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Abstract
Purpose There are no suitable small animal models to
evaluate human antibody-dependent cellular cytotoxicity
(ADCC) in vivo, due to species incompatibilities. Thus, the
Wrst aim of this study was to establish a human tumor-bear-
ing mouse model in which human immune cells can engraft
and mediate ADCC, but where the endogenous mouse
immune cells cannot mediate ADCC. The second aim was
to evaluate ADCC mediated in these humanized mice by
the defucosylated anti-CC chemokine receptor 4 (CCR4)
monoclonal antibody (mAb) which we have developed and
which is now in phase I clinical trials.
Experimental design NOD/Shi-scid, IL-2R�null (NOG)
mice were the recipients of human immune cells, and
CCR4-expressing Hodgkin lymphoma (HL) and cutaneous
T-cell lymphoma (CTCL) cell lines were used as target
tumors.
Results Humanized mice have been established using
NOG mice. The chimeric defucosylated anti-CCR4 mAb
KM2760 showed potent antitumor activity mediated by
robust ADCC in these humanized mice bearing the HL or
CTCL cell lines. KM2760 signiWcantly increased the

number of tumor-inWltrating CD56-positive NK cells which
mediate ADCC, and reduced the number of tumor-inWltrat-
ing FOXP3-positive regulatory T (Treg) cells in HL-bear-
ing humanized mice.
Conclusions Anti-CCR4 mAb could be an ideal treatment
modality for many diVerent cancers, not only to directly kill
CCR4-expressing tumor cells, but also to overcome the
suppressive eVect of Treg cells on the host immune
response to tumor cells. In addition, using our humanized
mice, we can perform the appropriate preclinical evaluation
of many types of antibody based immunotherapy.

Keywords NOD/Shi-scid · IL-2R�null mice · ADCC · 
CCR4 · NK cell · Regulatory T cell

Introduction

The use of therapeutic monoclonal antibody (mAb) for the
treatment of cancer has evolved into a promising approach
over the last several years [1–6]. Antibodies of the human
IgG1 isotype are commonly used for therapeutic applica-
tions as they can mediate multiple eVector functions includ-
ing antibody-dependent cellular cytotoxicity (ADCC),
complement-dependent cytotoxicity (CDC), and direct
apoptosis induction [7–9]. Of these, ADCC is an especially
important mechanism of action of therapeutic mAb against
tumor cells [10–13]; therefore, a better understanding of
ADCC will allow the development of novel, more eVective
treatment strategies using therapeutic mAbs. ADCC
depends on the cytotoxic activity of immune eVector cells,
so to evaluate antitumor eVects of therapeutic mAb in a
small animal model in vivo, the species incompatibility of
the immune system between humans and animals is a criti-
cal issue. Indeed, we have previously reported that the
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mouse eVector system mediating the antitumor action of
therapeutic mAb does diVer from the human [14, 15]. Thus,
a current crucial problem in the Weld of human ADCC
research is the lack of suitable small animal models. To
overcome this, we attempted to establish “humanized
mice”, in which human immune cells could mediate the
antitumor action of the therapeutic mAb. In order to con-
struct such “humanized mice”, here we tested NOD/
Shi-scid, IL-2R�null (NOG) mice as recipients of human
immune cells, because it has been reported that these mice
have multiple immune dysfunctions, and that human
immune cells can be engrafted in NOG mice and retain
almost the same functions as in humans [16, 17].

In the clinical Weld of hematological malignancies, the
development of the therapeutic mAb rituximab has changed
the standard therapy in patients with B-cell lymphomas [1,
2], and has markedly improved their prognosis. In contrast,
T-cell lymphomas have very poor prognoses, and no stan-
dard treatment strategies for these diseases have been
developed so far [18]. Because we previously found that
CC chemokine receptor 4 (CCR4) is expressed on certain
types of these tumors [19, 20], we postulated that this mole-
cule might represent a novel molecular target for immuno-
therapy against refractory T-cell lymphoma. Accordingly,
we have developed a next-generation chimeric anti-CCR4
mAb, KM2760, the Fc region of which is defucosylated
[21], resulting in highly enhanced ADCC due to increased
binding aYnity to the Fc� receptor (Fc�R) on eVector cells
[10, 15]. Importantly, based on our laboratory work on
CCR4 [10, 14, 15, 19, 20, 22–25], and as an outcome of the
success of this translational research, we have conducted a
phase I clinical trial of defucosylated humanized anti-
CCR4 mAb in patients with CCR4-positive T-cell leuke-
mia/lymphoma in Japan (clinical trials gov. identiWer:
NCT00355472). The KM2760 antibody can induce potent
ADCC activity, whereas it does not mediate CDC, and has
no anti-proliferative or direct apoptosis induction eVect
itself [22]. Accordingly, here we use KM2760 as a thera-
peutic mAb to evaluate ADCC in our humanized NOG
mouse model. We selected two diVerent types of CCR4-
expressing tumor cell lines as targets in our system. One, L-
428, is a Hodgkin lymphoma (HL) cell line, characterized
by high production of TARC/CCL17, a ligand of CCR4
[23]. We have previously reported that KM2760 induced
robust ADCC against L-428 by peripheral blood mononu-
clear cells (PBMC) from healthy individuals in vitro, and
demonstrated a promising antitumor activity in the L-428-
bearing non-humanized SCID mouse model [14]. We also
demonstrated that, in HL, speciWc ligands for CCR4 are
produced by tumor cells, and then attract CCR4-expressing
regulatory T (Treg) cells [10, 26–29] to the tumor, where
they create a favorable environment for HL tumor cells to
survive despite host immune recognition [23]. In addition,

KM2760 could deplete CCR4-positive T-cells and inhibit
CD4-positiveCD25-positive T-cell migration induced by
interaction between CCR4 and its ligands, in vitro [23].
Therefore, we here test KM2760-induced eVects, using
HL-bearing humanized NOG mice, against not only tumor
cells but also HL tumor-inWltrating lymphocytes (TIL), in
vivo. The other tumor cell line selected for study in this
model is a cutaneous T-cell lymphoma (CTCL) cell line,
HH. We have also previously reported that KM2760 induced
robust ADCC by healthy donor PBMC against HH in vitro,
and a promising antitumor activity in the HH-bearing
non-humanized SCID mouse model as well [30]. In the
present study, we also tested KM2760-induced antitumor
eVects, using CTCL-bearing humanized NOG mice.

Materials and methods

Cells

PBMC were isolated from two healthy individuals using
Ficoll-Paque (Pharmacia, Uppsala, Sweden) for use as
eVector cells in NOG mice. One was used for HL, the other
for CTCL-bearing mice. These two donors provided
informed written consent prior to sampling according to the
Declaration of Helsinki, and the present study using human
samples was approved by the institutional review board
of Nagoya City University Graduate School of Medical
Sciences.

Antibodies and Xow cytometry

KM2760 has been described previously [15]. The following
mAbs were used for Xow cytometry: MultiTEST CD3
(clone SK7) FITC/CD16 (B73.1) + CD56 (NCAM 16.2)
PE/CD45 (2D1) PerCP/CD19 (SJ25C1) APC Reagent, PE-
conjugated rat anti-mouse CD45 mAb (30-F11), Per-CP
conjugated anti-human CD45 mAb (2D1), PE-conjugated
anti-CD30 mAb (BerH8), and the appropriate isotype con-
trols. All mAbs were purchased from BD Biosciences (San
Jose, CA, USA). Whole blood cells from mice were treated
with BD FACS™ Lysing Solution (BD Biosciences) for
lysing red blood cells. Cells were analyzed by a FACScali-
bur (Becton Dickinson, San Jose, CA, USA) with the aid of
FLOWJO software (Tree Star, Inc., Ashland, OR, USA).

Animals

Male NOG mice were purchased from the Central Institute
for Experimental Animals (CIEA) (Kawasaki, Japan) and
used at 6–8 weeks of age. All of the in vivo experiments
were performed in conformity with the United Kingdom
Co-ordinating Committee on Cancer Research (UKCCCR)
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Guidelines for the Welfare of Animals in Experimental
Neoplasia (Second Edition).

CCR4-expressing human cell lines

The CCR4-expressing human HL cell line L-428 [23] and
the CTCL cell line HH [30] were described previously.

HL mouse model

L-428 cells (1.0 £ 107) suspended in 0.2 ml RPMI-1640
medium with 50% matrigel (BD Matrigel™ Basement
Membrane Matrix) were inoculated subcutaneously (s.c.)
into 12 NOG mice. The tumor-bearing mice were divided
into four groups of three mice each for treatment with (i)
control (saline), (ii) human PBMC, (iii) KM2760, and (iv)
human PBMC + KM2760, such that the mean tumor vol-
umes were equal in each group. KM2760 (10 �g/mouse) or
control injections into the tail veins of the mice were started
28 days after tumor inoculation, when the mean tumor vol-
ume had reached 466 (§ 243, SD) mm3, and continued two
times a week for 2 weeks. Human PBMC (1 £ 107 cells/
mouse) or control intravenous (i.v.) injections into the mice
were also started 28 days after tumor inoculation, and con-
tinued weekly for 2 weeks. Tumor volume was calculated
by the following formula: tumor volume (mm3) = 0.5 £
(major diameter) £ (minor diameter)2.

CTCL mouse model

HH cells (1.0 £ 107) suspended in 0.2 ml RPMI-1640
medium with 50% matrigel were inoculated s.c. into 12
NOG mice. The tumor-bearing mice were divided into four
groups of three mice each for treatment with (i) control
(saline), (ii) human PBMC, (iii) KM2760, and (iv) human
PBMC + KM2760, 4 days after tumor inoculation, such that
the mean serum LDH value was equal in each group. The
concentration of LDH in serum was measured using LDH-J
Reagent (KAINOS LABORATORIES, Inc. Tokyo, Japan)
according to the manufacturer’s instructions. KM2760
(30 �g/mouse) or control intraperitoneal (i.p.) injections into
the mice were started 4 days after tumor inoculation, when
the mean serum LDH value was 3,168 § 203 WU/ml.
Human PBMC (1 £ 107 cells/mouse) or control i.p. injec-
tions were also started 4 days after tumor inoculation
and continued weekly for 2 weeks. Tumor volume was
calculated by the following formula: tumor volume
(mm3) = 0.5 £ (major diameter) £ (minor diameter)2.

Immunopathological analysis

Hematoxylin and eosin (HE) staining and immunostaining
using anti-FOXP3 mAb (236A/E7, Abcam plc, Cambridge,

UK), CD56 (1B6, Novocastra, Newcastle Upon Tyne, UK),
and CD68 (KP1, DAKO Japan, Tokyo, Japan) were per-
formed on formalin-Wxed, paraYn-embedded sections as
previously described [19, 20, 23]. The percent tumor necro-
sis in the L-428 study and the percent tumor lesion in the
liver in the HH study was measured by two hematologists
(A. Ito and T. Ishida) and a hematopathologist (H. Inagaki),
and then averaged. Eight 400 £ high power Welds (HPF) in
the L-428 tumor area were randomly selected and CD56,
CD68, and FOXP-positive cells were counted by two
hematologists (A. Ito and T. Ishida) and a hematopatholo-
gist (H. Inagaki) and averaged.

Soluble CD30 (sCD30) measurement

The concentration of human sCD30 in mouse serum
was measured by enzyme-linked immunosorbent assay
(ELISA) using a human sCD30 ELISA (Bender MedSys-
tems, Vienna, Austria) according to the manufacturer’s
instructions.

Statistical analysis

The diVerences in the tumor volume, % tumor necrosis,
the number of tumor-inWltrating CD56, CD68, and
FOXP3-positive cells/400 £ HPF, % CD16/56-positive
and CD3-negative cells in mouse whole blood, human
sCD30 concentration in mouse serum, and % tumor
lesion in the liver between two groups were examined
with the Mann–Whitney U-test. Data were analyzed with
the aid of StatView software (SAS Institute, version 5.0,
Cary, NC, USA). In this study, P < 0.05 was considered
signiWcant.

Results

KM2760 induces potent antitumor activity in the HL model 
of human PBMC-engrafted NOG mice

Injection of KM2760 together with human PBMC showed
signiWcant therapeutic eYcacy as demonstrated by the
eVect on the tumor volume at day 16 after starting treatment
(a mean of 649 § 267 mm3, SD), compared to control
(1,693 § 632 mm3, P = 0.0495), human PBMC (1,382 §
378 mm3, P = 0.0495), and KM2760 alone (1,817 §
825 mm3, P = 0.0495). Injection of KM2760 alone did not
show any therapeutic eYcacy as demonstrated by the lack
of eVect on tumor volume (Fig. 1a, b).

Injection of KM2760 together with human PBMC also
showed signiWcant therapeutic eYcacy when assessed as
the % tumor necrosis at day 16 after starting treatment
(59.9 § 8.9%), compared to control (21.7 § 7.6%,
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P = 0.0495), human PBMC (48.6 § 3.1%, P = 0.0495), and
KM2760 alone (23.6 § 9.9%, P = 0.0495). Injection of
human PBMC alone also showed signiWcant therapeutic
eYcacy, as demonstrated by the eVect on the % tumor
necrosis, compared to control (P = 0.0495) or KM2760
alone (P = 0.0495). Injection of KM2760 alone did not
have any therapeutic eYcacy as reXected in the % tumor
necrosis (Fig. 2a, b). Representative images of tumor tissue
from each mouse are shown in Fig. 2b.

KM2760 increases the number of intratumoral human 
CD56-positive NK cells

Injection of KM2760 together with human PBMC resulted
in a signiWcant increase in the number of L-428 tumor-inWltrat-
ing CD56-positive NK cells (5.6 § 2.5/400 £ HPF), com-
pared to PBMC alone (0.9 § 0.1/400 £ HPF, P = 0.0495).
Representative images of tumor tissue with CD56 immuno-
staining from each group are shown in Fig. 3a.

Fig. 1 KM2760 induces potent 
antitumor activity as demon-
strated by its eVect on tumor 
volume in the HL mouse model. 
a Antitumor activity of KM2760 
against pre-established subcuta-
neous L-428 tumors. Tumor 
volume was calculated by the 
following formula: Tumor 
volume (mm3) = 0.5 £ (major 
diameter) £ (minor diameter)2. 
Treatments were started when 
tumors were about 466 mm3 
(28 days after L-428 inocula-
tion). The tumor volume is 
presented as mean (mm3). Black 
arrows indicate human PBMC 
or control injections, and 
arrowheads indicate KM2760 
or control injections. Each group 
consists of three mice. Open 
circle, control (saline); 
open square, human PBMC; 
open triangle, KM2760; dark 
Wlled circle, KM2760 + human 
PBMC. SigniWcant diVerences 
between the groups are indicated 
by asterisks, P < 0.05 (n.s. not 
signiWcant). b The photographs 
of each mouse were taken at day 
16 after starting treatment. The 
L-428 tumors are demarcated 
by the thin dotted lines
123
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KM2760 has no inXuence on the number of intratumoral 
human CD68-positive monocytes/macrophages

The number of L-428 tumor-inWltrating CD68-positive
monocytes/macrophages in NOG mice injected with
KM2760 together with human PBMC was 0.73 § 0.34/
400 £ HPF, compared to 0.58 § 0.16/400 £ HPF with
human PBMC alone. This diVerence was not signiWcant.

KM2760 reduces the number of intratumoral human 
FOXP3-positive Treg cells

Injection of KM2760 together with human PBMC resulted
in a signiWcant decrease of the number of L-428 tumor-

inWltrating FOXP3-positive Treg cells (4.3 § 0.6/
400 £ HPF), compared to PBMC alone (13.8 § 8.7/
400 £ HPF, P = 0.0495). Representative images of tumor
tissue with FOXP3 immunostaining from each group are
shown in Fig. 3b.

KM2760 increases the percentage of NK cells among 
human CD45-positive cells in HL mouse whole blood

Injection of KM2760 together with human PBMC resulted
in a signiWcant increase in the proportion of CD16/56-posi-
tive NK cells among the human CD45-positive cells in HL
mouse whole blood (5.7 § 2.4%), compared to PBMC
alone (1.8 § 0.1%, P = 0.0463) (Fig. 3c).

Fig. 2 KM2760 induces potent 
antitumor activity as demon-
strated by its eVect on the % 
tumor necrosis in the HL mouse 
model. a The percent L-428 
tumor necrosis of each mouse 
at day 16 from the start of treat-
ment is plotted. SigniWcant 
diVerences between the groups 
are indicated by asterisks, 
P < 0.05 (n.s. not signiWcant). 
b Each tumor tissue stained 
with HE is shown (scale bar, 
500 �m). In general, tumor tis-
sues from the KM2760 + human 
PBMC group (group iv) show 
extensive necrosis
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KM2760 induces potent antitumor activity in the CTCL 
model of human PBMC-engrafted NOG mice

Injection of KM2760 together with human PBMC showed
signiWcant therapeutic eYcacy as demonstrated by the
eVect on tumor volume at day 15 after starting treatment
(25 § 36 mm3), compared to control (1,627 § 1,401 mm3,
P = 0.0495), human PBMC (547 § 176 mm3, P = 0.0495)
or KM2760 alone (2,914 § 1,401 mm3, P = 0.0495). Injec-
tion of human PBMC alone also showed signiWcant thera-
peutic eYcacy as demonstrated by the eVect on tumor
volume at day 15, compared to control (P = 0.0495) or
KM2760 alone (P = 0.0495). KM2760 alone did not show
any therapeutic eYcacy on tumor volume (Fig. 4a, b).

Injection of KM2760 together with human PBMC also
showed signiWcant therapeutic eYcacy in terms of the per-
cent of tumor lesions in the liver at day 15 (0.6 § 0.4%),
compared to control (59.3 § 44.7%, P = 0.0495), human
PBMC (15.0 § 5.0%, P = 0.0495), and KM2760 alone
(47.0 § 43.0%, P = 0.0495). KM2760 alone did not show
any therapeutic eYcacy as demonstrated by the eVect on
the % tumor lesion in the liver (Fig. 5a). Representative
images of tumor-aVected liver from each mouse are shown
in Fig. 5b, c.

HH was conWrmed to be positive for CD30 by Xow
cytometry (Fig. 6a). Because it has been reported that
serum levels of sCD30 correlate with the tumor burden in
patients with CD30-expressing tumors [31–33], we

Fig. 3 EVect of KM2760 treatment on the characteristics of TIL and
the increased % NK cells in whole blood in the HL mouse model. a
The numbers of CD56-positive cells in the £ 400 HPF of each mouse
are plotted. Representative images stained with CD56 for each group
[injection of human PBMC (group ii) alone or KM2760 + human
PBMC (group iv)] are shown (scale bar, 100 �m). KM2760 signiW-
cantly increased the number of tumor-inWltrating CD56-positive NK
cells. b The number of FOXP3-positive cells in the £ 400 HPF of
each mouse are plotted. Representative images stained with FOXP3 in

each group [injection of human PBMC (group ii) alone or
KM2760 + human PBMC (group iv)] are shown (scale bar, 100 �m).
KM2760 signiWcantly decreased the number of tumor-inWltrating
FOXP3-positive Treg cells. c The percentage of CD56-positive cells
among human CD45-positive cells in whole blood of each HL mouse
is plotted. Flow cytometry analyses of each mouse are shown.
KM2760 signiWcantly increased the percentage of human CD56-posi-
tive cells in mouse whole blood
123
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measured human sCD30 concentrations in mouse serum as
a surrogate marker reXecting therapeutic eYcacy. The
serum sCD30 concentrations of KM2760 and human
PBMC recipient NOG mice at day 15 after starting treat-
ment (2,142 § 810 U/ml) were signiWcantly lower than in
control mice (53,418 § 28,646 U/ml, P = 0.0495), human
PBMC recipient mice (5,926 § 3,034 U/ml, P = 0.0495),

and KM2760 recipient mice (44,027 § 29,830 U/ml,
P = 0.0495). The serum sCD30 concentrations of human
PBMC recipient NOG mice were also signiWcantly lower
than controls (P = 0.0495), and KM2760 recipient mice
(P = 0.0495). Injection of KM2760 alone did not show
any therapeutic eYcacy as demonstrated by the sCD30
concentration.

Fig. 4 KM2760 induces potent 
antitumor activity as demon-
strated by its eVect on tumor 
volume in the CTCL model of 
human PBMC-engrafted NOG 
mice. a Antitumor activity of 
KM2760 against subcutaneous 
HH tumors. Tumor volume was 
calculated by the following 
formula: Tumor volume 
(mm3) = 0.5 £ (major 
diameter) £ (minor diameter)2. 
Treatments were started 4 days 
after HH inoculation. The tumor 
volume is presented as mean 
(mm3). Black arrows indicate 
human PBMC or control injec-
tions, and arrowheads indicate 
KM2760 or control injections. 
Each group consists of three 
mice. Open circle, control 
(saline); open square, human 
PBMC; open triangle, 
KM2760; dark Wlled circle, 
KM2760 + human PBMC. 
SigniWcant diVerences between 
the groups are indicated by 
asterisks, P < 0.05 (n.s. not 
signiWcant). b The photographs 
of each mouse were taken at day 
15 from the start of treatment. 
The HH tumors are demarcated 
by thin dotted lines
123
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Fig. 5 KM2760 induces potent 
antitumor activity as demon-
strated by its eVect on the % liver 
tumor lesions in the HH model 
of human PBMC-engrafted 
NOG mice. a The percent tumor 
necrosis of each mouse at day 16 
after the start of treatment is 
plotted. SigniWcant diVerences 
between the groups are indicated 
by asterisks, P < 0.05 (n.s. not 
signiWcant). b The photographs 
of a mouse of control (group i), 
and a mouse from the 
KM2760 + human PBMC 
(group iv), were taken at day 15 
after the start of treatment. 
Almost the entire liver of the 
control mouse (group i)-3 was 
diVusely inWltrated by HH cells 
and enlarged. c Each liver tissue 
stained with HE is shown (scale 
bar, 500 �m)
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KM2760 increases the percentage of NK cells among 
human CD45-positive cells in CTCL mouse whole blood

Injection of KM2760 together with human PBMC resulted
in a signiWcant increase of the proportion of CD16/56-posi-
tive NK cells among human CD45-positive cells in HL
mouse whole blood (68.3 § 7.0%), compared to PBMC
alone (2.5 § 0.1%, P = 0.0463) (Fig. 6c).

Discussion

The present study showed that the combined injection of
KM2760 together with human PBMC exhibited signiWcant
therapeutic eYcacy, but that KM2760 alone failed to do so
in either the HL or CTCL model. This Wnding indicates that
the KM2760-induced antitumor eVects observed here are
completely dependent on the engrafted human PBMC, and
is consistent with the fact that KM2760 can induce only
ADCC activity, but does not mediate CDC or direct anti-
tumor activities [22]. This Wnding also conWrms that the

endogenous immune cells in NOG mice cannot mediate the
antitumor action of the therapeutic mAb. This is a very
important issue for the evaluation of human ADCC in vivo.
Snanoudj et al., observed ADCC mediated by engrafted
human NK cells in NOD/SCID mice in vivo [34]. How-
ever, in this system, the eVect of the mAb mediated by
endogenous murine immune cells could not be completely
excluded. Indeed, other investigators have demonstrated
that endogenous immune cells in mice can mediate signiW-
cant antitumor activities of the therapeutic mAb in the
tumor-bearing NOD/SCID mouse model [35–37], and fur-
thermore, we ourselves conWrmed almost the same Wnding
using KM2760 as the therapeutic mAb (unpublished data).
On the other hand, the injection of human PBMC alone
exhibited signiWcant therapeutic eYcacy, as demonstrated
by the eVect on the % tumor necrosis in the HL model, and
the eVect on both tumor volume and serum sCD30 levels in
the CTCL model compared to controls or KM2760 alone.
This antitumor eVect seems to be mainly due to NK cells in
the engrafted human PBMC, which play an important part
in the Wrst line of defense against tumors [38].

Fig. 6 KM2760 reduces serum 
sCD30 concentration, and in-
creases the % NK cells in whole 
blood in the CTCL mouse 
model. a HH was stained with 
PE-conjugated anti-CD30 mAb 
(blank histogram) or isotype 
control mAb (Wlled histogram). 
b The serum sCD30 concentra-
tions of each CTCL mouse are 
plotted. KM2760 and human 
PBMC recipient NOG mice had 
signiWcantly lower levels of 
sCD30 than control, human 
PBMC recipient, and KM2760 
recipient mice. Injection of 
KM2760 alone did not show any 
therapeutic eYcacy as reXected 
in serum sCD30 concentration. 
c The percentage of CD56-
positive cells among human 
CD45-positive cells in whole 
blood of each CTCL mouse is 
plotted. Flow cytometry analy-
ses of each mouse are shown. 
KM2760 signiWcantly increased 
the percentage of human 
CD56-positive cells in these 
mice
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We found here that KM2760 treatment resulted in an
increased number of intratumoral human CD56-positive
NK cells. NK cells should be eYciently delivered to CCR4-
expressing tumor sites by KM2760 via interaction with
Fc�R, and there mediate KM2760-induced ADCC against
the tumor cells. This immunopathological Wnding provided
the Wrst evidence that NK cells actually do function as
eVectors of human ADCC in vivo, and is consistent with
the in vitro Wndings of the critical importance of NK cells
as human ADCC eVector cells [39]. On the other hand, in
our system, a role for CD68-positive monocytes/macro-
phages as eVector cells mediating the antitumor action of
the therapeutic mAb could not be demonstrated.

We must emphasize the present Wnding that KM2760
reduced the number of intratumoral human FOXP3-
positive Treg cells. This is important because much recent
evidence has demonstrated that the presence of Treg cells
in TIL is one of the most crucial tumor immune-evasion
mechanisms and the main obstacle to successful tumor
immunotherapy [10, 40–42]. Our previous observation of
KM2760-induced Treg reduction in vitro [22, 23] was con-
Wrmed by the present study of humanized mice in vivo. The
recognition of the importance of Treg cells in diVerent can-
cers will allow the rational design of more eVective treat-
ments. Depletion of Treg cells in patients with tumors
could become a promising strategy for boosting tumor-
associated antigen-speciWc immunity. For instance, the
administration of fully human anti-CTLA-4 blocking mAb
to advanced cancer patients increases immune-mediated
tumor destruction in some subjects [43–45]. The present
observation in the humanized mouse model in vivo further
reassures us that anti-CCR4 mAb could be an ideal treat-
ment modality for patients with CCR4-positive neoplasms,
and could also be used for treatment of many other types of
cancer by overcoming the suppressive eVect of Treg cells
on the host’s immune response to tumor cells.

The injection of KM2760 together with human PBMC
resulted in a signiWcant increase in the percentage of NK
cells among human CD45-positive cells in the animals’
blood and was observed in both HL and CTCL models.
This suggests that stimulation via Fc�R results in peripheral
blood-derived human NK cell expansion in mice. This
might agree with the two reports that (1) NK cell activation
could be induced by Fc�R stimulation alone, by Bryceson
et al. [46], and (2) defucosylated mAb eYciently activated
NK cells via antigen-speciWc Fc�R signals during ADCC,
by ourselves [24].

In conclusion, a novel tumor-bearing humanized animal
model created using NOG mice, by which human ADCC
can be evaluated, has been established. This model can
overcome the limitations to preclinical in vivo investiga-
tions of ADCC caused by species incompatibility between
humans and mice. With this model, we can perform appro-

priate preclinical evaluations of novel therapeutic mAb, and
of combination treatment strategies with the many types of
therapeutic mAbs, such as rituximab, trastuzumab, and
cetuximab, and other antitumor agents. Using this system,
the present study demonstrated that KM2760 showed
potent antitumor activity mediated by robust ADCC, and
therefore could be an ideal treatment modality for patients
with CCR4-positive lymphoma. In addition, KM2760
reduced the number of tumor-inWltrating FOXP3-positive
Treg cells in vivo, and therefore could also be used as a
novel strategy for treatment of many other types of cancer
to overcome the suppressive eVect of Treg cells on the
host’s immune response to tumor cells. In the near future,
the eYcacy of the defucosylated anti-CCR4 mAb will be
established in clinical trials in humans.
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