Skip to main content

Advertisement

Log in

Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies?

  • Symposium-in-writing paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Several age-associated changes in natural killer (NK) cell phenotype have been reported that contribute to the defective NK cell response observed in elderly patients. A remodelling of the NK cell compartment occurs in the elderly with a reduction in the output of immature CD56bright cells and an accumulation of highly differentiated CD56dim NK cells. Acute myeloid leukaemia (AML) is generally a disease of older adults. NK cells in AML patients show diminished expression of several activating receptors that contribute to impaired NK cell function and, in consequence, to AML blast escape from NK cell immunosurveillance. In AML patients, phenotypic changes in NK cells have been correlated with disease progression and survival. NK cell-based immunotherapy has emerged as a possibility for the treatment of AML patients. The understanding of age-associated alterations in NK cells is therefore necessary to define adequate therapeutic strategies in older AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukaemia

AML-NK:

Acute myeloid leukaemia patient NK cells

BiKEs:

Bispecific killer engagers

CAR:

Chimeric antigen receptor

CMV:

Cytomegalovirus

DNAM-1:

DNAX accessory molecule-1

HLA:

Human leucocyte antigen

IL:

Interleukin

ILCs:

Innate lymphoid cells

IFN:

Interferon

KIRs:

Killer cell immunoglobulin-like receptors

LAK:

Lymphokine-activated killer

LILRs:

Leucocyte immunoglobulin-like receptors

MHC:

Major histocompatibility complex

MICA:

MHC class I-related protein A

MICB:

MHC class I-related protein B

NCRs:

Natural cytotoxicity receptors

NEACT:

Non-engrafting alloreactive cellular therapy

NK:

Natural killer

NKG2D:

NK group 2, member D

PBMCs:

Peripheral blood mononuclear cells

TNF:

Tumour necrosis factor

TriKEs:

Trispecific killer engagers

ULBP:

UL-16 binding protein

References

  1. Algarra I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53:904–910

    Article  CAS  PubMed  Google Scholar 

  2. Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro AS, Falcao RR, Abdelhay E, Bouzas LF, Thuler LC, Ornellas MH, Diamond HR (2011) Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol 72:319–329

    Article  CAS  PubMed  Google Scholar 

  3. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  CAS  PubMed  Google Scholar 

  4. Bachanova V, Miller JS (2014) NK cells in therapy of cancer. Crit Rev Oncog 19:133–141

    Article  PubMed  PubMed Central  Google Scholar 

  5. Balducci L, Yates J (2000) General guidelines for the management of older patients with cancer. Oncology (Williston Park) 14:221–227

    CAS  Google Scholar 

  6. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34:253–265

    Article  CAS  PubMed  Google Scholar 

  7. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Braciak TA, Wildenhain S, Roskopf CC, Schubert IA, Fey GH, Jacob U, Hopfner KP, Oduncu FS (2013) NK cells from an AML patient have recovered in remission and reached comparable cytolytic activity to that of a healthy monozygotic twin mediated by the single-chain triplebody SPM-2. J Transl Med 11:289

    Article  PubMed  PubMed Central  Google Scholar 

  9. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Camous X, Pera A, Solana R, Larbi A (2012) NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol 2012:195956

    Article  PubMed  PubMed Central  Google Scholar 

  11. Campos C, Pera A, Lopez-Fernandez I, Alonso C, Tarazona R, Solana R (2014) Proinflammatory status influences NK cells subsets in the elderly. Immunol Lett 162:298–302

    Article  CAS  PubMed  Google Scholar 

  12. Campos C, Pera A, Sanchez-Correa B, Alonso C, Lopez-Fernandez I, Morgado S, Tarazona R, Solana R (2014) Effect of age and CMV on NK cell subpopulations. Exp Gerontol 54:130–137

    Article  CAS  PubMed  Google Scholar 

  13. Chidrawar SM, Khan N, Chan YL, Nayak L, Moss PA (2006) Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  14. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, Gastaut JA, Pende D, Olive D, Moretta A (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99:3661–3667

    Article  CAS  PubMed  Google Scholar 

  15. Curti A, Ruggeri L, D’Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, Paolini S, Fruet F, Isidori A, Parisi S, Bandini G, Baccarani M, Velardi A, Lemoli RM (2011) Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118:3273–3279

    Article  CAS  PubMed  Google Scholar 

  16. de Andrade LF, Smyth MJ, Martinet L (2014) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92:237–244

    Article  PubMed  Google Scholar 

  17. Derhovanessian E, Solana R, Larbi A, Pawelec G (2008) Immunity, ageing and cancer. Immun Ageing 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Lorenzo G, Balistreri CR, Candore G, Cigna D, Colombo A, Romano GC, Colucci AT, Gervasi F, Listi F, Potestio M, Caruso C (1999) Granulocyte and natural killer activity in the elderly. Mech Ageing Dev 108:25–38

    Article  PubMed  Google Scholar 

  19. Erba HP (2015) Finding the optimal combination therapy for the treatment of newly diagnosed AML in older patients unfit for intensive therapy. Leuk Res 39:183–191

    Article  CAS  PubMed  Google Scholar 

  20. Farag SS, VanDeusen JB, Fehniger TA, Caligiuri MA (2003) Biology and clinical impact of human natural killer cells. Int J Hematol 78:7–17

    Article  CAS  PubMed  Google Scholar 

  21. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, Costello RT (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330

    Article  CAS  PubMed  Google Scholar 

  22. Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, Morgado S, Tarazona R, Solana R (2011) Immunosenescence of human natural killer cells. J Innate Immun 3:337–343

    Article  CAS  PubMed  Google Scholar 

  23. Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L, Koehl U (2015) Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayhoe RP, Henson SM, Akbar AN, Palmer DB (2010) Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol 71:676–681

    Article  CAS  PubMed  Google Scholar 

  25. Hazeldine J, Lord JM (2013) The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev 12:1069–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16:230–239

    Article  CAS  PubMed  Google Scholar 

  27. Horton NC, Mathew PA (2015) NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors. Front Immunol 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hudspeth K, Silva-Santos B, Mavilio D (2013) Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol 4:69

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jabbour EJ, Estey E, Kantarjian HM (2006) Adult acute myeloid leukemia. Mayo Clin Proc 81:247–260

    Article  PubMed  Google Scholar 

  30. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  31. Khaznadar Z, Henry G, Setterblad N, Agaugue S, Raffoux E, Boissel N, Dombret H, Toubert A, Dulphy N (2014) Acute myeloid leukemia impairs natural killer cells through the formation of a deficient cytotoxic immunological synapse. Eur J Immunol 44:3068–3080

    Article  CAS  PubMed  Google Scholar 

  32. Kiessling R, Klein E, Pross H, Wigzell H (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121

    Article  CAS  PubMed  Google Scholar 

  33. Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  34. Klingemann H (2015) Challenges of cancer therapy with natural killer cells. Cytotherapy 17:245–249

    Article  CAS  PubMed  Google Scholar 

  35. Koch J, Steinle A, Watzl C, Mandelboim O (2013) Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 34:182–191

    Article  CAS  PubMed  Google Scholar 

  36. Krakow EF, Bergeron J, Lachance S, Roy DC, Delisle JS (2014) Harnessing the power of alloreactivity without triggering graft-versus-host disease: how non-engrafting alloreactive cellular therapy might change the landscape of acute myeloid leukemia treatment. Blood Rev 28:249–261

    Article  PubMed  Google Scholar 

  37. Krishnaraj R (1997) Senescence and cytokines modulate the NK cell expression. Mech Ageing Dev 96:89–101

    Article  CAS  PubMed  Google Scholar 

  38. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V (2010) Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9:527–535

    Article  PubMed  Google Scholar 

  40. Lichtenegger FS, Lorenz R, Gellhaus K, Hiddemann W, Beck B, Subklewe M (2014) Impaired NK cells and increased T regulatory cell numbers during cytotoxic maintenance therapy in AML. Leuk Res 38:964–969

    Article  CAS  PubMed  Google Scholar 

  41. Lion E, Willemen Y, Berneman ZN, Van TV, Smits EL (2012) Natural killer cell immune escape in acute myeloid leukemia. Leukemia 26:2019–2026

    Article  CAS  PubMed  Google Scholar 

  42. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  CAS  PubMed  Google Scholar 

  43. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339

    Article  CAS  PubMed  Google Scholar 

  44. Locatelli F, Moretta F, Brescia L, Merli P (2014) Natural killer cells in the treatment of high-risk acute leukaemia. Semin Immunol 26:173–179

    Article  CAS  PubMed  Google Scholar 

  45. Lopez-Botet M, Muntasell A, Vilches C (2014) The CD94/NKG2C + NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol 26:145–151

    Article  CAS  PubMed  Google Scholar 

  46. Lutz CT, Moore MB, Bradley S, Shelton BJ, Lutgendorf SK (2005) Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev 126:722–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mariani E, Mariani AR, Meneghetti A, Tarozzi A, Cocco L, Facchini A (1998) Age-dependent decreases of NK cell phosphoinositide turnover during spontaneous but not Fc-mediated cytolytic activity. Int Immunol 10:981–989

    Article  CAS  PubMed  Google Scholar 

  48. Mariani E, Meneghetti A, Neri S, Ravaglia G, Forti P, Cattini L, Facchini A (2002) Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 32:1524–1529

    Article  CAS  PubMed  Google Scholar 

  49. Miller JS (2013) Therapeutic applications: natural killer cells in the clinic. Hematol Am Soc Hematol Educ Prog 2013:247–253

    Article  Google Scholar 

  50. Milush JM, Lopez-Verges S, York VA, Deeks SG, Martin JN, Hecht FM, Lanier LL, Nixon DF (2013) CD56negCD16(+) NK cells are activated mature NK cells with impaired effector function during HIV-1 infection. Retrovirology 10:158

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mocchegiani E, Malavolta M (2004) NK and NKT cell functions in immunosenescence. Aging Cell 3:177–184

    Article  CAS  PubMed  Google Scholar 

  52. Montaldo E, Del ZG, Della CM, Mingari MC, Moretta A, De MA, Moretta L (2013) Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A 83:702–713

    Article  PubMed  Google Scholar 

  53. Montaldo E, Vacca P, Moretta L, Mingari MC (2014) Development of human natural killer cells and other innate lymphoid cells. Semin Immunol 26:107–113

    Article  CAS  PubMed  Google Scholar 

  54. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  CAS  PubMed  Google Scholar 

  55. Moretta L, Montaldo E, Vacca P, Del ZG, Moretta F, Merli P, Locatelli F, Mingari MC (2014) Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 164:253–264

    Article  CAS  PubMed  Google Scholar 

  56. Muntasell A, Vilches C, Angulo A, Lopez-Botet M (2013) Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: a different perspective of the host-pathogen interaction. Eur J Immunol 43:1133–1141

    Article  CAS  PubMed  Google Scholar 

  57. Murasko DM, Jiang J (2005) Response of aged mice to primary virus infections. Immunol Rev 205:285–296

    Article  CAS  PubMed  Google Scholar 

  58. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, Cosman D, De LG, Wodnar-Filipowicz A (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105:3615–3622

    Article  CAS  PubMed  Google Scholar 

  59. Oyer JL, Igarashi RY, Kulikowski AR, Colosimo DA, Solh MM, Zakari A, Khaled YA, Altomare DA, Copik AJ (2015) Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particle-based approach. Biol Blood Marrow Transplant 21:632–639

    Article  CAS  PubMed  Google Scholar 

  60. Pawelec G, Solana R (2008) Are cancer and ageing different sides of the same coin? conference on cancer and ageing. EMBO Rep 9:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pawelec G, Solana R, Remarque E, Mariani E (1998) Impact of aging on innate immunity. J Leukoc Biol 64:703–712

    CAS  PubMed  Google Scholar 

  62. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L (2005) Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105:2066–2073

    Article  CAS  PubMed  Google Scholar 

  63. Rambaldi A, Biagi E, Bonini C, Biondi A, Introna M (2015) Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia 29:1–10

    Article  CAS  PubMed  Google Scholar 

  64. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, Luo X, Cooley S, Verneris M, Walcheck B, Miller J (2013) NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  CAS  PubMed  Google Scholar 

  67. Sanchez CJ, Le TT, Boehrer A, Knoblauch B, Imbert J, Olive D, Costello RT (2011) Natural killer cells and malignant haemopathies: a model for the interaction of cancer with innate immunity. Cancer Immunol Immunother 60:1–13

    Article  CAS  PubMed  Google Scholar 

  68. Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Banas H, Morgado S, Casado JG, Solana R, Tarazona R (2013) Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine 61:885–891

    Article  CAS  PubMed  Google Scholar 

  69. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, Tarazona R (2012) Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 90:109–115

    Article  CAS  PubMed  Google Scholar 

  70. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R (2011) Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 60:1195–1205

    Article  CAS  PubMed  Google Scholar 

  71. Schmeel FC, Schmeel LC, Gast SM, Schmidt-Wolf IG (2014) Adoptive immunotherapy strategies with cytokine-induced killer (CIK) cells in the treatment of hematological malignancies. Int J Mol Sci 15:14632–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581

    Article  CAS  PubMed  Google Scholar 

  73. Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A (2005) Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 19:2215–2222

    Article  CAS  PubMed  Google Scholar 

  74. Solana R, Alonso MC, Pena J (1999) Natural killer cells in healthy aging. Exp Gerontol 34:435–443

    Article  CAS  PubMed  Google Scholar 

  75. Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61

    Article  CAS  PubMed  Google Scholar 

  76. Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18:1613–1620

    Article  CAS  PubMed  Google Scholar 

  77. Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24:491–494

    Article  CAS  PubMed  Google Scholar 

  78. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341

    Article  CAS  PubMed  Google Scholar 

  79. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149

    Article  CAS  PubMed  Google Scholar 

  80. Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, Pavlu J, Brisley G, de Lavallade H, Sarvaria A, Marin D, Mielke S, Apperley JF, Shpall EJ, Barrett AJ, Rezvani K (2014) Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 99:836–847

    Article  PubMed  PubMed Central  Google Scholar 

  81. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M (2010) Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother 59:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tarazona R, Casado JG, Delarosa O, Torre-Cisneros J, Villanueva JL, Sanchez B, Galiani MD, Gonzalez R, Solana R, Pena J (2002) Selective depletion of CD56(dim) NK cell subsets and maintenance of CD56(bright) NK cells in treatment-naive HIV-1-seropositive individuals. J Clin Immunol 22:176–183

    Article  CAS  PubMed  Google Scholar 

  83. Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L (2008) Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9:486–494

    Article  CAS  PubMed  Google Scholar 

  84. Verheyden S, Demanet C (2008) NK cell receptors and their ligands in leukemia. Leukemia 22:249–257

    Article  CAS  PubMed  Google Scholar 

  85. Wiernik A, Foley B, Zhang B, Verneris MR, Warlick E, Gleason MK, Ross JA, Luo X, Weisdorf DJ, Walcheck B, Vallera DA, Miller JS (2013) Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res 19:3844–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zafirova B, Wensveen FM, Gulin M, Polic B (2011) Regulation of immune cell function and differentiation by the NKG2D receptor. Cell Mol Life Sci 68:3519–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou Q, Gil-Krzewska A, Peruzzi G, Borrego F (2013) Matrix metalloproteinases inhibition promotes the polyfunctionality of human natural killer cells in therapeutic antibody-based anti-tumour immunotherapy. Clin Exp Immunol 173:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to our colleagues whose work was not cited due to space limitations. This work was supported by grants SAF2009-09711 and SAF2013-46161-R (to Raquel Tarazona) from the Ministry of Economy and Competitiveness of Spain, PS09/00723 and PI13/02691 (to Rafael Solana) from Spanish Ministry of Health, CTS-208 from Junta de Andalucia (to Rafael Solana) and grants to INPATT research group (GRU10104) from Junta de Extremadura and University of Extremadura (to Raquel Tarazona and Esther Duran) cofinanced by European Regional Development Funds (FEDER).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Solana.

Additional information

Rafael Solana and Raquel Tarazona are senior authors and have contributed equally to the manuscript.

This article is part of the Symposium-in-Writing “Natural killer cells, ageing and cancer”, a series of papers published in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Correa, B., Campos, C., Pera, A. et al. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies?. Cancer Immunol Immunother 65, 453–463 (2016). https://doi.org/10.1007/s00262-015-1720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1720-6

Keywords

Navigation