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Abstract
Objectives Detecting ablation site recurrence (ASR) after thermal ablation remains a challenge for radiologists due to the 
similarity between tumor recurrence and post-ablative changes. Radiomic analysis and machine learning methods may 
show additional value in addressing this challenge. The present study primarily sought to determine the efficacy of radiomic 
analysis in detecting ASR on follow-up computed tomography (CT) scans. The second aim was to develop a visualization 
tool capable of emphasizing regions of ASR between follow-up scans in individual patients.
Materials and methods Lasso regression and Extreme Gradient Boosting (XGBoost) classifiers were employed for modeling 
radiomic features extracted from regions of interest delineated by two radiologists. A leave-one-out test (LOOT) was utilized 
for performance evaluation. A visualization method, creating difference heatmaps (diff-maps) between two follow-up scans, 
was developed to emphasize regions of growth and thereby highlighting potential ASR.
Results A total of 55 patients, including 20 with and 35 without ASR, were included in the radiomic analysis. The best per-
forming model was achieved by Lasso regression tested with the LOOT approach, reaching an area under the curve (AUC) 
of 0.97 and an accuracy of 92.73%. The XGBoost classifier demonstrated better performance when trained with all extracted 
radiomic features than without feature selection, achieving an AUC of 0.93 and an accuracy of 89.09%. The diff-maps cor-
rectly highlighted post-ablative liver tumor recurrence in all patients.
Conclusions Machine learning-based radiomic analysis and growth visualization proved effective in detecting ablation site 
recurrence on follow-up CT scans.
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Introduction

Hepatocellular carcinoma (HCC) represents one of the most 
frequently occurring malignancies worldwide, exhibiting a 
5-year survival rate of approximately 18%. In 2020, nearly 
906,000 individuals were diagnosed with liver cancer, with 
HCC being the most prevalent form [1, 2]. Colorectal can-
cer ranks among the top three most prevalent cancers glob-
ally. Approximately 50% of patients with colorectal cancer 
eventually develop liver metastases, which pose a significant 
challenge following curative treatment for colorectal cancer 
and contribute to the overall mortality rate [3–5]. Curative 
interventions for HCC encompass surgical resection and 
liver transplantation. Nonetheless, numerous patients are 
ineligible for such treatments due to for example multifocal 
disease, metastases, inadequate hepatic reserve, and organ 
donor scarcity. Similar principles hold true for colorectal 
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liver metastases, which are not always amenable for surgical 
resection. As a result, thermal ablation (TA) has emerged 
as a widely employed minimally invasive treatment modal-
ity with promising local tumor control rates and long-term 
outcomes [6–8].

The main drawback of TA is the relatively frequent occur-
rence of viable tumor at the edge of the ablation zone which 
is called ablation site recurrence (ASR). Risk factors for 
ASR include insufficient ablative margins, tumor location, 
and tumor morphology [9–12]. Accurate and timely diag-
nosis of ASR is crucial to ensure the option of (minimally 
invasive) re-treatments with curative intent leading to the 
best long-term outcomes [13]. However, diagnosing ASR 
on follow-up computed tomography (CT) scans remains dif-
ficult, even for experienced radiologists due to the similar-
ity between post-ablative necrosis/perilesional inflammation 
and true ASR [14–16].

Radiomics, an emerging methodology in quantitative 
medical image analysis, encompasses the extraction of an 
extensive array of hand-crafted radiomic features from medi-
cal images. These features translate visual information and 
phenotypic traits into numerical and quantitative data ame-
nable to machine learning algorithm modeling and analysis 
[17–19]. Because of these capabilities, radiomic analyses 
have demonstrated potential in enhancing clinical outcomes 
[20, 21].

The present study primarily sought to determine the effi-
cacy of radiomic analysis in detecting ablation site recur-
rence on follow-up CT scans after thermal ablation of 
malignant liver tumors. The secondary aim was to develop 
a visualization tool capable of emphasizing regions of recur-
rence between follow-up scans in individual patients.

Material and methods

Study design and patient selection

A retrospective cohort of adult patients who underwent 
TA for liver tumors including HCC and metastases from 
colorectal and breast cancer between 2008 and 2020 was 
established from the electronic patient records at the XXX. 
At our center, the follow-up protocol after TA consists of a 
first CT scan one week after TA, followed by CT scans every 
4 months during the first two years, and thereafter every six 
months up to five years after the treatment.

All reports of follow-up CT scans after TA, generated 
by abdominal radiologist as part of routine patient care, 
were retrospectively scrutinized for the evidence of recur-
rent disease. ASR was characterized by the emergence of a 
contrast-enhancing lesion either within or in the immedi-
ate vicinity of the ablation zone. Concurrently, the largest 
diameter of these lesions maintains direct contact with the 
ablation zone [22]. In case of radiological evidence of ASR 
with histopathological confirmation, patients were classified 
as the positive patient group. In this ‘ASR-positive’ patient 
group, the follow-up CT scans on which the ASR was identi-
fied were used for the radiomic analysis (average 12 months 
[interquartile range: 5–17 months] after the date of TA).

A control group was established by randomly selecting 
patients until 2020 from the cohort with follow-up CT scans 
without evidence of ASR. In these patients, the most recent 
follow-up CT scan was used (average 18 months [interquar-
tile range: 12–23 months] after the TA date) for radiomic 
analysis.

Exclusion criteria (Fig. 1) for radiomic analysis were (1) 
unavailability of contrast-enhanced portal venous phase CT 
scans, such as cases where ASR was confirmed through 
follow-up magnetic resonance (MR) or positron emission 
tomography (PET) scans, or when only the arterial phase 
was accessible in the picture archiving system; (2) distant 

Fig. 1  Patient exclusion dia-
gram
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intrahepatic liver lesions, identified by a radiologist as a 
novel lesion rather than ASR; (3) inability to delineate the 
ablation zone on the latest follow-up scan in patients in the 
control group. This inability arises when the ablation zone 
is overgrown by normal liver tissue, rendering it invisible 
in the patient's most recent follow-up scan. This indicates 
normalization and, consequently, the absence of recurrence.

Multivendor CT systems were employed, with scan 
parameters harmonized between our hospital and referring 
institutions as follows: automatic tube current modulation 
and tube voltage selection, 1 mm slice thickness, 75-s delay 
following the intravenous injection of 90–100 mL contrast 
medium at a 3.6–4.0 mL/s flow rate, succeeded by a 32 mL 
saline solution. The Institutional Review Board granted 
approval, and the requirement for written informed consent 
was waived.

Region of interest and image processing

The entire workflow of the study is demonstrated in Fig. 2. 
The ablation zone and a 2 cm diameter surrounding rim of 
liver parenchyma constituted the region of interest (ROI). 
Ablation zones were delineated by two experienced abdomi-
nal radiologists separately on different parts of the dataset, 

with the mask of the surrounding liver parenchyma rim 
being automatically generated through morphological dila-
tion of the delineated ablation zone. Figure 3 shows exam-
ples of binary masks for the ablation zone and adjacent liver 
parenchyma rim.

To modulate contrast and brightness of the CT scan, 
thereby augmenting soft tissue visibility, a soft tissue win-
dow centered at 50 HU with a width of 400 HU was imple-
mented. For normalization, all images employed in the radi-
omic analysis were resampled to identical spacing [1.0 mm, 
1.0 mm, 2.0 mm] using a B-spline interpolator. Gray-level 
discretization employed a fixed bin size method and tested 
the size set of {5, 15, 25}.

Radiomic features

Radiomic features represent a collection of quantitative 
measurements derived from medical images, translating 
radiological visual information into numerical data. A 
predefined set of radiomic features according to the Image 
Biomarker Standardization Initiative (IBSI) was extracted 
from the original pre-processed CT scans [23], encompass-
ing morphological features, first-order statistical features, 
gray level co-occurrence matrix features, gray level size 

Fig. 2  Workflow of radiomic analysis

Fig. 3  Example of Region of Interest
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zone matrix features, gray level run length matrix features, 
neighboring gray tone difference matrix features, and gray 
level dependence matrix features. Additionally, first-order 
statistical features and texture features were also extracted 
from Laplacian of Gaussian (LoG) filter-transformed CT 
scans, since the LoG filter enhances the visibility of sub-
tle image structures, such as edges. The amalgamation of 
radiomic features from the original and LoG-transformed 
scans provides more comprehensive insight into underly-
ing tissue characteristics. Feature extraction was executed 
using Python 3.7.9 in the open-source library Pyradiomics 
3.0 [24].

Extracted radiomic features may exhibit strong linear 
relationships with one another. To address collinearity, 
Pearson correlation coefficients between radiomic features 
were computed. Radiomic feature groups exhibiting Pearson 
correlation coefficients > 0.8 were deemed highly correlated 
and therefore removed to decrease dataset dimensionality 
and mitigate collinearity issues.

Machine learning classifiers

Owing to the limited dataset size, logistic regression with L1 
penalty (Lasso regression) was employed for feature mod-
eling, as it is apt for small-scale data analysis tasks [25]. 
The L1 penalty served as the regularization for the logistic 
regression classifier, penalizing high-valued regression coef-
ficients to eliminate redundant features and reduce multicol-
linearity in feature sets. The classifier automatically selected 
radiomic features related to training targets during training. 
Feature importance for Lasso regression was gauged by the 
corresponding feature weights in trained classifiers. Fur-
thermore, extreme gradient boosting (XGBoost) methods 
were also utilized for radiomic feature modeling. XGBoost 
classifiers, constructed by decision trees, facilitate powerful 
feature selection to distinguish ASR at each split node [26]. 
Feature importance for the XGBoost classifier was measured 
by Gini importance (mean decrease in impurity) [27].

To furnish an unbiased performance estimate of trained 
classifiers, a leave-one-out test (LOOT) approach was 
employed. In LOOT, the dataset was divided into n subsets, 
where n represents the number of patients in the entire data-
set. For each subset, a model was trained using n-1 samples 
based on five-fold cross-validation. The trained model was 
subsequently tested on the held-out sample to evaluate per-
formance. This process was repeated n times, with results 
computed based on predictions of held-out samples in each 
subset. Additionally, the imbalanced dataset, with more 
patients lacking ASR than those with ASR could influence 
machine learning model performance [28, 29]. Therefore, 
a class weight of 1.5 was applied to the minority class. By 
increasing the weight of patients with ASR, the classifier 
was compelled to consider the asymmetry of cost error 

between the positive and control groups. The model would 
incur a greater penalty for misclassifying ASR patients 
during training. The model was developed using the open-
source library scikit-learn 0.23.2 with Python 3.7.9 [30].

Visualization method for post‑ablative grown 
region

Diagnosing ASR can be challenging for radiologists due 
to subtle tumor size and the similarity between ASR and 
post-ablative necrosis and perilesional inflammation. It 
was hypothesized that malignant recurrent tumors exhibit 
growth between two follow-up scans; thus, emphasizing 
the differences between follow-up scans could potentially 
assist radiologists in focusing on the grown region of dis-
ease recurrence, making it more accessible to visualize and 
identify ASR.

To generate a heatmap (diff-map) highlighting differences 
between two follow-up scans, the images were aligned using 
elastix software [31]. Liver segmentation on the CT ensured 
accurate registration across scans. Subsequently, the diff-
map was generated by subtracting the two registered follow-
up scans. To further refine the diff-map, it was smoothed 
using a Gaussian kernel with a standard deviation of 2.5, 
and then normalized to a range of 0 to 1. Regions exhibiting 
growth during the time interval between the two follow-up 
scans were characterized by larger differences in gray val-
ues on the scans, thus emphasizing the disease recurrence 
regions on the diff-map.

Results

Study population characteristics

In our center, 278 patients underwent thermal ablation for 
malignant liver tumors. Of these, 30 (10.8%) were identi-
fied with ASR. During patient selection, 2 patients were 
excluded due to the absence of follow-up CT scans on the 
date of ASR diagnosis, 8 patients were excluded because 
their liver tumors on follow-up CT were considered as new 
lesions.

For the control group, 41 patients without ASR were ran-
domly selected. Six of these were excluded as their ablation 
zones could not be delineated on the CT scan.. Finally, 20 
patients with ASR and 35 without ASR were eligible for 
radiomic analysis (Fig. 1).

The median age of the cohort was 67 years (interquartile 
range: 62–72 years), including 22 women (40%) and 33 men 
(60%). Among the liver lesions included in the analysis, 18 
(32.73%) were HCC, 36 (65.45%) were colorectal metas-
tases, and 1 (1.82%) concerned breast metastasis. Further 
patient characteristics can be found in Table 1.
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Radiomic model development

In this study, a total of 292 radiomic features were extracted 
from the ROI within the images. These features included 
14 morphological features of the ROI, 93 features extracted 
from the ROI on the original processed CT scans, and 93 
features extracted from the ROI on images transformed by 
LoG filters with standard deviations of 1 and 3, respectively. 
A selection of 95 radiomic features was made based on Pear-
son correlation coefficients for model training.

Table 2 lists the sensitivity, specificity, accuracy, and 
AUC of different classifiers, with corresponding ROC curves 
being illustrated in Fig. 4. The best-performing model was 
achieved using Lasso regression with a fixed bin size of 15, 
tested by the LOOT approach, yielding an AUC of 0.97 
and an accuracy of 92.73%. Additionally, the XG Boost-
ing classifier demonstrated improved performance when 
trained with all extracted radiomic features without feature 

selection, achieving an AUC of 0.93 and an accuracy of 
89.09%. The performance of XG Boosting classifier with-
out feature selection also slightly outperforms the classifier 
trained with feature selection on the training set with an 
accuracy of 98.18% and 96.36%, respectively. Table 3 lists 
the top five radiomic features selected based on weight rank-
ing for each machine learning classifier. The complete radi-
omic feature list and corresponding weight rankings for each 
classifier can be found in Supplementary Tables I and II.

Visualization of Diff‑Map

Diff-maps were generated to accentuate the differences 
between two follow-up CT scans. The scans utilized for 
radiomic analysis and the prior scans were chosen to cre-
ate diff-maps and further examine whether ASR were high-
lighted on the diff-maps. Figure 5 presents several examples 
of the generated diff-maps. In the diff-map of patients with 

Table 1  Patient demographics

ASR ablation site recurrence, IQR Interquartile Range, HCC hepatocellular carcinoma, HBV hepatitis B 
virus, HCV hepatitis c virus

Characteristic Positive ASR Negative ASR P value Total number

Median age, IQR 68 (62–73) 67 (62–72) 69 (61–74) P < 0.05 55 (100%)
Gender Female 7 (12.73%) 15 (27.27%) P < 0.05 22 (40%)

Male 13 (23.64%) 20 (36.36%) 33 (60%)
Tumor type HCC 7 (12.73%) 11 (20.00%) N/A 18 (32.73%)

Colon metastasis 8 (14.55%) 12 (21.82%) 20(36.36%)
Rectal metastasis 1 (1.82%) 8 (14.55%) 9(16.36%)
Breast metastasis 1 (1.82%) 0 (0.00%) 1(1.82%)
Unknown metastasis 3 (5.45%) 4 (7.27%) 7(12.73%)

Cirrhosis Absence 14 (25.45%) 27 (49.09%) P < 0.05 41 (74.55%)
Presence 6 (10.91) 8 (14.55%) 14 (25.45%)

Etiological cause HBV 1 (1.82%) 2 (3.64%) N/A 3 (5.45%)
HCV 3 (5.45%) 0 (0.00%) 3 (5.45%)
Alcohol 4 (7.27%) 5 (9.09%) 9 (16.36%)
Auto-immune 0 (0.00%) 0 (0.00%) 0 (0.00%)
Wilson 0 (0.00%) 0 (0.00%) 0 (0.00%)
Biliaire atresie 1 (1.82%) 0 (0.00%) 1 (1.82%)
Steatohepatitis 3 (5.45%) 1 (1.82%) 4 (7.27%)
Primair scleroser-

ende cholangitis
1 (1.82%) 1 (1.82%) 2 (3.64%)

Unknown 7 (12.73%) 26 (47.27%) 33 (60.00%)

Table 2  Results of the radiomic 
analysis

AUC  area under the receiver operating characteristic curve, CI confidence interval

Classifier Accuracy (%)
(95% CI)

Sensitivity (%)
(95% CI)

Specificity (%)
(95% CI)

AUC 
(95% CI)

Lasso regression 92.73
(90.90, 95.45)

95.00
(92.31, 1.0)

91.43
(88.46, 96.43)

0.97
(0.96,1.0)

XG Boost classifier 89.09
(81.82,90.91)

90.00
(73.33,92.31)

88.57
(84.62,93.33)

0.93
(0.90,0.98)
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ASR, the recurrence was correctly emphasized in each case. 
Conversely, in patients without ASR, the diff-map did not 
highlight any regions.

Discussion

The current study aimed to assess the capability of radi-
omic analysis in discerning ASR on follow-up CT scans. 
Additionally, we developed a visualization technique that 
emphasizes regions of lesion growth between follow-up 
scans across distinct time periods for individual patients and 
examined whether ASR could be accurately highlighted. A 

total of 55 patients were included in the radiomic analy-
sis, of whom 20 had ASR and 35 did not. Using the LOOT 
approach, Lasso regression achieved the highest AUC of 
0.97 and the best accuracy of 92.73%. The diff-maps gen-
erated by the visualization method accurately highlighted 
ASR.

As accurately identifying ASR at the edge of the abla-
tion zone remains a challenge for radiological visual 
interpretation [14–16], radiomic-based machine learning 
methods offer a quantitative approach for evaluating ASR 
independently of radiologists' subjectivity. Our study dem-
onstrates promising results and suggests that these meth-
ods may serve as supportive tools to reduce subjectivity 

Fig. 4  ROC curves for two different classifiers: a Lasso regression, 
which discriminates patients with and without post-ablative liver 
tumour recurrence; b XG Boost, which also discriminates patients 

with and without post-ablative liver tumour recurrence. AUC  receiver 
operating characteristic curve

Table 3  The top 5 important features for radiomic analysis

The full list of features and corresponding weights in each classifier can be found in the supplementary materials

Lasso regression XG Boost classifier

Positive Negative

1st original_glcm_Idmn original_firstorder_Entropy log-sigma-1-mm-3D_glcm_SumEn-
tropy

2nd original_glrlm_GrayLevelNonUniform-
ity

original_glcm_Imc1 original_glszm_LargeAreaEmphasis

3rd original_firstorder_10Percentile log-sigma-3-mm-3D_glcm_Correlation log-sigma-1-mm-3D_firstorder_
Uniformity

4th original_shape_Maximum2DDiameter-
Column

log-sigma-3-mm-3D_glcm_Autocor-
relation

log-sigma-1-mm-3D_glcm_Cluster-
Tendency

5th original_firstorder_Uniformity log-sigma-3-mm-3D_glszm_SizeZo-
neNonUniformityNormalized

original_firstorder_Entropy

Total num-
ber of weighted fea-
tures

26 10 40
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by providing differential diagnosis suggestions or guid-
ance on suspicious lesions. Furthermore, the diff-maps 
could assist radiologists in focusing on regions of growth 
in follow-up scans, thus facilitating the early diagnosis of 
liver tumor recurrence. The early and accurate diagnosis 
of disease recurrence plays a critical role in optimizing 
patient outcomes, as it enables timely use of minimally 
invasive treatments, such as re-ablation, thereby increasing 
long-term patient survival [6, 32, 33]. Timely intervention 
in the early stages of disease recurrence can help mitigate 
the spread of disease to other organs, further emphasizing 
the importance of prompt and accurate diagnosis [34–36].

In addition to our approach focusing on radiomic 
analysis for the detection of ASR, several studies have 
explored the diagnosis of liver tumor recurrence follow-
ing curative treatments such as resection and transplanta-
tion based on radiomic analysis [41, 42]. Moreover, some 
research has focused on predicting the chances of recur-
rence based on pre-ablation scans, which could provide 
valuable insights for treatment planning and personalized 
therapeutic strategies [43, 44]. It is important to note the 
differences between our study and the aforementioned 
research. While our study aims to detect and visualize the 
ASR using follow-up CT scans, these other studies focus 
on recurrence diagnosis after resection or predicting the 
likelihood of recurrence before ablation. This highlights 
the versatility of radiomic analysis and machine learning 
techniques in addressing various aspects of liver tumor 
management. Although a growing body of evidence exists 
supporting the application of advanced analytical methods 
in the diagnosis and prediction of liver tumor recurrence, 
further research is warranted to compare the performance 
of these different approaches and explore potential syner-
gies to enhance the overall effectiveness of liver tumor 
management strategies.

In the current study both HCC and liver metastasis cases 
were included, reflecting a more diverse patient population 
and a broader range of liver tumor types. This is in contrast 
with many previous studies, which have primarily focused 
on either HCC or liver metastasis alone [45, 46]. The prom-
ising results obtained in our study, with an AUC of 0.97 
and an accuracy of 92.73%, demonstrate the effectiveness of 
our machine learning-based radiomic analysis and growth 
visualization approaches in detecting ASR, regardless of 
the tumor origin. This suggests that our method may have 
broader clinical applicability and could potentially contrib-
ute to improved patient outcomes in different liver tumor 
types.

In the current study, the performance of the XG Boost 
classifier was inferior to Lasso regression. One potential 
reason could be the limited size of the patient cohort. XG 
Boost classifiers are more complex than Lasso regression 
and are better suited for handling larger and more intricate 
datasets. However, the patient cohort in this study was rela-
tively small, which could increase the risk of overfitting for 
XG Boost classifiers [47, 48].

Another limitation of our study was the discrepancy 
in follow-up durations between the ASR-positive group 
(average 12 months) and the ASR-negative group (average 
18 months). This difference arose because the ASR-posi-
tive group required shorter follow-up intervals due to the 
clinical urgency in confirming and managing recurrence. 
Conversely, the ASR-negative group typically underwent 
longer follow-up periods as a standard part of routine care. 
To mitigate this limitation, future research could establish 
a control group with follow-up times comparable to those 
of the ASR-positive group or design a prospective study to 
reduce the selection bias inherent in retrospective studies.

Although the radiomic analysis in our study achieved 
an AUC of 0.97 and an accuracy of 92.73%, its desig as a 

Fig. 5  An example of diff-maps 
overlaid on a CT scan for two 
different scenarios: a The diff-
maps for a patient with a post-
ablative liver tumor recurrence, 
where the recurrent local tumor 
is highlighted with red color on 
the diff-maps. b The diff-maps 
for a patient without any post-
ablative liver tumor recurrence, 
where no region is emphasized 
in red color on the diff-map
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single-center study with a limited patient cohort may have lim-
ited the generalizability of our results. To address this limita-
tion, future studies should be designed as multi-center inves-
tigations to create a larger and more diverse patient cohort for 
radiomic analysis. Evaluating radiomic-based machine learn-
ing models with external data is also crucial for assessing the 
generalization ability of these models.

The generated diff-maps accurately highlighted ASR, 
which could help draw radiologists' attention. However, other 
regions exhibiting differences on follow-up scans could also be 
emphasized on the diff-maps, such as vessels. This study used 
contrast-enhanced CT scans in the portal venous phase, and 
the intensity of vessels could vary depending on the amount 
of contrast agent and the time-delay after intravenous injec-
tion. Future studies could design a deep learning model to 
automatically segment ASR on follow-up scans when a larger 
patient cohort is available to circumvent this potential problem. 
The accuracy of the diff-map is contingent upon the quality 
of registration. To guarantee precise liver alignment, we pre-
segmented the liver before registration. However, imprecise 
registration sometimes led to the highlighting of the liver's 
edges on the diff-map. The robust of the registration method 
could be further investigated and validated with larger patient 
cohort.

In conclusion, this study presents a novel approach to 
detecting ablation site recurrence through the application of 
radiomic analysis on follow-up CT scans and the develop-
ment of a visualization method highlighting regions of lesion 
growth between scans. Our results demonstrate the potential 
of radiomic-based machine learning models serving as a valu-
able supportive tool for radiologists in their clinical practice. 
Furthermore, the diff-map visualization method may assist 
radiologists in identifying ablation site recurrence more easily 
and timely by emphasizing areas of growth on follow-up scans.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00261- 023- 04178-4.
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