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Abstract
High-grade gliomas (HGG) exert systemic immunosuppression, which is of particular importance as immunotherapeutic 
strategies such as therapeutic vaccines are increasingly used to treat HGGs. In a first cohort of 61 HGG patients we evalu-
ated a panel of 30 hematological and 34 plasma biomarkers. Then, we investigated in a second cohort of 11 relapsed HGG 
patients receiving immunomodulation with metronomic cyclophosphamide upfront to a DC-based vaccine whether immune 
abnormalities persisted and whether they hampered induction of IFNγ+ T-cell responses. HGG patients from the first cohort 
showed increased numbers of leukocytes, neutrophils and MDSCs and in parallel reduced numbers of CD4+/CD8+ T-cells, 
plasmacytoid and conventional DC2s. MDSCs and T-cell alterations were more profound in WHO IV° glioma patients. 
Moreover, levels of MDSCs and epidermal growth factor were negatively associated with survival. Serum levels of IL-2, 
IL-4, IL-5 and IL-10 were altered in HGG patients, however, without any impact on clinical outcome. In the immunotherapy 
cohort, 6-month overall survival was 100%. Metronomic cyclophosphamide led to > 40% reduction of regulatory T cells 
(Treg). In parallel to Treg-depletion, MDSCs and DC subsets became indistinguishable from healthy controls, whereas T-lym-
phopenia persisted. Despite low T-cells, IFNγ-responses could be induced in 9/10 analyzed cases. Importantly, frequency 
of CD8+VLA-4+ T-cells with CNS-homing properties, but not of CD4+ VLA-4+ T-cells, increased during vaccination. Our 
study identifies several features of systemic immunosuppression in HGGs. Metronomic cyclophosphamide in combination 
with an active immunization alleviates the latter and the combined treatment allows induction of a high rate of anti-glioma 
immune responses.
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IP-10	� Interferon gamma-induced protein 10, 
CXCL10

pDCs	� Plasmacytoid dendritic cells
RANTES	� Regulated on activation, normal T cell 

expressed and secreted, CCL5
SSC	� Sideward scatter
TEMRA	� Effector memory T cells with CD45RA 

expression
TL	� Tumor lysate
Treg	� Regulatory T cells
VLA-4	� Very late antigen 4

Introduction

More than four decades ago, Brooks and colleagues reported 
about reduced lymphocyte function in patients with intrac-
ranial tumors [3]. The advent of cancer immunotherapies 
has renewed interest in high-grade glioma (HGG)-associ-
ated immune dysfunctions, as they could limit the success 
of immunotherapeutic interventions.

Inhibitory features of glioma cells can result in either 
systemic or local immunosuppression. Whereas the latter 
mainly impedes the effector phase of anticancer immunity, 
systemic immunosuppression represents a major hurdle 
against a successful priming of glioma-directed immune 
responses. On the systemic level, an altered composition of 
the leukocyte compartment with an increased neutrophil/
lymphocyte ratio [4] and increased frequencies of MDSCs 
in peripheral blood have been reported [5–7]. Several groups 
have described elevations of cytokines and growth factors 
[8–10]. Importantly, in murine glioma models it could be 
demonstrated that interference with immunosuppression 
like depletion or inhibition of regulatory T-cells (Treg) and 
MDSCs is associated with reduced gliomagenesis, increased 
antitumor immune responses and improved survival [11–13].

Priming of T-cell responses against glioma antigens is a 
prerequisite for efficacy of both therapeutic vaccinations as 
well as immune checkpoint inhibitors. Although spontane-
ous immune responses in non-vaccinated glioma patients 
do sporadically exist [14], the majority of patients can be 
considered immune naive. Clinical vaccination studies in 
glioma patients published so far have reported an induc-
tion of T-cell responses in 50.3% of cases (range 33–66%) 
[14–21], which is still far lower than vaccine response rates 
using viral antigens in conventional prophylactic vaccines. 
Depletion of Treg has been demonstrated to act synergisti-
cally with immunotherapy in several murine glioma models 
[22, 23]. Indeed, also in human studies of other cancer enti-
ties, e.g. in renal cell carcinoma [24], similar observations 
have been described. In the clinical situation, metronomic 
cyclophosphamide has proven to be a simple, inexpensive, 
and well-tolerated means to deplete Treg [25, 26].

In the present study, we first evaluated in a cohort of 
HGG patients a panel of soluble and cellular biomarkers in 
peripheral blood and their correlation with survival. Then 
we investigated in a second cohort of relapsed HGG patients, 
who received immunomodulation with Treg-depletion fol-
lowed by a DC-based therapeutic vaccine, whether these 
alterations in cellular immunity are persisting and whether 
they prevent induction of anti-glioma immune responses. 
Our data provide a clinical rationale for the concept of using 
immunomodulation upfront of a therapeutic vaccine to 
reverse distinct immunosuppressive features in HGG which 
paves the way for more efficacious immune respones.

Materials and methods

Patients

From April 2012 to March 2014 preoperative blood samples 
(PBMCs and plasma) from n = 79 patients who underwent 
surgery for a suspected HGG were collected in the depart-
ment of Neurosurgery at the University Hospital Würzburg, 
Germany. From these, n = 18 had to be excluded, because 
intra-surgical or histological findings revealed a different 
etiology (WHO grade I°–II° glioma, metastases, inflam-
matory lesions), so that n = 61 patients including two chil-
dren and three adolescents with a confirmed WHO III°–IV° 
HGG remained evaluable. Details of patient characteristics 
as well as diagnostic and therapeutic interventions are given 
in Table 1 and supplementary Fig. 1. All primary disease 
cases were included before any tumor treatment was initi-
ated; relapsed patients had received standard of care (sur-
gery, radiation, temozolomide) as primary treatment, but 
were off-therapy ≥ 4 weeks before inclusion. Due to rapid 
postoperative transfer of several patients back into referring 
centers, a post-surgery blood sample could only be obtained 
in 36 cases. Blood samples from 9 healthy adults (mean age 
37.2 ± 18.5 years, males/females 6/3) without any history 
of tumors, neurosurgery or immunmodulating medication 
served as a control.

A second cohort of n = 11 patients with relapsed HGGs 
(Table 1, bottom) was treated within the feasibility pilot 
phase of the HIT-HGG Rez Immunovac trial. Patients eligi-
ble for second resection received metronomic cyclophospha-
mide (1.5 mg/kg, max. 100 mg daily in two divided doses) 
from diagnosis until the day before the first vaccine. In 10 
patients, a total/subtotal tumor removal was possible, and 
in one patient only a partial resection could be achieved. 
After second resection and approx. 2–3 weeks after initiation 
of cyclophosphamide, patients underwent an unstimulated 
apheresis to collect at least 2 × 109 monocytes. Immunother-
apy consisted of four weekly intradermal DC vaccinations in 
imiquimod-prepared skin, followed by three monthly boost 
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vaccines with 1,500 µg tumor lysate (TL), and subsequent 
tumor lysate boosts every 3 months as long as material was 
available.

Vaccine generation

DCs and TL were prepared as previously described [27]. In 
brief, autologous tumor material was mechanically dissected 
using the GentleMACS device (Miltenyi Biotec, Bergisch-
Gladbach, Germany) and avitalized by six freeze–thaw 
cycles and 60 Gy irradiation. Monocytes were enriched from 
the apheresis product by elutriation and cultivated for 7 days 
in GM-CSF and IL-4 (1000 U/ml each). On day 7, imma-
ture DCs were counted, pulsed with tumor lysate (50 µg/106 
DCs) and matured for another 48 h with IL-1β (2000 U/ml) 
and TNFα (1000 U/ml). Culture bags, medium (CellGro®) 
and cytokines were purchased from CellGenix (Freiburg, 
Germany).

Flow cytometry

Full blood counts from all samples were obtained using an 
automated hematology counter (Advia 2120i, Siemens, Ger-
many). Flow cytometric assessment included the following 
markers: CD1c, CD3, CD4, CD8, CD11b, CD14, CD15, 
CD16, CD19, CD27, CD29, CD45, CD45RA, CD45RO, 
CD49d, CD56, CD83, CD86, CD303, HLA-DR, TCRγδ. 
All antibodies were obtained from BD (BD Biosciences/
Pharmingen, Heidelberg, Germany) except TCRγδ (Milteny-
iBiotec, Bergisch-Gladbach, Germany). Cells were stained 
and prepared using standard lyse/wash eight-color proce-
dures. For identification of FoxP3+ Treg subpopulations, 
the human regulatory T cell staining kit from ebioscience 
(Frankfurt, Germany) was used. 10,000 (for lymphocytes) 
or 100,000 (for DC- or MDSC-subpopulations) events were 
aquired on a FACSCanto II. Results were analyzed with 
FlowJo Software (version 9.6, TreeStar, Ashland, USA).

For analysis of MDSC-subpopulations, we concentrated 
on four previously described populations with a myeloid 
or monocytic phenotype: CD14+ HLA-DRneg [5, 28], 
CD33+CD14negHLA-DRneg [29], SSChighCD66b+CD125neg 
[30], CD66b+CD16highCD14neg [31]. For the latter two 
populations, sideward scatter (SSC) data were collected in 
linear mode to allow a better discrimination of granulocytic 
populations [30]. A total of 30 hematologic parameters were 
assessed.

Plasmacytoid dendritic cell culture

The frequency of plasmacytoid dendritic cells (pDCs) in 
peripheral blood was determined by flow cytometry. Vital, 
7-aminoactinomycinnegative (7-AADneg) pDCs were identified 
as the mean frequency of SSClowCD303+7-AADneg events 

from two independent tubes. PDCs with these character-
istics were assayed for their expression levels of CD80, 
CD83, CD86, chemokine receptor (CCR) 7, chemokine 
ligand (CXCL) 10, and PD-L1 (CD274) by flow cytometry 
as described above. For functional pDC-assays, we ficol-
lized PBMCs from 20 ml of heparinized blood and mag-
netically separated pDCs with blood dendritic cell antigen 
4 (BDCA-4) microbeads (Miltenyi Biotec, Bergisch-Glad-
bach, Germany). Enriched pDCs were plated in 96-well 
plates supplemented with CellGro medium (CellGenix, 
Freiburg, Germany), IL-3 10 ng/ml and imiquimod 5 µg/
ml (Sigma–Aldrich, Taufkirchen, Germany). After 48 h of 
culture, cells were harvested and analyzed for expression of 
the above mentioned markers.

Biomarker assessment

Fresh EDTA-plasma was collected within 24 h after sam-
pling and stored in two aliquots at − 80 °C until analysis. 
Plasma biomarkers were measured according to the manu-
facturer’s instructions on a MagPix device (Luminex, Oost-
erhout, The Netherlands) using the following kits: Human 
Magnetic 30-Plex Kit (LHC6003M, Lifetechnologies, 
Darmstadt, Germany) for G-/GM-CSF, IFNα/γ, IL-1β/-1RA, 
IL-2/-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL12p40/70, 
IL-13, IL-17, TNFα, Eotaxin, Interferon gamma-inducible 
protein 10 (IP-10), Monocyte Chemoattractant Protein 1, 
Monokine Induced by Gamma interferon, MIP-1α/β, (Regu-
lated on Activation, Normal T cell Expressed and Secreted 
(RANTES), Epidermal Growth Factor (EGF), Fibroblast 
growth factor basic, Hepatoblast growth factor, VEGF, 
HCCBP1MAG-58k for Osteopontin, Fas, FasL, APOMAG-
62k for apolipoprotein A1, and TGFBMAG-64k-01 for 
TGFβ (all from Millipore Merck, Schwalbach, Germany). 
Luminex assays included an internal calibration set, high 
and low validation samples and a 7-point curve for standard 
generation. From the 30-Plex Kit all parameters passed the 
internal validation with the exception of RANTES and IL-17 
(> 50% of values out of range); these two parameters were 
excluded from further analysis.

Immune monitoring

T-cell responses defined by specific IFNγ-secretion were 
measured using a stimulation-expansion-restimulation 
protocol [32]: PBMCs were isolated by Ficoll, stimulated 
with mature, tumor-lysate loaded autologous DCs at a 4:1 
(T:DC) ratio and expanded subsequently with IL-15 (5 ng/
ml) for 12–14 days. Medium and IL-15 was refreshed every 
second or third day. On days 7 and 14 PBMCs were res-
timulated with the same tumor-lysate loaded DCs. Negative 
control was stimulation with “empty” DCs (mature, autolo-
gous DCs without tumor-lysate loading). 6 h after the last 
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restimulation, T cells were analyzed for IFNγ-production by 
intracellular cytokine staining (patient 2–11). Frequencies 
of lysate-reactive IFNγ+ T-cells are given background cor-
rected, i.e. D %IFNγ+ DCTL−%IFNγ+ DCempty.

Statistical analysis

Biomarkers were analyzed either on the scale of measure-
ment (assuming additive effects, i.e. mean differences) or on 
the logarithmic scale (assuming multiplicative effects, i.e. 
geometric mean ratios). The decision was made by the Sha-
piro–Wilk test to determine which distribution was closer 
to normality: measured values (supports additive effects) or 
logarithmic values (supports multiplicative effects). Changes 
from pre- to postoperative measurements were analyzed by 
Student’s paired t test. Differences between independent 
groups were evaluated by one-way ANOVA. Relationships 
between lymphocyte subpopulations and biomarkers with 
PFS and OS were assessed by Cox regression. Dependencies 
between the biomarkers were described by Spearman’s cor-
relation coefficient. Since several clinical variables of HGGs 
might be associated with better outcome, we also computed 
the hazard ratios adjusted for a risk score counting one pen-
alty point for WHO IV°, adult age and relapse diagnosis. p 
values < 0.05 were considered statistically significant. 95% 
confidence intervals (CI) were provided for effect estimates. 
All calculations were carried out with the statistical software 
SPSS, version 23 (IBM Corp).

Results

White blood cell subpopulations in HGG patients

Leukocyte and neutrophil numbers were significantly 
increased in HGG patients; however, significance was only 
reached for WHO IV° patients (Fig. 1a). Since more WHO 
IV° patients received corticosteroids, we performed an 
univariate ANOVA including the parameters WHO grade 
and dexamethasone, which showed a significantly higher 
impact of dexamethasone (effect estimates for leukocytes: 
dexamethasone + 4189/µl (95% CI 1383–6995), p = 0.004, 
and WHO IV° + 3094/µl (95% CI − 360 to 6548), p = 0.078; 
effect estimates for neutrophils: dexamethasone + 4191/µl 
(95% CI 1660–6724), p = 0.002, and WHO IV° + 3349/µl 
(95% CI 232–6467), p = 0.036).

In contrast to neutrophils, total lymphocytes as well as 
T-cell counts were decreased in HGG patients (Fig. 1a), 
depending on histology (significant only in WHO IV°). 
Univariate ANOVA revealed no correlation between dexa-
methasone but between WHO IV° histology and CD3+ and 
CD8+ cell numbers (effect estimates for CD3+: for WHO 
IV° − 623/µl (95% CI − 962 to − 284), p = 0.001, and for 

dexamethasone − 55/µl (95% CI − 338 to 228), p = 0.695; 
effect estimates for CD8+: for GBM − 227/µl (95% CI 
− 397 to − 56), p = 0.011, and for dexamethasone − 26/µl 
(95% CI − 168 to 116), p = 0.716). As a consequence of the 
above mentioned data, the neutrophil/lymphocyte ratio was 
increased in WHO IV° patients (not shown).

Neither Treg cells (defined as CD3+CD4+25+CD127neg) 
nor any other T-cell subset (naive, central memory, effec-
tor memory, and TEMRA) showed changes in HGG patients 
compared to healthy controls (not shown).

In order to exclude that the heterogeneity of our cohort I 
impacted the results, we grouped patients with primary vs. 
relapsed disease and those with a putatively better prognosis 
(WHO III° and children) against adult WHO IV° cases. The 
interaction p-value showed no statistically significant inter-
action between these parameters in our cohort (supplemen-
tary Table 1). For CD3+ and CD4+ T cells we found a trend 
for interaction (p < 0.2), and a subsequent subgroup analysis 
indicated that T-lymphopenia might be more profound in 
WHO IV° adults than in WHO III° patients or children (sup-
plementary Table 1). This trend remains to be confirmed in 
larger cohorts powered for such comparison.

Monocytic and myeloid‑derived suppressor cells 
in GBM tissue and peripheral blood

Frequencies of HLA-DRlow/neg monocytes in HGG patients 
were increased, whereas the pDC and CD1c+ conventional 
dendritic cells type 2 (cDC2) subsets were significantly 
reduced in HGG patients (Fig. 1b). For the other analyzed 
MDSC phenotypes, no difference to healthy controls neither 
pre- nor post-operatively could be detected. Use of dexa-
methasone had no influence on HLA-DRlow/neg monocytes 
or pDC/cDC2 in univariate ANOVA.

Glioma-associated modulation of HLA-DR expression 
could also be confirmed by a significantly lower MFI for 
HLA-DR on patient’s monocytes compared to controls 
(Fig. 2a, left column). Surgical resection of the tumor mass 
had no immediate effect on HLA-DR expression levels, as an 
early postoperative control after a median of 6 days showed 
no improvement (Fig. 2a, middle column). Correlation of 
clinical outcome data with MDSC levels revealed that this 
cell population indeed had a detrimental effect on outcome as 
patients with HLA-DRlow/neg frequencies above the median 
had a 3.1-fold faster progression (95% CI 1.4–6.8, p < 0.006) 
and died 2.4-fold faster (95% CI 1.1–5.3, p = 0.028) than 
patients with lower HLA-DRlow/neg frequencies (Fig. 2b). 
This data remained constant after adjusting for risk factors: 
2.5-fold faster progression, (95% CI 1.1–5.7, p = 0.024), and 
1.9-fold faster death (95% CI 0.9–4.3, p = 0.113). Finally, we 
wanted to investigate whether suppressive molecules such as 
Arginase II, CD39 or CD33 play a role in the microenviron-
ment of HGGs. To this end, we analyzed an independent 
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cohort of n = 22 confirmed primary glioblastoma samples 
from adult patients obtained from our neuropathological 
tumor bank. In contrast to CD68+, CD39 was found only on 
tumor vasculature, whereas Arginase II and CD33 expres-
sion was virtually absent (supplementary Fig. 2).

Monocytes from the 11 HGG patients in our cohort II 
showed a significant upregulation of HLA-DR upon mat-
uration with TNFα/IL-1β (Fig. 2c), which was not dif-
ferent from that of DCs generated from healthy donor’s 
monocytes, demonstrating that under GMP-manufacturing 
conditions monocytes from HGG-patients are suitable 
DC-precursors.

Functionality of peripheral plasmacytoid DC 
subpopulations in GBM patients

As mentioned above, pDCs were virtually absent in the 
majority of HGG patients (Figs. 1b, 3a). Tumor removal 
had no immediate impact on the number of pDCs (Fig. 1a, 
middle column). Similar observations were made for cDC2 
(Figs. 1b, 3b); however, cDC2 increased postoperatively to 
some extent so that the difference to healthy controls was not 
significant anymore (Fig. 3b). Expression of various activa-
tion markers on HGG-cDC2 was not different from healthy 
controls (supplementary Fig. 3, lower graphs). In contrast, 
pDCs from HGG patients tended to express higher marker 

Fig. 1   Leukocytes and different 
leukocyte subsets in peripheral 
blood of HGG patients (n = 61) 
and healthy controls (n = 9). a 
Leukocytes, neutrophils and 
lymphocytes were measured 
using an automated hematology 
counter or by flow cytometry. 
b DC and lymphocyte subsets 
were analyzed by standard 
flow cytometry. Inter-group 
differences were evaluated by 
one-way ANOVA
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levels than pDCs from healthy individuals. This reached sta-
tistical significance for CD80 before and after surgery, for 
IP-10 before surgery and for CD83 and PD-L1 after surgery 
(supplementary Fig. 3, upper graphs).

In order to examine whether the remaining pDCs in HGG 
patients are functional, we stimulated them for 48 h in vitro 
with IL-3 and imiquimod. Costimulatory molecules such as 
CD80 and CD86, as well as chemokine receptors (CCR7, 
CXCL10), and inducible markers (CD83, PD-L1) were une-
quivocally and significantly upregulated (Fig. 3c), indicating 
that remaining pDCs in HGG patients are functionally intact.

Biomarker assessment in HGG patients

Of the 34 analyzed potential biomarkers, only 4 (IL-2, 
IL-4, IL-5, IL-10) proved to be elevated in HGG patients 
(Fig. 4a). IL-4 and IL-5 were significantly lower in WHO 
IV° than in WHO III° patients (2.14-fold and 2.43-fold 

lower, p < 0.001 for IL-4 and IL-5, respectively). Correlat-
ing biomarker levels with clinical outcome parameters we 
found that none of the above markers showed an association 
with survival. Instead, a significant impact of EGF on OS 
could be described: a doubling of EGF serum levels was 
associated with a 1.3-fold increased risk for death (95% CI 
1.0–1.6, p = 0.021, Fig. 4b). This data remained constant 
after adjusting the hazard ratio for clinical risk factors: 1.23-
fold incrased risk for death (95% CI 1.00–1.52, p = 0.049) 
for a doubling in EGF serum levels.

Clinical characteristics of vaccinated HGG patients 
and adverse events

The second cohort of HGG patients consisted of 11 patients 
with relapsed tumors who were eligible for second resection 
(Table 1, bottom). These patients received immunotherapy 
(vaccination with autologous, tumor-lysate pulsed DCs after 

Fig. 2   HLA-DR expression on monocytes of HGG patients. a HLA-
DR on SSCintermedCD14+ monocytes before and after glioma resec-
tion in comparison to healthy controls. Right panels show representa-
tive dot plots. b Kaplan–Meier plot of overall survival in subgroups 
defined by median split of the frequency of MDSCs in peripheral 

blood. c HLA-DR on monocytes from HGG patients prepared in vitro 
for vaccination purposes, in comparison to matured DCs from healthy 
individuals. Monocytes were analyzed at baseline (after apheresis) 
and after 9 days maturation with IL-4, GM-CSF, TNFα, and IL-1β
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Fig. 3   Phenotype of plasmacytoid and cDC2 in peripheral blood of 
HGG patients before (n = 31) and after neurosurgery (n = 15) com-
pared to healthy controls (n = 9). a pDCs were identified as SSClow/
CD303+, b cDC2 as SSClow/CD1c+. c pDCs were enriched via 

BDCA-4 microbeads and stimulated in the presence of imiquimod 
and IL-3. After 48 h, cells were harvested and analyzed for upregula-
tion of maturation markers by flow cytometry

Fig. 4   Serum biomarkers in peripheral blood of HGG patients com-
pared to healthy controls. a Biomarkers with a significant difference 
between HGG patients and healthy controls. Inter-group differences 

were evaluated by one-way ANOVA. b Kaplan–Meier plot of overall 
survival in subgroups defined by EGF serum levels split into tertiles
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depletion of Treg with metronomic cyclophosphamide) as 
the sole form of relapse treatment until further progres-
sion. The four weekly vaccinations, followed by monthly 
boost vaccines with tumor lysate, were well tolerated. All 
patients experienced mild and transient swelling and itching 
at the local injection site. Two patients reported headache 
or deterioration of their neurological symptoms 6–8 days 
after the vaccine. In both cases symptoms were transient and 
responded well to corticosteroids. Interestingly, neuroimag-
ing revealed that occurrence of these two adverse events 
was associated with further local progression and signifi-
cant edema at the tumor site. The size of the vaccination 
cohort was not powered to demonstrate efficacy; however, 
a 6-month OS in the immunotherapy group of 100% and an 
OS of 14.9 ± 13.4 months are encouraging (Table 1). Impor-
tantly, under immunotherapy, increased frequencies of HLA-
DRneg monocytes (Fig. 5a, lower graph) as well as reduced 
pDCs and cDC2s (not shown) were no longer detectable, 
whereas T cells were still lower than in the healthy control 
group (Fig. 5a, upper graph).

Treg under metronomic cyclophosphamide

Metronomic cyclophosphamide was generally well tolerated. 
In two patients, a dose reduction was necessary due to a drop 
of leukocytes < 2000/µl. Under this metronomic schedule, 
absolute numbers of Treg could be reduced by 48% (Fig. 5d), 
whereas total CD4 counts remained constant. Approx. 
4 weeks after cessation of cyclophosphamide, a rebound of 
Treg could be observed (Fig. 5d).

Immune responses and T‑cell subsets 
under vaccination

Despite persisting T-lymphopenia also in vaccinated patients 
(Fig. 5a, upper graph), measurable IFNγ-responses were 
detected in 9 out of 10 analyzed patients, which seemed to 
peak between the 2nd DC- and 1st TL-vaccine (Fig. 5b). 
2/10 patients showed no or only a minor response (≤ 0.1% 
CD3+CD8+IFNγ+), 6 patients displayed intermediate 
responses (0.2–3%), and 2 patients had high-frequency 
responses (3–9%, Fig. 5c). A possible cytotoxic effect of 
these tumor-lysate reactive T-cells on glioma cells presumes 
that T-cells are endowed with key entry molecules into the 
CNS. Very late antigen 4 (VLA-4), a α4β1 integrin dimer 
(CD49d/CD29) had been described as one of the prime fac-
tors for CNS homing [33], and in fact, normal T-cells in CSF 
are all VLA-4+ (Fig. 5e). Looking at VLA-4 expression on 
CD4+ and CD8+ T-cells in different age groups we found 
that VLA-4 is dynamically upregulated during childhood 
and adolescence (Fig. 5e), most likely due to increasing con-
tact with environmental antigens and formation of memory 
T-cell responses. Next, we analyzed whether vaccination 

with glioma-lysate pulsed DCs had any impact on VLA-4 
expression of peripheral T cells. Indeed, we found a sig-
nificant increase of VLA-4 expression on CD8+ but not on 
CD4+ T-cells during the vaccination course (Fig. 5e).

Discussion

Glioma cells use many different pathways to circumvent 
detection and eradication by the immune system as recently 
reviewed by Nduom et al. [34]. Systemic immunosuppres-
sion may hinder the development of anti-tumor immune 
responses, as priming of glioma-specific cytotoxic T-cells 
has to occur outside the CNS in secondary lymphatic organs. 
In fact, none of the 11 patients in our immunotherapy group 
showed a substantial immune response against tumor lysate 
before initiation of the vaccination schedule, underlining that 
endogenous immune responses against solid tumors are rare 
events [35]. Our data confirmed previous findings in glioma 
patients: a profound T-lymphopenia and a general deficit in 
lymphocyte function [3, 36–38], the increased presence of 
monocytic MDSCs [5], dysregulation of serum cytokines 
[39], as well as an elevated neutrophil-to-lymphocyte ratio 
[40]. Only the increase in neutrophils was connected to the 
use of corticosteroids; all other changes in cellular subsets 
were connected to HGG histology (WHO III° vs. IV°), 
suggesting a link between immunosuppression and glioma 
biology. Noteworthy, glioma-associated lymphopenia was 
already detectable at primary diagnosis with a trend for 
lower lymphocyte values in adult patients with primary 
WHO IV° tumors, indicating that subsequent radiochemo-
therapy cannot be the sole reason for this phenomenon.

Our data underline the clinical importance of the myeloid/
monocyte compartment in HGGs: higher numbers of mono-
cytic MDSCs and EGF serum levels above the median were 
negatively associated with overall and for MDSCs also with 
progression-free survival. As monocytes are a prime source 
of EGF [41], both clinical risk factors can be attributed to 
the MDSC pathway. A direct glioma–MDSC interaction has 
been postulated experimentally as glioma cell supernatant as 
well as a direct cell–cell contact between glioma cells and 
monocytes induce a MDSC phenotype [7], which is also 
functionally suppressive by inhibiting T-cell proliferation 
[5, 42]. However, conflicting data exist about the presence 
of MDSCs in the glioma microenvironment: Prosniak et al. 
have described that MDSC infiltration is present in all sam-
ples and increases with tumor grade [43], whereas Gustafson 
et al. could find MDSCs only in 48% of GBM samples [5]. In 
an independent set of GBMs from our tumor bank, we were 
unable to detect expression of suppressor molecules such as 
Arginase II or CD39 in glioma tissue. In contrast, the iso-
form Arginase I has been repeatedly detected in glioma-infil-
trating myeloid cells [44]. Therefore, for a comprehensive 
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and differentiated view on MDSCs, macrophages and other 
infiltrating innate cells in the glioblastoma microenviron-
ment a broad panel of markers has to be analyzed.

Depletion of pDC/cDC2 represents a well-known 
immune escape mechanism in several cancer entities such 
as melanoma and breast cancer. Here, we describe this phe-
nomenon also in HGGs. Both types of dendritic cells play 
unique roles in immunity and especially cDC2 are capable of 
efficient cross-priming of CTL responses from naive CD8+ 
T cells [45]. In contrast to monocytes, pDC and cDC2 were 
only decreased in numbers. They expressed high levels of 
costimulatory molecules and pDCs adequately upregulated 
activation markers upon in vitro stimulation. Regarding 
the altered cytokine levels observed in our patients, a very 
similar cytokine pattern with elevated levels of IL-2, IL-4, 
and IL-13 was found in serum of HGG patients with high 
frequencies of MDSCs [46]. Elevated IL-2 levels could 
be derived from activated peripheral blood T-cells, as the 
described T-cell exhaustion with deficient IL-2 production 
seems to be restricted to tumor infiltrating T-cells [47]. How-
ever, since neither DC subsets nor cytokine levels showed an 
association with OS or PFS, the clinical relevance of these 
two latter findings has to be questioned.

In view of the multilayered complexity of immunosup-
pression in HGGs, an intervention to interrupt this network 
seems highly desirable. Although some groups have reported 
about MDSC reduction by inhibition of COX-2 [11] or all-
trans retinoic acid [29], far more data exist on the synergis-
tic effect of Treg depletion and therapeutic cancer vaccines 
[48, 49]. Cyclophosphamide has been known for almost 
30 years to mediate immunity-driven cancer regression [22] 
and in a metronomic schedule it reduces the frequency of 
Treg [26]. Beyond numerical depletion, cyclophosphamide 
also induces apoptosis and profound functional inhibition 
in remaining Treg [50]. Furthermore, it can restore per-
turbed DC homeostasis [51] and positively influence the 
host microenvironment [13], resulting in infiltration with 

non-suppressive myeloid cells [52]. In renal cell carci-
noma patients, a single dose of cyclophosphamide prevac-
cine reduced Treg by 20%, inhibited Treg-proliferation, and 
resulted in prolonged survival in those patients displaying a 
positive immune response [24]. In our HGG cohort, metro-
nomic cyclophosphamide was well tolerated and not associ-
ated with myelosuppression. We observed a > 40% reduction 
in Treg numbers in the peripheral blood, which, after with-
drawl, lasted for several weeks followed by a rebound. At 
the time of vaccination and throughout follow-up, frequen-
cies of monocytic MDSCs and pDC/cDC2 had normalized 
and were not different from those of healthy controls any-
more. Most importantly, using this regimen we were able to 
detect measurable IFNγ-T-cell responses in 90% of analyzed 
patients, which is higher than the reported average of 50.3% 
(33–66%) immune responders in other HGG-vaccination 
trials [14–21]. IFNγ-responses seemed to diminish under 
lysate-boosts, which could indicate that lysate given with-
out adjuvant DCs is not able to maintain induced immune 
responses or that tolerizing events appeared. The relatively 
young age of our immunotherapy cohort also might have 
contributed to the high frequency of immune responses, 
as the latter might correlate with residual thymic function 
[53]. Interestingly, the two strong responders (3–9% IFNγ+ 
T cells) presumably had a high antigen load in situ (pat. 3 
proved to have an early progression under vaccination, pat. 
10 a substantial residual tumor after incomplete resection), 
and both experienced neurological side effects 6–8 days after 
the vaccine (headache in 2/2, deterioration of hemiparesis in 
1/2, which responded rapidly to corticosteroids). The pilot 
phase of our HIT-HGG Rez Immunovac trial was not pow-
ered for efficacy analysis; however, a 6-month OS of 100% is 
encouraging, considering that these relapsed GBM patients 
received only surgical resection and immunotherapy. Clini-
cal data clearly await confirmation in the running trial.

A prerequisite for the proposed mechanism of action of 
an antiglioma vaccine is the induction of T-cells endowed 
with CNS-homing receptors such as α4β1-integrin (VLA-
4). Experimental evidence from murine models has shown 
that VLA-4 is upregulated on T cells upon antigen-specific 
activation by DCs [54], but the site of DC injection and 
regional lymph node localization seem to play important 
roles in mice as well [55]. The age-dependent augmenta-
tion in VLA-4 expression on pediatric T cells confirms that 
also in humans an increasing antigen-experience is paral-
leled by upregulation of this integrin. Importantly, we can 
demonstrate that the intradermal application of tumor-lysate 
loaded DCs in the upper arm of glioma patients results in 
a significant upregulation of VLA-4 on CD8+ T cells. It is 
an interesting anecdotal observation that IL-4, which was 
elevated in all HGG patients, inhibits VLA-4 expression 
on CD4+ T cells [56]. Therefore, effects of CD4+ T cells 
might be restricted to T-cell help in lymphoid tissues in our 

Fig. 5   Clinical and immunological data of 11 relapsed HGG patients 
receiving Treg-depletion followed by a therapeutic vaccine. a T-lym-
phopenia (upper graph) and frequency of monocytic MDSCs (lower 
panel) at the beginning and after 4 vaccines compared to healthy 
controls. b Summary of IFNγ+ tumor-specific T cells before (DC-
Vac1) and during vaccination. The gray scale corresponds to areas of 
weak, intermediate and strong responders. c Representative examples 
of weak, intermediate and strong responders. Cells were gated on 
SSClowCD3+CD8+. d Time course of absolute CD4+ T cells (in red) 
and CD4+CD127−CD25+ Treg cells (in blue) during and after metro-
nomic cyclophosphamide. Note different scaling of the right and left 
y axis. Data are shown as mean values ± SEM. e VLA-4 expression 
on CD4+ and CD8+ T cells during childhood and adolescence. Col-
umn bars show mean ± SEM values; zebra plots in the lower panels 
are representative examples of VLA-4 expression on CD4+ and CD8+ 
T cells of the respective age group as well as in CSF. The upper right 
line graphs display development of VLA-expression on CD4+ and 
CD8+ T cells before (DC-Vac1) and after (TL-Vac1) vaccination

◂
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patients. In summary, these data strengthen the suitability of 
our approach to de novo induce tumor-specific T-cells with 
CNS homing properties.

One limitation of our study is that we could not precisely 
determine the time point when the normalization of MDSCs 
and pDC/cDC2 subsets occurred. Tumor surgery alone had 
no immediate effect on these parameters as one early follow-
up timepoint in cohort I 1 week after surgery revealed. Only 
three patients from cohort I directly proceeded to immuno-
therapy. All other patients have been referred to our center 
for DC vaccination and we could not get samples from the 
time before metronomic cyclophosphamide started. There-
fore, a closer look at the timely association between immu-
nosuppressive features and diagnosis, surgery, initiation of 
Treg-depletion and vaccination is one of the tasks for HIT-
HGG Rez Immunovac trial.

In conclusion, our comprehensive analysis of leukocyte 
subsets and serum biomarkers in peripheral blood of HGG 
patients revealed several distinct mechanisms of systemic 
immunosuppression, underlining the clinical relevance of 
monocytic MDSCs in HGGs. In relapsed HGG patients, a 
DC-based vaccine preceded by one course of metronomic 
cyclophosphamide not only reduced Tregs but also led 
to a normalization of monocytic MDSC as well as pDC/
cDC2 subsets and allowed induction of tumor-specific 
CD8+VLA-4+ T cells in > 90% of patients. Our approach 
may, therefore, represent a first step to reverse glioma-asso-
ciated immunosuppression, thereby enhancing efficacy of 
therapeutic vaccines.
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