Skip to main content

Advertisement

Log in

A polymorphism in the promoter region of PD-L1 serves as a binding-site for SP1 and is associated with PD-L1 overexpression and increased occurrence of gastric cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Letter to the Editors to this article was published on 24 May 2017

Abstract

PD-L1 is a member of the B7 family co-inhibitory molecules and plays a critical role in tumor immune escape. In this study, we found a polymorphism rs10815225 in the PD-L1 promoter region was significantly associated with the occurrence of gastric cancer. The GG homozygous frequency was higher in the cancer patients than that in the precancerous lesions, which was higher than that in the health controls. This polymorphism locates in the binding-site of Sp1 transcription factor (SP1). The expression level of PD-L1 mRNA in the GG homozygous cancer patients was apparently higher than that in the GC heterozygotes. Luciferase reporter results showed that SP1 bonded to rs10815225 G-allelic PD-L1 promoter instead of C-allelic. Upregulation and knockdown of SP1 resulted in elevation and attenuation of PD-L1 in SGC-7901 cells, respectively. The chromatin immunoprecipitation results further confirmed the binding of SP1 to the promoter of PD-L1. Additionally, rs10815225 was found to be in disequilibrium with a functional polymorphism rs4143815 in the PD-L1 3′-UTR, and the haplotypes of these two polymorphisms were also markedly related to gastric cancer risk. These results revealed a novel mechanism underlying genetic polymorphisms influencing PD-L1 expression modify gastric cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

CI:

Confidence interval

Ct:

Threshold cycle

HWE:

Hardy–Weinberg equilibrium

MAF:

Minor allele frequency

OR:

Odds ratio

qPCR:

Quantitative PCR

SP1:

Sp1 transcription factor

STR:

Short tandem repeat

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. doi:10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132. doi:10.3322/caac.21338

    Article  PubMed  Google Scholar 

  3. Wesolowski R, Lee C, Kim R (2009) Is there a role for second-line chemotherapy in advanced gastric cancer? Lancet Oncol 10:903–912. doi:10.1016/S1470-2045(09)70136-6

    Article  PubMed  Google Scholar 

  4. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477. doi:10.1038/nri2326

    Article  CAS  PubMed  Google Scholar 

  5. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. doi:10.1038/nm730

    Article  CAS  PubMed  Google Scholar 

  6. Cao Y, Zhang L, Ritprajak P, Tsushima F, Youngnak-Piboonratanakit P, Kamimura Y, Hashiguchi M, Azuma M (2011) Immunoregulatory molecule B7-H1 (CD274) contributes to skin carcinogenesis. Cancer Res 71:4737–4741. doi:10.1158/0008-5472.CAN-11-0527

    Article  CAS  PubMed  Google Scholar 

  7. Cao Y, Zhang L, Kamimura Y, Ritprajak P, Hashiguchi M, Hirose S, Azuma M (2011) B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res 71:1235–1243. doi:10.1158/0008-5472.CAN-10-2217

    Article  CAS  PubMed  Google Scholar 

  8. Seliger B, Marincola FM, Ferrone S, Abken H (2008) The complex role of B7 molecules in tumor immunology. Trends Mol Med 14:550–559. doi:10.1016/j.molmed.2008.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. doi:10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562. doi:10.1038/nature13904

    Article  CAS  PubMed  Google Scholar 

  11. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi:10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24. doi:10.1016/j.acthis.2006.01.003

    Article  PubMed  Google Scholar 

  13. Mao Y, Sun J, Wang WP, Zhang XG, Hua D (2013) Clinical significance of costimulatory molecule B7-H3 expression on CD3(+) T cells in colorectal carcinoma. Chin Med J (Engl) 126:3035–3038

    CAS  Google Scholar 

  14. Wang W, Sun J, Li F et al (2012) A frequent somatic mutation in CD274 3′-UTR leads to protein over-expression in gastric cancer by disrupting miR-570 binding. Hum Mutat 33:480–484. doi:10.1002/humu.22014

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Li F, Mao Y et al (2013) A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet 132:641–648. doi:10.1007/s00439-013-1275-6

    Article  CAS  PubMed  Google Scholar 

  16. Kataoka K, Shiraishi Y, Takeda Y et al (2016) Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534:402–406. doi:10.1038/nature18294

    Article  CAS  PubMed  Google Scholar 

  17. Tang R, Qi Q, Wu R et al (2015) The polymorphic terminal-loop of pre-miR-1307 binding with MBNL1 contributes to colorectal carcinogenesis via interference with Dicer1 recruitment. Carcinogenesis 36:867–875. doi:10.1093/carcin/bgv066

    Article  CAS  PubMed  Google Scholar 

  18. Lee SJ, Jang BC, Lee SW et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580:755–762. doi:10.1016/j.febslet.2005.12.093

    Article  CAS  PubMed  Google Scholar 

  19. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790. doi:10.1084/jem.20131916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Carlsson R, Comabella M et al (2014) FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 20:272–282. doi:10.1038/nm.3485

    Article  CAS  PubMed  Google Scholar 

  21. Marzec M, Zhang Q, Goradia A et al (2008) Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA 105:20852–20857. doi:10.1073/pnas.0810958105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kesh K, Subramanian L, Ghosh N, Gupta V, Gupta A, Bhattacharya S, Mahapatra NR, Swarnakar S (2015) Association of MMP7 −181A–> G promoter polymorphism with gastric cancer risk: influence of nicotine in differential allele-specific transcription via increased phosphorylation of cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB). J Biol Chem 290:14391–14406. doi:10.1074/jbc.M114.630129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li C, Tong W, Liu B, Zhang A, Li F (2014) The −1082A >G polymorphism in promoter region of interleukin-10 and risk of digestive cancer: a meta-analysis. Sci Rep 4:5335. doi:10.1038/srep05335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang DS, Wang Z, He XJ et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51:969–976. doi:10.1016/j.ejca.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dey S, Stalin S, Gupta A, Saha D, Kesh K, Swarnakar S (2012) Matrix metalloproteinase3 gene promoter polymorphisms and their haplotypes are associated with gastric cancer risk in eastern Indian population. Mol Carcinog 51(Suppl 1):E42–E53. doi:10.1002/mc.21837

    Article  CAS  PubMed  Google Scholar 

  26. Kim DH, Park SE, Kim M et al (2011) A functional single nucleotide polymorphism at the promoter region of cyclin A2 is associated with increased risk of colon, liver, and lung cancers. Cancer 117:4080–4091. doi:10.1002/cncr.25930

    Article  CAS  PubMed  Google Scholar 

  27. Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282:224–258. doi:10.1111/febs.13148

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9:6371–6380

    CAS  PubMed  Google Scholar 

  29. Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, Xie K (2004) Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res 10:4109–4117. doi:10.1158/1078-0432.CCR-03-0628

    Article  CAS  PubMed  Google Scholar 

  30. Qiu T, Zhou X, Wang J, Du Y, Xu J, Huang Z, Zhu W, Shu Y, Liu P (2014) MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Lett 588:1168–1177. doi:10.1016/j.febslet.2014.02.054

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Guan X, Zhang J, Jia Z, Wei D, Li Q, Yao J, Xie K (2008) Targeted inhibition of Sp1-mediated transcription for antiangiogenic therapy of metastatic human gastric cancer in orthotopic nude mouse models. Int J Oncol 33:161–167

    CAS  PubMed  Google Scholar 

  32. Vizcaino C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124. doi:10.1016/j.pharmthera.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  33. Gong AY, Zhou R, Hu G et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol 182:1325–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369. doi:10.1038/70932

    Article  CAS  PubMed  Google Scholar 

  35. Gong AY, Zhou R, Hu G et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J. Immunol 182:1325–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kondo A, Yamashita T, Tamura H et al (2010) Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood 116:1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88. doi:10.1038/nm1517

    Article  CAS  PubMed  Google Scholar 

  38. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325:1127–1131

    Article  CAS  PubMed  Google Scholar 

  39. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735–6740

    CAS  PubMed  Google Scholar 

  40. Mayne ST, Navarro SA (2002) Diet, obesity and reflux in the etiology of adenocarcinomas of the esophagus and gastric cardia in humans. J Nutr 132:3467S–3470S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81270031, 81272737, and 81372375), Science and Technology Special Project of Clinical Medicine in Jiangsu Province (BL2014046), Science and Technology Project in Suzhou (SYS201524), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Peng Wang or Wei-Chang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Li-Hua Tao and Xin-Ru Zhou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, LH., Zhou, XR., Li, FC. et al. A polymorphism in the promoter region of PD-L1 serves as a binding-site for SP1 and is associated with PD-L1 overexpression and increased occurrence of gastric cancer. Cancer Immunol Immunother 66, 309–318 (2017). https://doi.org/10.1007/s00262-016-1936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1936-0

Keywords

Navigation