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application to the well-known tumor antigen HER2 and sug-
gest bioinformatics methods to ameliorate therapy resistance 
and ensure efficient and lasting control of tumors.
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ANN	� Artificial neural network
CAR	� Chimeric antigen receptor
CTLs	� Cytotoxic T lymphocytes
ER	� Estrogen receptor
KEGG	� Kyoto Encyclopedia of Genes and Genomes
pHLA	� Peptide-HLA
RMA	� Robust multichip average
TAAs	� Tumor-associated antigens
TAP	� Transporter associated with antigen processing
TCGA	� The Cancer Genome Atlas
TCR	� T cell receptor
TSAs	� Tumor-specific antigens

Abstract  The mechanisms of immune response to can-
cer have been studied extensively and great effort has been 
invested into harnessing the therapeutic potential of the 
immune system. Immunotherapies have seen significant 
advances in the past 20 years, but the full potential of pro-
tective and therapeutic cancer immunotherapies has yet to be 
fulfilled. The insufficient efficacy of existing treatments can 
be attributed to a number of biological and technical issues. 
In this review, we detail the current limitations of immuno-
therapy target selection and design, and review computa-
tional methods to streamline therapy target discovery in a 
bioinformatics analysis pipeline. We describe specialized 
bioinformatics tools and databases for three main bottlenecks 
in immunotherapy target discovery: the cataloging of poten-
tially antigenic proteins, the identification of potential HLA 
binders, and the selection epitopes and co-targets for single-
epitope and multi-epitope strategies. We provide examples of 
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Introduction

Cancer immunotherapy is a major modality of cancer 
treatment. It is often used in combination with other can-
cer treatments such as surgery, radiotherapy, and chemo-
therapy. Immunotherapy is an intervention that modulates 
immune responses for effective targeting and elimination 
of tumor cells. The term immunotherapy is quite broad 
and encompasses a variety of treatments; some enhance 
immune response in a very general way, while others 
direct the immune system to specifically target cancer 
cells. Although immunotherapy has been well documented 
for more than a century [1], the mechanisms of immune 
responses and tumor evasion remain poorly understood. 
Understanding the genetic background of the patient as 
well as the molecular characteristics of individual cancers 
at the time of diagnosis, as well as during therapy, is essen-
tial for stratification of patients, assessing their responses, 
and selection of optimal therapies [2]. Immunotherapies 
focus on tumor-specific antigens as well as on regulatory 
mechanisms that drive effective immune responses. Induc-
ing immune responses to cancer is a delicate balancing act 
where effective immunity against the cancer cells should be 
enhanced, while the autoimmune responses against normal 
cells should be minimized [3]. Even when successful in this 
aspect, immunotherapies often lose their efficacy over time 
due to immune evasion by tumor cells. Immune evasion 
by tumor cells involves several mechanisms such as down-
regulation of HLA expression [4], infiltration of immune 
suppressive cells (e.g., Tregs [5], MDSC [6] ), expres-
sion of immune suppressive molecules, e.g., IDO [7] and 
Arg-1 [8], lack of chemokine-mediated trafficking [9], poor 
innate immune cell activation [10], or immune checkpoint 
ligands like PD-L1 and PD-L2 [11]. Passive immunothera-
pies involve administration of antibodies and other immune 
system products that provide immunity but without activa-
tion of the host’s immune responses, while active immuno-
therapies stimulate host immune responses against tumor 
cells by activating them to respond against tumor antigens. 
In this review, we will focus our attention to active immu-
notherapies using tumor antigens to target cancer cells.

Identification and detailed characterization of vaccine 
targets is an essential step in tumor vaccine development. 
Technical advances in instrumentation, sample process-
ing, immunological assays, and bioinformatics techniques 
have generated large amounts of immunological data, 
including experimentally identified tumor antigens and T 
cell epitopes, novel tumor biomarkers, and differentially 
expressed genes or proteins identified through genomics, 
proteomics, or other high-throughput methods. Collec-
tion, analysis and management of these data require exten-
sive use of bioinformatics applications. Here we describe 
bioinformatics tools and data resources used for the study 

of cancer immunotherapies, focusing primarily on T cell-
based therapies.

Tumor antigens for T cell‑based therapies

T cell epitopes are short peptide fragments of 8–12 and 
13–25 amino acids in length for HLA class I and II, respec-
tively [12, 13]. In the classic mode of CD8+ T cell activa-
tion, intracellular proteins are processed in the cytoplasm 
and cleaved by the proteasome into small peptides [14], 
which are then delivered into the endoplasmic reticulum 
by transporter associated with antigen processing (TAP) 
proteins [15], where they bind the HLA class I molecules 
and subsequently present on the cell surface as T cell 
epitopes. The T cell epitopes on the surface of target cells 
are screened and recognized by CD8+ cytotoxic T lym-
phocytes (CTLs). Those target cells that are recognized 
as foreign due to malignant transformations are killed by 
the cognizant CD8+ cells [16]. Initially, the CD8+ T cells 
are in their naïve state. After recognition of a peptide-HLA 
complex, they are activated to their effector CTL state and 
proliferate to clear cells presenting the peptide-HLA com-
plex on their surface.

The cellular immune system responds to tumor cells 
by recognition of either tumor-associated antigens (TAAs, 
antigens that are overexpressed in cancer cells) [17, 18] 
or tumor-specific antigens (TSAs, antigens that are not 
expressed in most normal tissues) [19]. The therapeutic 
potential of a tumor antigen depends on an array of factors. 
In an effort to define the characteristics of the ideal cancer 
antigen, researchers at the American National Cancer Insti-
tute proposed to rank tumor antigens by therapeutic func-
tion, immunogenicity, oncogenicity, specificity, expression 
level and percentage of positive cells, stem cell expression, 
the number of patients with antigen-positive cancers, the 
number of validated epitopes in antigen, and cellular loca-
tion of expression [20].

TAAs are not exclusive to tumor cells. They can, how-
ever, in certain instances, still elicit a tumor-specific 
response. TAAs can be divided into two subgroups: dif-
ferentiation antigens and overexpressed antigens. Common 
for both types is the inherent risk that eliciting a sufficiently 
strong T cell response may induce systemic autoimmun-
ity against healthy cells carrying the antigen. A number 
of overexpressed antigens have been characterized, as an 
array of genes involved in regulating tumor growth, replica-
tion, as well as apoptosis, and can severely affect the health 
of the cell if dysregulated [21].

Mutations in tumor cell genes can lead to changes in 
the primary or secondary protein structure that may affect 
immunogenicity of antigens [22]. Specifically, sequence 
changes in short peptides can change peptide binding affin-
ity for HLA, and thus change subsequent responses by T 
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cells [23]. Similarly, mutations are likely to induce changes 
in secondary structure that can affect, to some extent T cell 
recognition, but primarily change the affinity and avidity of 
circulating antibodies for the target [24]. The main draw-
back of TSAs is that they are mostly patient specific, and 
therefore, not applicable for broadly neutralizing therapies. 
However, they are likely to be truly tumor specific and are 
often found in driver genes, thus making them less suscep-
tible to immune escape by immunoediting [25].

Bioinformatics for T cell‑based cancer immunotherapy

Identification and selection of antigens is a multifaceted 
task that depends both on the type and on the application 
of antigens. In 2000, Rino Rappuoli formalized the role 
of computational analyses in vaccinology in a conceptual 
framework termed “Reverse Vaccinology” [26]. Originally 
formulated to facilitate vaccine target discovery in patho-
gens, the concepts of reverse vaccinology can be expanded 
for applications in cancer immunology. Reverse vacci-
nology revolves around sequence analysis, whereby the 
genomic sequence is used to catalog all potential molecu-
lar antigens. In simple viral and prokaryotic pathogens, 
essentially all protein products are potential antigens, 
whereas the majority of tumor tissue proteins are not aber-
rant, thereby rendering them poor therapy targets. There-
fore, cataloging antigens in tumor cells require additional 
pre-screening.

Once the catalog of potential antigens has been estab-
lished, the reverse vaccinology pipeline calls for in silico 
prediction of vaccine targets—a process that is character-
ized as being completely naïve, and in that targets predicted 
from sequence, such as predicted HLA binders, are not 
characterized in terms of intracellular preprocessing, con-
servation, or in vivo expression. Additional computational 
and experimental pre-screening of epitope candidates must, 
therefore, be performed before they can be included as 
therapy targets. Potential T cell epitopes, must be examined 
in terms of preprocessing by the proteasome, transport by 
the TAP, HLA binding, stability of peptide-HLA complex 
[27], peptide-HLA binding to the T cell receptor (TCR) 
[28], and in vivo expression.

Potential T cell epitopes should then be examined for 
stability of their expression in tumor cells to ensure last-
ing immunological control or clearance of targeted tumor 
cells. However, the heterogenic nature of cancer means that 
no given cancer type has a uniform molecular profile and 
several cancers are subclassified into a number of charac-
terized or uncharacterized classes with varying prognostic 
and therapeutic outcome [29–32]. Adding further to this 
property, evidence of intra-tumor heterogeneity is begin-
ning to surface for certain tumors [33, 34]. Additionally, 

given that immunoediting of tumor antigens is based on 
somatic mutations, it is extremely difficult to predict the 
antigenic phenotype after clonal selection. It is, therefore, 
often observed that tumors develop tolerance to immuno-
therapy after a limited period of time of successful treat-
ment [35, 36].

Cataloging, predicting, and selecting immunotherapy 
targets can be extensively addressed using existing bio-
informatics tools and biological databases. Figure  1 pre-
sents a schematic overview of the general process. In the 
following sections, we present examples of bioinformatics 
analyses for antigen cataloging and immunotherapy target 
discovery with examples of application for each task. A 
number of tools and databases were used for the example 
applications and many more exist. It is beyond the scope 
of this review to assess and catalog all existing tools, but 
in the following section we present an overview of some of 
the most commonly used tools and data resources for each 
of the tasks.

Cataloging potential antigens

Identification of potential antigens de novo from genomic 
sequence using bioinformatics tools is highly challenging, 
as expression of proteins is regulated by an array of com-
plex regulatory mechanisms, many of which are poorly 
understood. Traditionally, tumor antigens are identified in 
vitro from serum by screening cDNA phage libraries using 
immunoassays [37] or proteomics-based screening [38], 
but bioinformatics tools are perfectly suited to aid this pro-
cess, either by actively identifying novel tumor antigens 
or by organizing and accessing information about known 
tumor antigens in accessible databases.

In silico screening for novel tumor antigens

Large-scale screening of mRNA from public databases 
is a proposed method for active identification of novel 
tumor antigens [39, 40]. Specifically, comparing expres-
sion profiles of tumors and healthy tissue can elucidate 
genes that are overexpressed or expressed exclusively in 
malignant tumors. High-throughput genomics methods 
have enabled large-scale screening of gene expression. 
These include nucleotide microarray technologies [41] 
and next-generation RNA sequencing [42]. Preprocess-
ing of raw outputs from expression data depends entirely 
on the platforms used for the experiments. Tools for most, 
if not all, platforms can be preprocessed and analyzed in 
the statistical environment R, with packages from the Bio-
conductor software project [43]. Once preprocessed, the 
most widely used computational tools for analysis of gene 
expression data are the packages RMA (Robust Multichip 
Average) [44] and Limma [45] for R or one of several 
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graphical user interface tools, most notably the Gitools 
software [46]. However, for an antigen to be suitable for 
immunotherapy, it must be expressed at protein level as 
well. Large-scale proteome studies include technologies of 
protein microarrays [47], antibody microarrays [48] mass 
spectrometry-based proteomics [49], and mass cytometry 
screening [50]. Recent studies of the proteome of breast 
cancer have revealed molecular features of tumorigenesis 
[51], and proteomics studies are gradually approaching 
a scale where whole proteome screening is feasible [52]. 
Databases such as the Gene Expression Omnibus [53] con-
tain MIAME standard compliant expression data [54] and 
a number of specialized cancer genomics data repositories 
such as The Cancer Genome Atlas (TCGA) consortium 

data portal (https://tcga-data.nci.nih.gov/tcga/), which con-
tains standardized data (including protein expression) for 
a large number of cancer types, Oncomine [55] (mRNA 
expression data for multiple cancer types), and the Hema-
Explorer [56, 57] (mRNA expression data for healthy and 
malignant hematopoietic cells). Although tumor antigens 
must be expressed at protein level to be useful for antigen-
based cancer immunotherapies, mRNA expression profiles 
can serve as useful pre-screenings, subject to additional 
experimental validation, including proteomics verification, 
as correlation between RNA expression and protein expres-
sion vary between different protein families [58]. Lastly, an 
expression profile database such as UniGene (http://www. 
ncbi.nlm.nih.gov/unigene) and The Human Protein Atlas 
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Fig. 1   General overview of bioinformatics supported discovery 
of potential T cell-based immunotherapy targets in cancer tumors. 
Green operations are preliminary and final laboratory analyses; red 
operations are bioinformatics analyses performed using compu-
tational tools (described in further detail in the following sections); 

blue operations are cross-references with biological databases (like-
wise described in further detail in the following sections), and yellow 
operations denote intermediary outputs from the analyses and cross-
referencing

https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/unigene
http://www.ncbi.nlm.nih.gov/unigene
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[59] can be consulted to ensure that potential target tumor 
antigens are not similarly expressed in healthy tissues on 
genetic and protein levels. Nucleic Acids’ Research offers a 
comprehensive catalog of maintained biological databases 
[60].

Cross‑referencing expression data with known tumor 
antigens

A large number of studies presenting potential tumor anti-
gens are published each year. Cross-referencing tumor 
gene expression and protein expression profiles with pre-
vious experimental efforts enable fast cataloging of poten-
tial targets. Data resources for tumor antigens include the 
Cancer Immunity peptide database of T cell-defined tumor 
antigens [61], a static listing of tumor T cell antigens pro-
vided by Parmiani and colleagues [21], CTdatabase of 
cancer-testis antigens [62], and the TANTIGEN database 
of T cell tumor antigens (http://cvc.dfci.harvard.edu/tadb/
index.html). Genes or proteins previously identified as 
TSAs (and expressed in a target sample), or identified as 
TAAs (and overexpressed compared to normal tissue from 
the same patient), are subject to further investigations as 
a potential immunotherapy targets if they are expressed at 
appropriate levels in a given tumor sample.

Assessing potential tumor antigens

Once one or several potential tumor antigens have been 
identified, further information can aid in the pre-exper-
imental assessment of the antigens. This process is best 
illustrated with an example of information collection and 
antigen assessment of the well-characterized tumor anti-
gen, HER2.

Information about HER2, relevant to assessing its role as 
a tumor antigen is located and extracted from a number of 
different biological databases. Table 1 lists information rel-
evant to assessing the suitability of HER2 as an antigen in a 
number of different cancers. HER2 is an epidermal growth 
factor that is amplified in about 20–40 % of invasive breast 
cancers [63]. Whereas normal tissue generally has low 
expression of HER2, breast cancer cells can have up to 50 
copies of the encoding ERBB2 gene and up to 100-fold 
increased protein expression [64], with heavy correlation 
to a poor clinical outcome. These properties make HER2 
a good marker for tumor tissue. HER2 has four isoforms 
produced by alternative splicing and alternative initiation. 
The isoforms overlap in identity by slightly less than half 
of the protein sequences, and a number of somatic muta-
tions detectable on protein level are characterized in HER2. 
Since HER2 is present on the cell surface in large numbers, 
it is suitable for targeting by both cellular and humoral 
immunities, and a number of both T cell and B cell HER2 

epitopes have been identified [65, 66]. A selection of tools 
and databases useful for cataloging potential tumor anti-
gens can be found in Table 2.

Prediction of potential T cell epitopes

Each of the cellular processes responsible for T cell epitope 
preprocessing is rate limiting in the classical T cell-medi-
ated immunity. The prediction of immunogenicity is, there-
fore, a non-trivial task, which is divided into predictions of 
each epitope processing step.

HLA binding prediction

Prediction of peptide processing events, such as proteaso-
mal cleavage [74–76] and TAP transport [77–79], has been 
explored, but evaluations suggest that these methods are 
still not optimal [80]. Algorithms for predicting HLA bind-
ing affinity are superior in accuracy and highly accurate for 
a number of HLA alleles. Most currently maintained algo-
rithms have been thoroughly reviewed and benchmarked in 
[81].

Prediction of peptide binding affinity to HLA class I and 
class II can be performed with a host of prediction algo-
rithms (extensively reviewed in [82, 83]). The overall best 
performing predictor for HLA class I binding is the artifi-
cial neural network (ANN) and weight matrix-based pre-
diction tool, netMHC 3.2 [84], and the best for class II is 
the ANN predictor netMHCII 2.2 [85]. Other highly accu-
rate classification algorithms include BIMAS [86], SYF-
PEITHI [87], novel ensemble methods PM and AvgTanh 
[88], and various averaging methods [89]. Pan-specific pre-
diction algorithms such as NetMHCpan [90] include HLA 
allele sequence in the binding prediction, which has been 
shown to increase accuracy for certain alleles [81]. Addi-
tionally, these methods enable prediction to a large number 
specific HLA alleles as well as HLA supertypes. A number 
of prediction algorithms combines prediction of HLA bind-
ing with prediction of proteasomal cleavage and TAP trans-
port, for example, NetCTL [91] (for an extensive review 
of CTL prediction algorithms, please refer to [91] ), but as 
peptide preprocessing predictions are not nearly as accu-
rate as HLA binding predictions, including these additional 
algorithms do not enrich the prediction.

A number of known HLA binders have been shown 
to be unable to elicit immune response, a phenomenon 
referred to as holes in the T cell repertoire [92]. Recently, 
it has been shown that stability of the peptide-HLA 
(pHLA) complex is likely a better predictor for immuno-
genicity of a peptide than the affinity of the binding, as 
immunogenic peptides are generally more stably bound 
to HLA [27]. Similarly, assessment of pHLA complex 
binding to the TCR has been explored as a predictor of 

http://cvc.dfci.harvard.edu/tadb/index.html
http://cvc.dfci.harvard.edu/tadb/index.html
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immunogenicity [93]. However, at present, only 21 crystal 
structures of pHLA-TCR complex are completed, which 
is not sufficient basis to train a generally applicable clas-
sifier. Other approaches to evaluating immunogenicity 
include prediction of T cell reactivity based on an array of 
physiochemical properties [94, 95].

To predict HLA binders of tumor cell samples, the 
tumor tissue exome should ideally be sequenced and 
potential epitopes should be predicted from the translated 
sequence. If tumor tissue sequence is not available, canoni-
cal sequences can be extracted from protein sequence data-
bases such as UniProt [72] or from primary repositories for 
cancer sequences such as GChub (https://cghub.ucsc.edu/). 
Predicted binders can be cross-referenced with a tumor 
antigen database such as TANTIGEN to check whether 
experimental validation has been previously performed.

Predicting HLA binders for 9-meric peptides in HER2 
using netMHC 3.4 yields potential binders to a number 

of HLA alleles. A closer look at HLA A*02:01 reveals 
52 predicted binders, of which one is an experimentally 
validated binder, found by cross-referencing with TAN-
TIGEN. Some candidate binders are conserved across 
all isoforms and mutated forms of HER2, while others 
are found only in some isoforms. Table  3 shows pep-
tides binding HLA A*02:01 that are either conserved in 
all isoforms, or positions where all variant peptides bind 
HLA A*02:01, discovered by block conservation analysis 
[96]).

Prior to preclinical testing of the predicted epitopes, 
experimental validation of the candidates is important. 
Since peptide preprocessing is still unknown for pre-
dicted HLA binders, appropriate peptide processing and 
in vivo binding should be confirmed experimentally before 
epitopes are included in vaccine constructs. Large-scale 
T cell epitope validation is enabled by mass spectrometry 
[98] and flow cytometry-based methods [99].

Table 1   Annotation of HER2 for assessing potential as tumor antigen

Information type Information Source (ID/accession)

Protein name HER2 GeneCards (GC17P037844)

Gene name ERBB2 GeneCards (GC17P037844)

Full name Human epidermal growth factor receptor 2 GeneCards (GC17P037844)

Synonyms CD340, HER-2, HER2, NEU, NGL GeneCards (GC17P037844)

Function HER2 is a member of the epidermal growth factor (EGF) receptor family of 
receptor tyrosine kinases. HER2 cannot bind growth factors itself, since it 
lacks a ligand binding domain. Rather, it binds to other EGF receptor/ligand 
complexes, with which it forms a heterodimer, thus stabilizing binding and 
enhancing activation of downstream signaling pathways.

OMIM (164870)

Role in disease The ERBB2 gene is amplified and HER2 is overexpressed in 25–30 % of breast 
cancers, correlating with increased aggressiveness of the tumor.

OMIM (164870)

Localization Cell surface, plasma membrane bound. OMIM (164870)

Isoforms Isoform 1: canonical sequence
Isoform 2: 1–610: missing
Isoform 3: 1–686: missing
Isoform 4: 1–23: MELAALCRWGLLLALLPPGAAST → MPRGSWKP

UniProt (P04626)

Mutations Pos: 20, A → T
Pos: 49, L → H
Pos: 49, L → P
Pos: 92, R → G
Pos: 101, I → S

COSMIC (COSG165)

Gene expression, normal tissue Low expression in most healthy tissue, moderate expression in intestine and 
mammary glands.

UniGene (241389)

Gene expression, tumor tissue Overexpressed in 25–30 % mammary gland tumors (strong correlation with 
clinical outcome) and in approximately 15 % colorectal tumors (no correla-
tion with clinical outcome).

UniGene (241389)

Protein expression, normal tissue No-to-low expression in hematopoietic, digestive, and respiratory tissue. No-
to-medium expression in female tissues, placenta, male tissues, and urinary 
tract tissue.

The human protein atlas

Protein expression, tumor tissue Strong expression observed in some breast cancer, colorectal cancer, glioma, 
head and neck cancer, ovarian cancer, and urothelial cancer

The human protein atlas

T cell epitopes 50 reported CD8+ T cell epitopes
13 reported HLA class I ligands

TANTIGEN (Ag000001)

https://cghub.ucsc.edu/
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Human immune system diversity

HLAs are among the most polymorphic molecules in the 
human genome and represent the most variable factor 
of human immune recognition. Comprised of more than 
200 genes located on chromosome 6, three different HLA 
classes are defined [100]. Only class I and class II are 
involved in adaptive immunity and thus are a main focus 
in this review. For each class, several major and minor pro-
teins are defined, which are in turn classified into super-
types [101, 102] and 9,310 individual alleles are reported 
in Release 3.12.0, (April 17, 2013) of the IMGT/HLA 
database [103]. Additional data resources for HLA allele 
sequences, clinical data, and population frequencies can 
be found in dbMHC [104] and The Allele Frequency Net 
Database [105] among others. Further bioinformatics 

resources for HLA research have been thoroughly reviewed 
in [106].

Specificity of HLA molecules is instrumental in deter-
mining resistance and susceptibility to invading pathogens 
and cancers. Owing to hereditability of HLA loci, spe-
cific alleles are often geographically clustered, meaning 
that some populations are more susceptible to, for exam-
ple, EBV-related cancers [107]. T cell-mediated immuno-
surveillance of cancerous cells involves HLA restriction, 
which further complicates formulation of T cell-based ther-
apies. Even if we ignore the variability of tumor antigens, 
the diversity of human immune response to T cell epitopes 
renders the identification of broadly applicable T cell-based 
immunotherapy targets highly challenging, and increases 
the search space of useful T cell targets in personalized 
therapies immensely.

Table 2   Sample of analytical tools for cataloging tumor antigens

Resource Purpose URL Ref.

Genomics and proteomics expression analysis tools

 Gitools Expression data analysis (GUI) http://www.gitools.org/ [46]

 Limma Expression data analysis (R package) http://www.bioconductor.org/packages/
release/bioc/html/limma.html

[44]

 RMA Expression data analysis (R package, integrated in 
“affy” package)

http://www.bioconductor.org/packages/
release/bioc/html/affy.html

[45]

Databases for gene and protein expression

 GEO mRNA expression data http://www.ncbi.nlm.nih.gov/geo/ [53]

 ArrayExpress mRNA expression data (among other data) http://www.ebi.ac.uk/arrayexpress/ [67]

 TCGA data portal mRNA expression data, cancer specific (various 
types)

https://tcga-data.nci.nih.gov/tcga/ –

 Oncomine mRNA expression data, cancer specific (various 
types)

https://www.oncomine.org/ [55]

 HemaExplorer mRNA expression profiles in normal and  
malignant haematopoiesis

http://servers.binf.ku.dk/hemaexplorer/ [56]

 UniGene mRNA expression data by tissue http://www.ncbi.nlm.nih.gov/unigene –

 Human protein atlas Protein expression by tissue http://www.proteinatlas.org/ [59]

Databases for tumor antigen information

 TANTIGEN Tumor T cell antigens http://cvc.dfci.harvard.edu/tadb/ –

 CTdatabase Cancer-testis antigens http://www.cta.lncc.br/ [62]

 Cancer immunity peptide database Tumor T cell antigens http://cancerimmunity.org/peptide/ [61]

Databases for gene and protein information

 OMIM Information about human genes and genetic 
phenotypes

http://omim.org/ [68]

 Ensembl Annotated gene sequences http://www.ensembl.org [69]

 Genecards Functional information about human genes http://www.genecards.org/ [70]

Databases for gene and protein sequences

 GenBank Gene sequences and information http://www.ncbi.nlm.nih.gov/genbank [71]

 GC hub Cancer genome sequences https://cghub.ucsc.edu/ –

 UniProt Proteomic sequences and functional annotations http://www.uniprot.org/ [72]

 COSMIC Somatic mutations in cancer http://cancer.sanger.ac.uk/cancergenome/projects/
cosmic/

[73]

http://www.gitools.org/
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
https://tcga-data.nci.nih.gov/tcga/
https://www.oncomine.org/
http://servers.binf.ku.dk/hemaexplorer/
http://www.ncbi.nlm.nih.gov/unigene
http://www.proteinatlas.org/
http://cvc.dfci.harvard.edu/tadb/
http://www.cta.lncc.br/
http://cancerimmunity.org/peptide/
http://omim.org/
http://www.ensembl.org
http://www.genecards.org/
http://www.ncbi.nlm.nih.gov/genbank
https://cghub.ucsc.edu/
http://www.uniprot.org/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
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Host HLA profile must be identified before predict-
ing personalized targets, a task that can be done by DNA 
sequencing [108], RNA sequencing [109], or microarray-
based approaches [110] (thoroughly reviewed in [100] ). 
Analysis of sequencing data can be performed by a large 
number of tools reviewed in [111]. If the aim is to produce 
more general therapies, population coverage tools such 
as the PopCover algorithm [112], the Block Conservation 
analysis web server (http://met-hilab.bu.edu/blockcons), 
or the IEDB Population Coverage Calculation tool [113] 
can be applied to ensure broad coverage by a combina-
tion of immune targets. A selection of useful bioinformat-
ics resources for prediction of prediction of potential T cell 
epitopes is listed in Table 4.

Selection of potential epitopes for immunotherapy

Conservation and variability analysis for immunotherapy 
target selection is a multidimensional problem. If one aims 
to define targets for general immunotherapies applicable to 
a broad cohort of patients, antigen diversity must be studied 
across the patient population. Due to high variability, even 
personalized vaccine targets are likely to be unstable over 
time, and the somatic process driving the selection is dif-
ficult to predict. There are, however, strategies for inducing 
lasting immune response against tumors, including epitope 
selection with increased emphasis on sequence stability, the 
combination of multiple therapy targets, and multi-epitope 
vaccination strategies [122].

Selection of stable epitopes

Comparative analysis of gene and protein sequences can 
reveal de novo SNPs and other somatic mutations. Peptides 

found in mutated protein regions unique to the tumor are 
candidates for epitope prediction. However, peptides found 
in highly variable regions are likely subject to frequent 
mutations and potentially lead to loss of antigen immuno-
genicity. Owing to the heterogenic nature of cancer and 
complex processes such as immunoediting, the landscape 
of tumor mutation is far from fully understood. However, 
potential epitopes can be analyzed for stability in the con-
text of known mutations cataloged in databases such as 
COSMIC [123]. Similarly, splice variations of proteins and 
structural variations in the genome can influence the stabil-
ity of a given epitope. This can be examined using data-
bases such as DECIPHER [124] for chromosomal varia-
tions and UniProt [125] for protein isoforms. Identifying 
regions of limited variability and high stability, and choos-
ing potential epitopes in these regions may increase the 
likelihood for sustained immune response. Variability also 
depends on the selection pressure exerted by the immune 
system during therapy, but regions of known high variabil-
ity can be excluded.

Multi‑epitope strategies

Epitopes in mutating regions of target proteins are not nec-
essarily excluded as a valuable target for immunotherapy. 
Treatments can be composed of multiple epitopes from one 
or more proteins [122], such that if immunogenicity of one 
epitope is lost, the remaining set of epitopes may continue 
to confer protection. In a multi-epitope setting, mutating 
regions of target proteins can be of value if they contain 
epitopes—even if just for a limited time or a limited frac-
tion of the tumor cells. Analysis of metabolic pathways 
of tumor cells may reveal potential epitopes in multiple 
proteins complementary to each other, which collectively 

Table 3   Peptides from HER2 predicted to bind HLA A*02:01

All peptides in this table are either found in all isoforms and mutated types of HER2, or are peptides from a position on which all peptides are 
predicted to bind HLA A*02:01. Peptides with a predicted binding affinity of <50 nM are strong binders and <500 nM are weak binders. All pre-
dictions were done using netMHC 3.4

Position Number of variants  
in given position

Peptide Predicted HLA A*0201  
binding affinity (nM)

Experimental status Reference

689 1 RLLQETELV 34 T cell epitope [97]

767 4 ILDEAYVMA 34 N/A –

ILDEAYAMA 33 N/A –

ILHEAYVMA 73 N/A –

MLDEAYVMA 15 N/A –

823 2 LLNWCMQIA 359 N/A –

LLNWCMQTA 89 N/A –

949 1 TIDVYMIMV 86 N/A –

953 1 YMIMVKCWM 101 N/A –

954 1 MIMVKCWMI 22 N/A –

http://met-hilab.bu.edu/blockcons
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can provide protection. Theoretically, co-targeting mul-
tiple epitopes in multiple proteins in pathways essential 
for tumor fitness should increase probability of sustained 
response [126]. The network analysis of signaling path-
ways and the perturbations by oncogenes was recently 
shown to successfully identify oncogenic targets. A sequen-
tial application of anticancer drugs increased the collective 
efficiency of the drugs targeting oncogenic signaling path-
ways [127]. The sequential administration of immunothera-
pies targeting different epitopes may also be advantageous. 
Multi-epitope approaches carry the inherent risk of raising 
a dominant response against one, or a few, of the adminis-
tered epitopes. However, this can, in theory, be avoided by 
multiple site vaccinations [128]. Additionally, it has been 
shown that immunotherapies sometimes facilitate immune 
responses against additional antigens, not included as tar-
gets in the therapy, by a process referred to as “epitope 
spreading” [129] or “provoked immunity” [130].

The predicted HLA binders of HER2 shown in Table 3 
are filtered by conservation in known isoforms and 
mutated forms. As can be seen, four of the predicted bind-
ers are found in all known forms of HER2 (positions 689, 
949, 953, and 954), whereas six are found only in some 

(positions 767 and 823). The latter six peptides are located 
in potentially unstable regions, but as observed on position 
767, each of the four variants are predicted to bind HLA 
A*02:01, making them potentially useful in a multi-epitope 
setting. Note, however, that only 244 uniquely mutated 
samples of HER2 have been identified (UniProt, May 28, 
2013), giving an estimate of the variability of HER2. Addi-
tionally, the frequency of each mutation is unknown, so 
some mutations may impact a peptide’s suitability as an 
immunotherapy target more than others.

Targeting multiple antigenic protein

Targeting multiple epitopes within the same protein can be 
valuable to avoid loss of immunogenicity caused by muta-
tions or splice variation. However, targeting a single protein 
does not address loss of immunogenicity by downregulation 
or complete loss of protein expression. It can, therefore, be 
valuable to target multiple epitopes in different proteins. 
Combined targeting of several antigens increases therapy 
flexibility and may increase the magnitude of the response. 
This approach is especially valuable when targeting pro-
teins of similar or compensatory function in redundant 

Table 4   Sample of analytical tools for discovery of T cell epitopes for cancer immunotherapy

Databases of gene and protein sequences useful for HLA binding predictions are listed in Table 2. For a comprehensive review and performance 
benchmarking of HLA binding prediction algorithms, please refer to [81–83]

Tool Purpose URL Ref.

HLA allele prediction from sequence data

 HLAminer Prediction of HLA haplotypes from sequence  
data

http://www.bcgsc.ca/platform/bioinfo/
software/hlaminer

[114]

 HLAforest Prediction of HLA haplotypes from sequence  
data

http://code.google.com/p/hlaforest [115]

HLA data resources

 IMGT/HLA HLA sequences and nomenclature http://www.ebi.ac.uk/ipd/imgt/hla/ [103]

 dbMHC DNA and clinical data-related HLA http://www.ncbi.nlm.nih.gov/projects/gv/mhc/ [104]

 The allele frequency net  
database

Allele frequencies from different polymorphic 
areas in the Human genome

http://www.allelefrequencies.net/ [105]

Peptide-HLA binding affinity predictions

 netMHC Prediction of HLA class I binders http://www.cbs.dtu.dk/services/NetMHC/ [116]

 netMHCII Prediction of HLA class II binders http://www.cbs.dtu.dk/services/NetMHCII/ [85]

Epitope conservation analysis

 ClustalW Multiple sequence alignment http://www.genome.jp/tools/clustalw/ [117]

 MAFFT Multiple sequence alignment http://www.ebi.ac.uk/Tools/msa/mafft/ [118]

 MUSCLE Multiple sequence alignment http://www.ebi.ac.uk/Tools/msa/muscle/ [119]

 IEDB analysis resource Epitope conservancy analysis http://tools.immuneepitope.org/tools/conservancy/ [120]

 IEDB analysis resource Epitope cluster analysis http://tools.immuneepitope.org/tools/cluster/ –

 IEDB analysis resource Population coverage calculation http://tools.immuneepitope.org/tools/population/ [113]

 PopCover Epitope selection for population coverage – [112]

 BlockLogo Visualization of immunological motifs http://research4.dfci.harvard.edu/cvc/blocklogo/ [121]

 Block conservation Conservation analysis for multi-epitope strategies http://met-hilab.bu.edu/blockcons/ –

http://www.bcgsc.ca/platform/bioinfo/software/hlaminer
http://www.bcgsc.ca/platform/bioinfo/software/hlaminer
http://code.google.com/p/hlaforest
http://www.ebi.ac.uk/ipd/imgt/hla/
http://www.ncbi.nlm.nih.gov/projects/gv/mhc/
http://www.allelefrequencies.net/
http://www.cbs.dtu.dk/services/NetMHC/
http://www.cbs.dtu.dk/services/NetMHCII/
http://www.genome.jp/tools/clustalw/
http://www.ebi.ac.uk/Tools/msa/mafft/
http://www.ebi.ac.uk/Tools/msa/muscle/
http://tools.immuneepitope.org/tools/conservancy/
http://tools.immuneepitope.org/tools/cluster/
http://tools.immuneepitope.org/tools/population/
http://research4.dfci.harvard.edu/cvc/blocklogo/
http://met-hilab.bu.edu/blockcons/
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pathways [131]. An examination of HER2 interactions 
recorded in the STRING (a database of direct (physical) 
and indirect (functional) associations [132] ) with known 
tumor antigens (from TANTIGEN) reveals a large number 
of proteins homologous to, co-expressed with, or interact-
ing with HER2, based on recorded co-expression, data min-
ing primary literature, or recorded interactions in special-
ized databases. The ten tumor antigens with highest scoring 
confidence relationship to HER2 are shown in Fig. 2. One 
of these is EGFR, which has previously been examined as a 
co-target with HER2 [131, 133]. Cross-referencing TANTI-
GEN shows that EGFR harbors T cell epitopes for potential 
immunotherapy targeting. In a similar fashion, functional 
homologues can be examined as novel targets.

Another strategy is to target multiple epitopes in pro-
teins from different interacting pathways. The HER2 and 
the estrogen receptor (ER) signaling pathways are the dom-
inant drivers of cell proliferation in 85 % of breast cancers, 
which make antigens of these pathways desirable therapy 
targets [134]. Another multi-epitope strategy could, there-
fore, involve targeting several antigens in both pathways to 
avoid therapy resistance if a single epitope is lost. Examin-
ing the HER2 and ER pathways in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) the molecular signatures 
database MSigDB [135] reveals multiple potential antigens 
in each pathway. Lastly, exploring the ClinicalTrials.gov 
database (http://www.clinicaltrials.gov) may help direct 
the selection of useful targets. Table 5 lists a sample of data 
resources useful for co-target discovery.

Future perspectives

At present, accurate epitope predictions are limited to cel-
lular responses although prediction of antibody response is 
highly studied [139]. Computational methods for identifica-
tion of T cell epitopes also have limitations, in that peptide 
preprocessing predictions are not yet as accurate as peptide 
binding prediction algorithms. Additionally, availability of 
tumor sequences represents a bottleneck in conservation 
and variability analyses, but this is likely to be remedied 
in a near future, as high-throughput sequencing becomes 
cheaper and more efficient. Another issue currently being 
addressed is that intra-tumor diversity may not be ade-
quately captured by current methods, and may, therefore, 
impact the efficacy of immunotherapies and other therapies 
alike. Lastly, immunotherapy is largely a field of research 
that must be addressed using proteomics analyses rather 
than genomics analyses, the latter having been far more 
prolific in the past decade. Common to all these limitations 
is that they are currently being addressed in the wet labora-
tory to different extents, and all aspects of this progress will 
increase the need for bioinformatics tools and experts.

Bioinformatics for antibody‑based therapies

Immunotherapies utilizing cellular surface proteins, such 
as antibody-based therapies [140] or the adoptive transfer 
of chimeric antigen receptor (CAR)-modified T cells [141] 
also stands to benefit from bioinformatics supported target 
selection. There are, however, limitations to the current 
computational tools for B cell epitope prediction as well 
as a lack of a dedicated data resource for cellular expres-
sion of surface proteins. Prediction of B cell epitopes have 
long been explored using a variety of approaches, but the 
accuracy of these algorithms—particularly for discon-
tinuous epitopes—remains suboptimal, and their practi-
cal utility is limited [139, 142]. Computational prediction 
of membrane spanning protein regions has been explored 
for several decades [143], but before prediction of surface 
epitopes or selection of novel CAR targets can take place, 
a comprehensive data resource of validated surface protein 
expression should be assembled to provide the foundation 
for such exploratory analyses.

In silico assessment of susceptibility to immunotherapy

Successfully induced T cells, raised against a number 
of tumor T cell antigens, have been observed in periph-
eral blood, and yet clinical responses to immunotherapies 
have been limited. This indicates that barriers to immune 
response exist within the tumor environment, and as such, 
play a significant role in planning appropriate treatment 

Fig. 2   Protein–protein interaction (PPI) network for HER2 and inter-
acting tumor antigens (from TANTIGEN). PPI networks may indicate 
possible compensatory activity such as that for HER2 and EGFR, 
making interaction networks useful for elucidating additional poten-
tial targets. Nodes represent proteins and edges correspond to func-
tional interactions. Thicker edges signify higher confidence in the 
interaction. Image was generated using the STRING database

http://www.clinicaltrials.gov
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modalities [144]. Therefore, personalized immunotherapy 
treatments are likely to benefit from thorough analysis of 
genetic and proteomic host factors related to tumor immune 
escape mechanisms and thereby a patient’s susceptibility to 
a given immunotherapy.

In response to the immune system’s role in curbing can-
cer cell growth and immunoediting it has recently been 
proposed that the immune system should be included in the 
traditional histopathological classification of tumors. The 
classical TNM staging system describes the extent of tumo-
rigenesis based on tumor burden (T), the presence of cancer 
cells in draining lymph nodes (N), and status of metastases 
(M). In addition to these scores, a so-called immunoscore 
(I) can be determined on the basis of two leukocyte popula-
tions, namely cytotoxic CD8+ T cells and memory CD8+ 
T cells [145, 146]. Comparison of the infiltration-rate of 
these two cell types in the center of the tumor and in the 
invasive margin of the tumor, determines the “I” score for 
the tumor. In two independent cohorts, patients with a high 
I score had significantly less relapse and overall improved 
survival compared with patients with low I scores [147].

The TNM-I classification scheme in conjunction with 
predictive biomarkers for immune response could provide 
a reasonable estimate of the suitability of immunotherapy 
as part of a treatment modality in any given patient. How-
ever, the applicability of this approach is lessened by lack 
of functional studies on the topic. Firstly, not all cancers 
are resected, and even fewer have significant material left 
after normal histological assessment has been completed. 
Markers and leukocyte profiles that can classify patients on 
the basis of immunological markers in peripheral blood are, 
therefore, desirable although no such markers have been 
successfully correlated with clinical response to antigen-
based immunotherapies [144]. Secondly, the complex inter-
play between genetic and proteomic elements makes it hard 
to elucidate single predictive biomarkers for accurate pre-
dictions. Therefore, no tools or data resources for immuno-
therapy susceptibility biomarkers exist as of yet.

Conclusions

Traditionally, mass experimental screening has been the 
primary tool to elucidate cancer immunotherapy targets, 
a process which could be streamlined by systematic 
application of bioinformatics on patient antigen expres-
sion and sequence profiles in conjunction with publically 
available biological data. The conceptual framework put 
forth in this review was applied to HER2 as an example 
of the proposed computational analyses. These methods 
will increase in accuracy as the genomic and proteomic 
landscape of tumor antigens is uncovered in greater 
breadth and depth in the wet laboratory. As tumor cells’ 
response to immunotherapies is gradually uncovered and 
the body of biological tumor data grows, so will the need 
for bioinformatics to organize, store, and analyze these 
data.
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