
Cancer Immunol Immunother (2007) 56:391–396 

DOI 10.1007/s00262-006-0198-7

ORIGINAL ARTICLE

Addition of GM-CSF to a peptide/KLH vaccine results 
in increased frequencies of CXCR3-expressing KLH-speciWc 
T cells

Il-Kang Na · Ulrich Keilholz · Anne Letsch · Sandra Bauer · Anne Marie Asemissen · 
Dirk Nagorsen · Eckhard Thiel · Carmen Scheibenbogen 

Received: 24 May 2006 / Accepted: 9 June 2006 / Published online: 19 July 2006
©  Springer-Verlag 2006

Abstract T-cell traYcking is determined by expres-
sion patterns of chemokine receptors. The chemokine
receptor CXCR3 is expressed on a subpopulation of
type 1 T cells and plays an important role for migration
of T cells into inXamed and tumor tissues. Here, we
studied the chemokine receptor expression on speciWc
T cells generated against the neoantigen keyhole lim-
pet hemocyanin (KLH) in patients who had been
immunized in the context of a tumor peptide vaccina-
tion trial with or without the adjuvant granulocyte-
macrophage colony-stimulating factor (GM-CSF). In
patients immunized in the presence of GM-CSF the
fraction of CXCR3+ KLH-speciWc T cells was signiW-
cantly higher than in patients immunized in the
absence of GM-CSF (median 45 vs. 20%, P = 0.001). In
contrast, the chemokine receptor CCR4, associated
with migration to the skin was found in both cohorts on
less than 10% of KLH-speciWc T cells. These results
show that CXCR3 expression on vaccine-induced T
cells can be modulated by modifying the local vaccine
milieu.
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Introduction

T-cell migration is a multistep process, in which
chemokines and chemokine receptors play a key role.
The chemokine receptor CXCR3 is expressed on a
subset of diVerentiated CD4+ and CD8+ T cells.
CXCR3 plays an important role in mediating migration
of T cells into type 1-dominated inXammatory pro-
cesses, where the speciWc ligands CXCL9 (Mig),
CXCL10 (IP-10), and CXCL11 (I-TAC) are abun-
dantly expressed [2, 13, 17, 26]. These chemokines have
also been found upregulated in human immunodeW-
ciency virus (HIV)-infected macrophages and dendritic
cells and were implicated in the recruitment of T cells
to HIV-infected lymph nodes and central nervous sys-
tem (CNS) [5, 16]. Furthermore, CXCL9, 10, and 11
are frequently expressed in tumor tissues as shown for
renal cell carcinoma and melanoma [11, 25]. CXCL9
and CXCL10 have been associated with heavy inWltra-
tion of T cells in human melanoma suggesting that
CXCR3 can mediate T-cell migration into tumor tissue
[11]. Transfection of CXCL11 into tumor cells resulted
in increased inWltration by CXCR3+ CD8+ T cells and
tumor rejection [7]. A recent study analyzing the
chemokine receptor proWle of melanoma-peptide
stimulated T cells in melanoma patients showed that
expression of CXCR3 on T cells was associated with
increased survival [15]. Thus, it is of considerable inter-
est for both cancer and infectious disease vaccine
development to Wnd out conditions to enhance the
expression of CXCR3 on T cells generated by vaccina-
tion.

In vitro, CXCR3 is expressed within a few days
following activation of T cells independently of the
cytokine milieu. After stimulation, however, CXCR3
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expression is maintained preferentially on T cells that
have been activated in type 1 conditions [10, 18].

GM-CSF is frequently given as vaccine adjuvant due
to its ability to enhance the immunogenicity of protein
or peptide vaccines [3, 23]. GM-CSF stimulates the
activation and migration of dendritic cells and induces
their expression of MHC class II molecules. GM-CSF
was reported to induce CXCR3 expression on CD34+

stem cells [8].
In the current study expression of CXCR3 was ana-

lyzed on speciWc T cells generated in melanoma
patients in a peptide vaccine trial either in the presence
or absence of the adjuvant GM-CSF as previously
described [21]. As T-cell responses against the mela-
noma peptide tyrosinase were only generated in a
subset of patients who received GM-CSF, we studied
T-cell responses generated against the neoantigen key-
hole limpet hemocyanin (KLH), which was included in
the vaccine as unspeciWc T helper protein and against
which all patients mounted a T-cell response.

Materials and methods

Patient samples and vaccination protocol

Cell samples analyzed in this study were those avail-
able from patients with stage III or IV melanoma who
had been vaccinated within the context of two consecu-
tive phase I melanoma peptide vaccine trials, which
have been previously reported [12, 21]. The trials had
been approved by the Institutional Ethics Committee.
All patients had received six cycles of intradermal and
subcutaneous injections of 4 mg KLH (Vacmun; Bio-
syn, Stuttgart, Germany) admixed with tyrosinase pep-
tide(s) (Bachem, Bubendorf, Switzerland). Patients in
one cohort received in addition GM-CSF (Leukomax;
Essex, Munich, Germany) as adjuvant in a dose of
75 �g for 4 days injected at the same site beginning
2 days before peptide vaccination. Blood samples were
obtained from each patient before and 4 weeks after
the fourth and sixth vaccination. Written informed
consent was obtained from all patients.

T-cell response assessment by Interferon � (IFN�) Xow 
cytometry analysis

Peripheral blood mononuclear cells (PBMC) were
thawed and after overnight resting incubated with
1 mg/ml KLH and without antigen as negative control
for 18 h. After 2 h, 10 �g/ml brefeldin A (Sigma, Deis-
enhofen, Germany) were added. In case PBMCs were
stimulated with 10 �g/ml peptide tyrosinase 368–376,

370D [22, 29], inXuenza matrix protein, 58–66 (Thermo
BioSciences, Ulm, Germany) or 100 ng/ml phorbol
myristate acetate (PMA) and 1 ng/ml ionomycin
(Sigma-Aldrich, Munich, Germany) incubation times
were 6 h, and brefeldin A was added after 1 h. In pep-
tide stimulation experiments, HIV reverse transcrip-
tase 476-84 (Sigma-Genosys, Cambridge, United
Kingdom) was used as negative control. PBMC were
then stained extracellularly with Xuorescence-conju-
gated monoclonal antibodies against CD4, CD8, CD3
(BD Bioscience, Heidelberg, Germany) and intracellu-
larly with IFN� Xuorescence-conjugated monoclonal
antibody (BD Bioscience). Staining with the Xuores-
cence-conjugated monoclonal antibodies against
CXCR3, CCR4 and CCR9 (BD Bioscience, and R&D,
Wiesbaden, Germany) was performed prior to the
antigen incubation. Data acquisition was performed on
FACSCalibur and analyzed using Cellquest Software
(BD Bioscience). For calculation of percentages of
KLH-speciWc T cells CD3+CD4+ IFN�+ T cells counted
in the absence of antigen were subtracted from those
counted in the presence of KLH.

Statistical analysis

The Mann–Whitney U test was used to determine
whether there was a statistically signiWcant diVerence
in the percentage of chemokine receptor positive T
cells between the two patient cohorts.

Results

Assessment of CXCR3 on antigen-speciWc T-cells 
ex vivo

SpeciWc T-cell responses to protein antigens can be
assessed in unstimulated PBMC samples by antigen-
induced intracellular accumulation of IFN�. In order to
facilitate the chemokine receptor expression on anti-
gen-speciWc T cells we Wrst analyzed conditions how to
determine chemokine receptor expression on T cells
after short time stimulation with antigen. It had been
shown previously, that T-cell receptor stimulation can
result in transient CXCR3 downregulation [19, 20].
When we incubated T cells with peptide or protein
antigens for 6 or 18 h in the presence of brefeldin A
and stained T cells thereafter for CXCR3 expression,
all T cells speciWcally secreting IFN� in response to
various antigens or stimulation with PMA/Ionomycin
were CXCR3-negative (Fig. 1a, left column). When the
CXCR3 antibody was, however, added prior to stimu-
lation, both CXCR3-positive and CXCR3-negative
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antigen-speciWc T cell responses could be detected
(Fig. 1a, right column). To further study the underlying
mechanisms we stained antigen-speciWc T cells either
before antigen stimulation, after antigen stimulation
but before addition of brefeldin A, and after addition
of brefeldin A (Fig. 1b). As shown in Fig. 1b (middle
dot plots) stimulation with inXuenza for 1 h led already
to marked CXCR3 downregulation in accordance to
previous studies [19, 20]. CXCR3 completely disap-
peared following addition of brefeldin A for 5 h
(Fig. 1b, lower dot plots). Brefeldin A is known to

inhibit the transport of immunoglobulin receptors to
the cell surface [1], it probably inhibits reexpression of
CXCR3 on the cell surface. As a control CCR9 expres-
sion was analyzed which was always negative on inXu-
enza-reactive T cells irrespective of the staining
sequence (data not shown). In our series of experi-
ments analyzing the chemokine receptor proWle of
KLH-speciWc T cells we therefore assessed chemokine
receptor expression by adding the antibodies prior to
antigen stimulation.

Chemokine receptor proWle of KLH-speciWc T-cell 
responses

PBMC samples of 15 patients who had received
repeated immunizations with tyrosinase peptides and
KLH either in the presence (n = 8) or absence of GM-
CSF (n = 7) were available for this study. SpeciWc T-
cell responses to KLH were detected in all patients
after vaccination (median 0.10%, range 0.05–0.32%
with GM-CSF, median 0.27%, range 0.05–0.69%
without GM-CSF), in contrast to T-cell responses to
tyrosinase, which were only detectable in patients
immunized in the presence of GM-CSF [21]. Before
vaccination, no T cells in response to KLH were
detected [21]. KLH-reactive T cells were costained
with antibodies against the chemokine receptors
CXCR3, CCR4 and CCR9. CCR4 has been associated
with traYcking to the skin, and is predominately
expressed on type 2 T cells, but also on a subpopula-
tion of CXCR3+ T cells [9]. CCR9, which is expressed
on T cells primed in the small intestine [27], was used
as negative control. The analyses of CCR4 and CCR9
were done in a subset of samples only due to paucity
of clinical samples. Figure 2a shows a representative
dot plot of the CXCR3/IFN� proWle of KLH-reactive
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Fig. 1 CXCR3 is downregulated in vitro following antigen stim-
ulation and incubation with brefeldin A. a CXCR3/IFN� proWle
of CD3+CD8+ gated lymphocytes stimulated with inXuenza pep-
tide, phorbol myristate acetate/Ionomycin or tyrosinase peptide
are shown. CXCR3 was stained after antigen stimulation and bre-
feldin A incubation (left dot plots) or prior to antigen stimulation
(respective right dot plots). T cells reactive with tyrosinase pep-
tide were from a HLA-A2+ melanoma patient who exhibited a
spontaneous high-frequency speciWc T-cell response [28]. b PB-
MCs of a HLA-A2+ healthy donor were stimulated with HIV
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shown. CXCR3 staining was either performed before antigen
stimulation (b, upper dot plots), or after antigen stimulation but
before addition of brefeldin A (b, middle dot plots) or after anti-
gen stimulation and addition of brefeldin A (b, lower dot plots).
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enza-speciWc IFN�-producing T cells, ab antibody
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T cells in two patients. The fractions of total CD4+ T
cells expressing CXCR3, CCR4 and CCR9 were simi-
lar in patients immunized in the presence or absence of

GM-CSF (Fig. 2b–d). The percentage of KLH-speciWc
CD4+ T cells expressing CXCR3 was signiWcantly
higher in patients vaccinated in the presence of the
adjuvant GM-CSF (median 45.3%, range 30.0–76.7%)
than in patients who did not receive GM-CSF (median
20.0%, range 1.3–37.0%, P = 0.001, Fig. 2a, b). In con-
trast, no obvious diVerence in the percentages of
CCR4+ KLH-speciWc CD4+ T cells was found among
the two patient cohorts (median 0%, range 0–42.4%,
versus median 7.7%, range 0–20.4%, P = 0.33, Fig. 2c).
Less than 1% of KLH-speciWc CD4+ T cells did express
CCR9 in both groups (Fig. 2d).

In two patients from whom consecutive post-vacci-
nation samples were available the percentages of
CXCR3+ KLH-speciWc T cells were repeatedly ana-
lyzed in samples 1, 6/4 and 17/18 months post-vaccina-
tion (Fig. 3). In patient A who had been immunized in
the presence of GM-CSF the percentage of CXCR3+ T
cells among the KLH-speciWc CD4+ T-cell fraction was
always higher than the percentage of CXCR3+ T cells
among the total CD4+ T-cell fraction. In contrast, in
patient B, who had been immunized without GM-CSF,
frequencies of CXCR3+ T cells among the KLH-spe-
ciWc CD4+ T-cell fraction remained lower compared to
frequencies of CXCR3+ cells among total CD4+ T cells
at all time points.

Discussion

In this study we investigated whether GM-CSF given
as vaccine adjuvant can modulate the chemokine
receptor expression of vaccine-induced T cells. Results
from our study show that vaccination in the presence of
the adjuvant GM-CSF promotes the generation of
enhanced frequencies of KLH-speciWc CD4+ T cells
expressing CXCR3. In contrast, few KLH-speciWc
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Fig. 2 Chemokine receptor expression by KLH-speciWc T cells in
patients immunized in the presence or absence of GM-CSF. a
CXCR3/IFN� proWle of CD3+CD4+ gated lymphocytes in unstim-
ulated (left) or KLH-exposed (right) PBMCs in two patients
immunized in the absence (upper dot plots) or presence of GM-
CSF (lower dot plots) are shown. The percentages of total
CD3+CD4+ T cells and KLH-speciWc CD3+CD4+ T cells are dis-
played expressing CXCR3 (b), CCR4 (c) or CCR9 (d) in patients
immunized in the presence (n = 8, Wlled cycles) or absence (n = 7,
open squares) of GM-CSF. In each patient, chemokine receptor
expression of all CD3+CD4+ T cells was compared with the
respective chemokine receptor expression of the KLH-speciWc
CD3+CD4+ T cells (connecting line). CCR4 and CCR9 were only
determined in a subset of samples (GM-CSF cohort: CCR4 n = 5;
CCR9: n = 4; non GM-CSF cohort: CCR4 n = 6, CCR9 n = 7) due
to paucity of material. Bars indicate the median
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T cells beared CCR4 despite intradermal injection of
the vaccine and no obvious diVerence between the
cohorts was observed. CCR4 is, however, predomi-
nantly expressed on type 2-cytokine producing T cells,
which we have not analyzed in this study and this may
explain our failure to detect generation of CCR4+

KLH-speciWc T cells.
The inXuence of GM-CSF on CXCR3 expression

during the priming of naïve T cells has not been studied
in vitro or animal models yet. Although GM-CSF has
been shown to be able to induce CXCR3 expression on
CD34+ stem cells [8], GM-CSF was unable to directly
induce CXCR3 expression on T cells (data not shown).
GM-CSF is known to enhance recruitment of dendritic
cells to the injection site [3, 14], which may promote
induction of CXCR3 on KLH-speciWc T cells. In vitro
activation of T cells by dendritic cells induces CXCR3
expression independently of the cytokine milieu [10].
However, T cells primed in the presence of IL-4 loose
CXCR3 expression within 7 days while it is maintained
stably expressed on T cells that have been activated in
the presence of interleukin 12 [18]. As we have found
CXCR3 expression on KLH-speciWc T cells 4 weeks
after the last vaccination this suggests that GM-CSF
promotes conditions under which T cells stably
expressing CXCR3 are primed.

A prerequisite for eVective T-cell therapy is the
migration of antigen-speciWc T cells into the tumor.

Very little is known so far about the migratory charac-
teristics of vaccine-induced T cells. In experimental
models the failure of adoptively transferred T cells to
migrate to tumor tissues was shown [6]. CXCR3
expression on vaccine-induced T cells may enhance
their ability to migrate into tumors as CXCR3 ligands
were shown to be frequently expressed in tumors [11,
25].

Addition of GM-CSF to peptide-, protein- or gene
transfer-based vaccination has resulted in the augmen-
tation of antitumor immune responses by enhancing T-
cell responses in several studies [3, 4]. Findings from
clinical trials suggest that GM-CSF given alone or as
vaccine adjuvant may result in improved clinical out-
come [23, 24]. Our Wndings suggest that GM-CSF as
vaccine adjuvant can also qualitatively enhance the
T-cell response to vaccination.

In summary, our study is the Wrst in humans suggest-
ing that the local vaccine milieu can modulate the
chemokine receptor expression on speciWc T cells gen-
erated by vaccination. Upregulation of CXCR3 may
facilitate migration of vaccine-generated T cells into
inXammatory and tumor sites.
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