 4.2 months 
(range 0.5–11 months). Two patients (8%) still received 
treatment at the time of study termination, and all other 
patients had discontinued study medication due to progres-
sion (n = 19, 76%) or unacceptable toxicity (n = 4, 16%). 
Median follow-up was 7.9 months (range 0.5–21 months), 
based on time until death (n = 13, 52%) or until time of anal-
ysis (n = 12, 48%).

At the predefined interim analysis, it became evident 
that the primary objective of the study, an increase of PFS 
at 4 months from 50 to 70%, could not be reached. At 4 
months, 48% (n = 12) of 25 patients had progressive disease. 
mPFS and mOS were 4.5 months (range 0.5–21 months) 
and 16 months (range 0.5–20 months), respectively (Fig. 1a, 

b). Three patients did not show signs of progression at the 
time of analysis (range 10–21 months) and 11 patients were 
still alive at the end of the follow-up period (range 10–21 
months). The best clinical outcome was stable disease (SD) 
in 72% (n = 18) of the cases. Progressive disease (PD) was 
observed in 28% (n = 7) of the patients. No partial or com-
plete responses were observed.

Overall, combination treatment was reasonably well toler-
ated. A total of 168 different AEs was reported, an average 
of 6.7 per patient. No grade 4 or 5 toxicities were observed. 
The most common (> 30%) treatment-related toxicities were 
fatigue (n = 11; 44%), anemia (n = 10; 40%), pneumonitis 
(n = 10; 40%), anorexia (n = 8; 32%) and hypercholester-
olemia (n = 8; 32%) (Table 2). A total of 18 treatment-related 
grade 3 AEs were reported in 13 (52%) patients. Grade 3 
toxicities included fatigue, anemia, pneumonitis and leuko-
cytopenia. Three patients (12%) endured a DLT related to 
study medication within 28 days after the start of treatment, 
i.e., hematuria grade 3, nausea grade 3 and mucositis grade 
3. In the case of the patient with hematuria, this resolved 
upon discontinuation of cyclophosphamide and the patient 
continued with everolimus treatment until disease progres-
sion. For the patient with nausea, study medication was 
interrupted and, due to rapid disease progression, not rein-
troduced. In the patient with mucositis, this resolved after 
a 14 day interruption of study medication and did not recur 
upon reintroduction of study combination therapy.

Immune monitoring

Based on the immunomonitoring results of the previ-
ously performed phase 1 study, a selective panel of 
immune cell subsets and ratios between immune cell sub-
sets were analyzed in this phase 2 study: total CD3+ T 
cells, CD3+CD4+ conventional T-helper cells (Tconv), 
CD3+CD8+ CTL, Tregs, effector–suppressor T cell ratio or 
CD8:Treg ratio, defined as the ratio between CD8+ effec-
tor T cells and suppressive Tregs), immunoregulatory 
and cytotoxic NK cells, cDC1, cDC2 and pDC [31, 37, 
38]. In the present study, the total amount of PBMC was 
2.01 × 109//L ± 0.13 (mean ± standard error of mean (SEM) 
at baseline and 1.86 × 109//L ± 0.14 after 4 weeks of treat-
ment (not significant, NS). The total lymphocyte count was 
1.45 × 109//L ± 0.13 at baseline and 1.25 × 109//L ± 0.11 after 
4 weeks of treatment (NS).

T cell subsets

Neither the frequency nor absolute numbers (AN) of CD3+ 
T cells in the total lymphocyte population changed signifi-
cantly during the first 4 weeks of treatment (Fig. 2a). Also, 
the frequency as well as the absolute numbers of circulat-
ing CD4+ T cells did not change significantly (Fig. 2b). Of 
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interest, a small but statistically significant increase in CD8+ 
CTL was observed in frequency, and a similar, but not sig-
nificant, trend was seen in absolute numbers (Fig. 2c).

The frequency and absolute numbers of circulating 
regulatory T cells (CD4+CD25hiFoxP3hi) was found to 
significantly decrease from baseline to week 4 (Fig. 2d), 
confirming our previous observations. Of note, although 
the frequency of circulating Tregs decreased during the 
first 4 weeks of treatment, expression of the proliferation 

marker Ki-67 and the inhibitory CTLA-4 receptor in Tregs 
significantly increased (Fig. 2e, f).

As the ratio between CD8+ effector T cells and suppres-
sive Tregs (E:S ratio) can have a prognostic impact [40], 
changes in this ratio were also assessed. As illustrated in 
Fig. 2g, the E:S ratio significantly increased from baseline 
to week 4, reflective of a change in the relative distribution 
between T cell subsets toward a more favorable balance 
when considering antitumor immune responses.

Table 1   Baseline characteristics

*Adrenal, liver, soft tissue, subcutaneous, peritoneum, breast

Characteristic Study group (N = 25)

Sex—no. (%)
 Male 15 (60)
 Female 10 (40)

Median age—year (range) 66 (48 − 78)
ECOG performance status—no. (%)
 0 11 (44)
 1 11 (44)
 2 1 (14)
 Unknown 2 (8)

IMDC risk group—no. (%)
 Favorable 5 (20)
 Intermediate 15(60)
 Poor 4 (16)
 Unknown 1 (4)
 Median time from initial diagnosis to metastastic disease—mo. (range) 12.5 (0 − 174.5)
 Median time from metastastic disease to start study treatment—mo. (range) 20 (1 − 54.5)

Site of metastases—no. (%)
 Lung 18 (72)
 Lymph nodes 19 (76)
 Bone 6 (24)
 Kidney 4 (16)
 Other* 8 (32)

Number of metastatic sites—no. (%)
 1 5 (20)
 2 9 (36)
 3 5 (20)
 ≥4 5 (20)
 Unknown 1 (4)

Previous systemic cancer therapy—no. (%)
 Sunitinib 13 (52)
 Pazopanib 8 (32)
 Interferon + bevazucimab 1 (4)
 Sorafenib 1 (4)

Previous antiangiogenic regimens—no. (%)
 0 or unknown 6 (24)
 1 15 (60)
 >1 4 (16)
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Changes in natural killer (NK) cell populations

After 4 weeks of treatment, a shift within the NK cell 
population occurred. There was a significant decline in 
both the frequency and absolute number of cytotoxic 
(CD56dimCD16+) NK cells (Fig. 3a). In contrast, the immu-
noregulatory (CD56brightCD16−) NK cell population signifi-
cantly increased in frequency, though not in absolute num-
bers (Fig. 3b). Overall, the effect of combination treatment 
of cyclophosphamide and everolimus on the NK cell balance 
was opposite to the effect observed with T cells and resulted 
in a more immunoregulatory NK cell profile.

Circulating dendritic cell subsets

Several blood dendritic cell subsets were monitored, 
including myeloid dendritic cells (cDC1 and cDC2) and 
plasmacytoid dendritic cells (pDC). After 4 weeks of treat-
ment, a small, but non-significant, decrease in cDC1 cells 
was observed both in frequency and in absolute numbers 
(Fig. 3c). A significant increase in the frequency, but not 
in absolute numbers of cDC2 was observed (Fig. 3d). For 
pDC an increase was demonstrated in frequency as well as 
in absolute numbers (Fig. 3e). In addition to the frequency 
of circulating DC subsets, their expression of DC activation 
markers was monitored (data not shown). The activation sta-
tus of cDC1, cDC2 and pDC did not significantly change, 
as measured by the expression of CD40, CD86 and CD123 
(the latter only for pDC, data not shown).

Immunomonitoring and correlation with clinical outcome

Overall, combination therapy with low-dose oral cyclo-
phosphamide and everolimus did not improve the clinical 
outcome of patients when compared to everolimus mono-
therapy. However, as the combination of cyclophospha-
mide and everolimus resulted in a significant decrease 

Fig. 1   Percentage Progression-free survival and overall survival 
on treatment. a Median PFS is 4.5 months (range 0.5–21 months). 
At 4 months, 48% (n = 12) of 25 patients had progressive disease. b 
Median OS is 16 months (range 0.5–20 months). OS data are prelimi-

nary, as 11 patients (44%) were still alive at the end of the follow-up 
period (range 4–20 months). Data were analyzed using a Kaplan–
Meier curve

Table 2   Treatment-related toxicities, reported in > 10% of patients

*Hyponatremia, hypokalemia, hypercalcemia

Event Any grade N (%) Grade 1
N (%)

Grade 2
N (%)

Grade 3
N (%)

Constitutional
Fatigue 11 (44) 3 (12) 5 (20) 2 (8)
Anorexia 8 (32) 2 (8) 6 (24)
Malaise 6 (24) 2 (8) 2 (8) 2 (8)
Pain 4 (16) 2 (8) 2 (8)
Fever/chills/flu 3 (12) 3 (12)
Sweating/flushes 3 (12) 3 (12)
Dermatology
Rash 6 (24) 4 (16) 2 (8)
Pruritus 3 (12) 2 (8) 1 (4)
Gastrointestinal
Nausea 7 (28) 4 (16) 2 (8) 1 (4)
Mucositis 7 (28) 4 (16) 2 (8) 1 (4)
Stomatitis 6 (24) 4 (16) 1 (4) 1 (4)
Diarrhea 5 (20) 5 (20)
Constipation 3 (12) 1 (4) 2 (8)
Dysgeusia 3 (12) 2 (8) 1 (4)
Laboratory
Anemia 10 (40) 1 (4) 7 (28) 2 (8)
Hypercholester-

emia
8 (32) 2 (8) 6 (24)

Hyperglycaemia 6 (24) 1 (4) 4 (16) 1 (4)
Leukocytopenia 6 (24) 1 (4) 3 (12) 2 (8)
Hypertriglyceri-

demia
5 (20) 2 (8) 2 (8) 1 (4)

Thrombocytopenia 5 (20) 4 (16) 1 (4)
Electrolyte distur-

bance*
4 (16) 4 (16)

Respiratory
Pneumonitis 10 (40) 3 (12) 5 (20) 2 (8)
Dyspnea 7 (28) 5 (20) 2 (8)
Cough 6 (24) 5 (20) 1 (4)



793Cancer Immunology, Immunotherapy (2019) 68:787–798	

1 3

in Tregs and an increase in the E:S ratio, we explored 
whether changes in these parameters could be related 
to the outcome. For this purpose, possible correlations 
between survival (both PFS and OS) and the percent-
age of Tregs at baseline, the E:S ratio at baseline, the 
percentage of Tregs at week 4, the E:S ratio at week 4, 
the percentual change of Tregs from baseline to week 4 

and the percentual change in E:S ratio between baseline 
and week 4 were assessed (Fig. 4a–d, not all correlations 
shown). Altogether, a correlation between PFS or OS and 
either the frequency of Tregs, the E:S ratio or changes 
herein could not be demonstrated. However, it is notewor-
thy that in the three patients with the longest PFS (i.e., 
>1 year), both a decrease in the percentage of Tregs and 

Fig. 2   Change in lymphocyte 
subsets between baseline and 4 
weeks of treatment. a Percent-
age of T cells (CD3+) in total 
lymphocytes. b Percentage 
of T helper cells (CD4+) in 
total CD3+ cells. c Percent-
age of cytotoxic T cells 
(CD8+) in total CD3+ cells. 
d Percentage of regulatory T 
cells (CD4+CD25hiFoxP3hi) 
in total CD4+ cells. e Per-
centage of Ki-67+ (Ki-
67+CD4+CD25hiFoxP3hi) 
in regulatory T cells. f 
Percentage of CTLA4+ 
(CTLA4+CD4+CD25hiFoxP3hi) 
in regulatory T cells. 
g E:S ratio. Effec-
tor (CD8+):suppressor 
(CD4+CD25hiFoxP3hi) ratio. 
Data were analyzed using paired 
t tests. *p ≤ 0.05, **p < 0.01, 
***p < 0.001
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an increase in the E:S ratio between baseline and week 4 
was observed.

Discussion

Overall, the results from the present phase 2 study demon-
strate that, while the addition of low-dose oral cyclophos-
phamide to everolimus treatment in patients with clear cell 
mRCC effectively prevents the everolimus-induced increase 
in immunosuppressive Tregs, this does not result in clinical 
benefit. As the predefined goal of the study of improving 
the PFS rate at 4 months from 50 to 70% was not reached, 
the study was terminated at the preplanned interim analysis.

Several studies have aimed to lower the amount of Tregs 
in cancer patients by the administration of cyclophospha-
mide, with varying results [32, 33, 41, 42]. As there is con-
troversy on the optimal dose and schedule of cyclophos-
phamide when aiming for Treg depletion and no such data 
are available for the combination of cyclophosphamide and 
everolimus, we first performed a phase 1 study in which 
we set out to determine the optimal Treg-depleting dose 
of cyclophosphamide when combined with the standard 
dose of everolimus [37, 38]. In our phase 1 study, continu-
ous once daily oral dosing of 50 mg of cyclophosphamide 
proved to be most effective in lowering the percentage of 
Tregs, and therefore this dose was selected for the present 
phase 2 study. Of note, while we confirmed that once daily 

Fig. 3   Change in NK and 
DC cell populations between 
baseline and 4 weeks of treat-
ment. a Percentage of cytotoxic 
NK cells (CD56dimCD16+) 
in PBMC. b Percentage of 
immunoregulatory NK cells 
(CD56brightCD16−) in PBMC. 
C. Percentage of cDC1 
(BDCA3+CD14−CD11c+) 
in PBMC. d Percentage of 
cDC2 (BDCA1+CD19−CD14− 
CD11c+) in PBMC. 
e Percentage of pDC 
(CD11c−BDCA2+CD123+) in 
PBMC. Data were analyzed 
using paired t tests. *p ≤ 0.05, 
**p < 0.01, ***p < 0.001
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oral administration of 50 mg of cyclophosphamide in this 
phase 2 trial resulted in a reduction in circulating Treg lev-
els after 4 weeks of treatment, an increase in expression of 
the proliferation marker Ki-67 was observed in Tregs and 
this was accompanied by an upregulation of the expression 
of the inhibitory CTLA-4+ molecule on Tregs. In accord-
ance with these increased Ki-67 levels, a small rebound in 
Treg levels was observed after 8 weeks of treatment in the 
phase 1 part of our study [37, 38]; in the phase 2 part of the 
study these measurements were not done after 8 weeks. Our 
observations are in line with results of a study by Ge et al., 
demonstrating a similar rebound in circulating Treg levels 
after an initial decrease during the first 14 days of treat-
ment with 50 mg cyclophosphamide once daily in breast 
cancer patients. This was accompanied by an increase in 
the proliferative activity of Tregs with a maintained sup-
pressive capacity [33]. Of note, whereas Ge et al. reported a 
correlation between the temporary reduction in Treg levels 
and improved clinical outcome, our study showed no rela-
tion between a reduction in Tregs and the outcome. Clearly, 
the clinical impact of cyclophosphamide-induced effects on 
Tregs may not only differ per selected cyclophosphamide 

treatment schedule, but also per tumor type as well as any 
concomitant treatment such as everolimus in our study. Vari-
ous mechanisms have been implicated as causative factors 
for the Treg depletion that is observed, such as the mecha-
nisms mentioned earlier, but also low expression of alde-
hyde dehydrogenase 1 (ALDH1), inhibition of indoleamine 
2,3-dioxygenase (IDO), ATP depletion, CCR2 expression 
and effects on MDSC; however, it is unknown why the effect 
of cyclophosphamide on Tregs appears to be temporary 
[43–45].

In our study, the combination of everolimus and cyclo-
phosphamide did not affect the frequency of circulating 
CD4+ T cells and actually resulted in an increased frequency 
of CD8+ T cells with a concomitant increase in the E:S ratio. 
Though the E:S ratio has previously been reported to be 
significantly associated with improved survival in cancer 
patients, we did not find a correlation between E:S ratio and 
survival [40]. Of note, the association between E:S ratio and 
survival was mostly reported in studies performing analyses 
in (peri)tumoral tissues instead of peripheral blood [40, 46, 
47]. In our study, no serial tumor biopsies were performed 
precluding similar analyses.

Fig. 4   Correlation between survival and changes in Treg frequency 
and E:S ratio between baseline and 4 weeks of treatment. a. Cor-
relation between PFS (months) and relative percentual change in 
the percentage of Tregs between baseline and 4 weeks of treatment, 
Pearson r = 0.014 (p = 0.95). b Correlation between OS (months) and 
relative percentual change in the percentage of Tregs between base-
line and 4 weeks of treatment, Pearson r = − 0.004 (p = 0.99). c Cor-
relation between PFS (months) and relative percentual change of E:S 

ratio between baseline and 4 weeks of treatment, Pearson r = − 0.133 
(p = 0.564). d Correlation between OS (months) and relative percen-
tual change of E:S ratio between baseline and 4 weeks of treatment, 
Pearson r = − 0.011 (p = 0.963). Data were analyzed using Pearson 
correlation coefficient. Relative percentual change is the percentage 
of week 4 minus the percentage at baseline, divided by the percentage 
at baseline
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Overall, the balance between the monitored immune cell 
subsets in our study appeared to shift toward a more robust 
antitumor immune profile, as illustrated by the selective 
reduction in the percentage of Tregs and increase in effector 
CD8+ CTLs as well as blood DC subsets. This did, however, 
not translate into an enhanced clinical efficacy of combi-
nation treatment with everolimus and cyclophosphamide, 
which may reside in induced changes in the NK cell popu-
lation, as an increase in the CD56bright immunoregulatory 
NK cell population and a decrease in the CD56dim cytotoxic 
NK cell population were observed. The change in the bal-
ance between both NK cell populations can be attributed to 
cyclophosphamide, as an opposite effect (i.e., a decrease in 
immunoregulatory NK cells and an increase in cytotoxic 
NK cells) was observed in the phase 1 patients treated with 
everolimus monotherapy [31]. A possible explanation might 
be the preferential apoptosis of CD56dim cytotoxic NK cells, 
as postulated by Bauernhofer et al. [48].

It will be interesting to explore whether therapeutic 
approaches that can counteract this putative detrimental 
effect of cyclophosphamide on the NK cell population can 
improve clinical antitumor activity of the combination of 
everolimus and cyclophosphamide. For example, the TKI 
axitinib and the anti-epileptic drug valproic acid have been 
reported to in vitro increase expression of NKG2D ligands 
on tumor cells, thereby increasing their susceptibility to NK 
cell and γδ T cell recognition [49, 50]. Alternatively, very 
low doses of recombinant IL-2 and IFN-α could be consid-
ered, as these were reported to increase NK cell numbers 
in vivo, albeit that these consisted mainly of the CD56bright 
cell subset and they will probable increase Treg numbers as 
well [51]. Potential drawbacks for such triple combination 
treatment regimens are related to an increased risk of toxic-
ity. For example, studies combining a VEGF TKI with an 
mTOR inhibitor in mRCC were mostly terminated prema-
turely as a result of significant toxicity [52, 53].

As stated before, among others, the PD-1 checkpoint 
inhibitor nivolumab has replaced everolimus as the stand-
ard second-line therapy in mRCC patients. Future studies 
investigating whether nivolumab can efficiently counteract 
the immunosuppressive effects observed with everolimus 
monotherapy may be considered and could potentially result 
in more potent antitumor activity than either treatment alone.

In conclusion, results from the present phase 2 clinical 
study demonstrate that addition of low-dose metronomic 
cyclophosphamide to everolimus can effectively pre-
vent the everolimus-induced increase in Tregs in mRCC 
patients and in addition results in an increased frequency 
of CD8+ CTL, cDC2 and pDC. The Treg-depleting effect 
diminished over time (as demonstrated in the phase 1 
study [37, 38]), which may be related to the observed 
increase in Ki-67+ levels in Tregs and was accompanied 
by a minor increase in Treg CTLA4+ expression, a decline 

of cytotoxic NK cells and an increase of immunoregu-
latory NK cells. Overall, the immunomodulatory effects 
of the combination of metronomic cyclophosphamide 
and everolimus did not translate into an altered clinical 
outcome as measured by the percentage of patients pro-
gression free after 4 months of therapy. The comprehen-
sive immunomonitoring analysis performed in this study 
provides relevant insight for the rational design of future 
therapeutic approaches in mRCC and other malignancies 
such as neuroendocrine tumors, in which mTOR inhibitors 
are also used as anti-cancer therapeutics.
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