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Abstract
Purpose  Abdominal ultrasound screening requires the capture of multiple standardized plane views as per clinical guidelines. 
Currently, the extent of adherence to such guidelines is dependent entirely on the skills of the sonographer. The use of neural 
network classification has the potential to better standardize captured plane views and streamline plane capture reducing the 
time burden on operators by combatting operator variability.
Methods  A dataset consisting of 16 routine upper abdominal ultrasound scans from 64 patients was used to test the classi-
fication accuracy of 9 neural networks. These networks were tested on both a small, idealised subset of 800 samples as well 
as full video sweeps of the region of interest using stratified sampling and transfer learning.
Results  The highest validation accuracy attained by both GoogLeNet and InceptionV3 is 83.9% using transfer learning and 
the large sample set of 26,294 images. A top-2 accuracy of 95.1% was achieved using InceptionV3. Alexnet attained the 
highest accuracy of 79.5% (top-2 of 91.5%) for the smaller sample set of 800 images. The neural networks evaluated during 
this study were also successfully able to identify problematic individual cross sections such as between kidneys, with right 
and left kidney being accurately identified 78.6% and 89.7%, respectively.
Conclusion  Dataset size proved a more important factor in determining accuracy than network selection with more complex 
neural networks providing higher accuracy as dataset size increases and simpler linear neural networks providing better 
results where the dataset is small.

Keywords  Ultrasound · Classification · Abdominal screening · Machine learning

Introduction

There has been a significant increase in demand for diag-
nostic medical imaging [1], with some healthcare providers 
seeing an average annual increase of demand of ~ 5% for 
ultrasound [2]. Ultrasound has seen widespread adoption 
throughout healthcare due to the broad range of applications 
and accessibility of ultrasound equipment, especially in mid 
to low-income countries where access to other modalities 
can be limited [3, 4]. Meeting this increased demand for 
ultrasound scans is a complex problem, not only is there 
a chronic shortage of skilled sonographers [5, 6] but the 

collection of ultrasound is a highly manual process of the 
sonographer directly pressing the probe against the patient 
and as such relies heavily on the attentiveness, knowledge, 
and experience of the individual sonographer [7] to ensure 
a good result. This manual aspect leads to an increased risk 
of workplace injuries such as repetitive strain injuries within 
the sonographic workforce [8, 9]. The use of deep learn-
ing offers a potential solution by reducing the time taken 
for each ultrasound procedure by automating the capture 
of relevant cross-sectional imagery, ensuring adherence to 
protocol, improving workflow and patient comfort. For this 
to become reality a large ultrasound protocol, that is rep-
resentative of clinical workflow much be benchmarked to 
gauge the response of current deep learning technologies.

Image classification is a fundamental component of medi-
cal machine learning image research, of which deep learn-
ing is an increasingly popular subject of interest [10, 11]. 
Despite being one of the most widely used medical imaging 
modalities in the world, ultrasound has seen comparatively 
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little interest from deep learning research in comparison to 
radiography (Xray), computer tomography (CT) and nuclear 
magnetic resonance imaging (MRI) [12]. This is partly due 
to the fact that there are very few clinical ultrasound data-
sets available in comparison to other modalities. Ultrasound 
is produced by measuring the reflected ultrasound waves 
detected by a small piezoelectric array within the ultrasound 
probe [13], such images are typically two-dimensional, low 
contrast, and subject to interference such as attenuation and 
shadowing that can hinder classification even for experi-
enced sonographers [14, 15].

Machine learning has already been successfully applied 
to many classification tasks within medical diagnostic ultra-
sound such as cancer diagnosis [16, 17], thyroid nodules 
[18, 19], liver anomalies [20, 21], spine [22] and cardiac 
cross sections [23–25]. Previous studies examining classi-
fication of abdominal cross sections with machine learning 
are limited. Cheng & Malhi [26] proved the effectiveness of 
transfer learning using the ImageNet challenge dataset [27] 
with the successful classification of 11 standard ultrasound 
cross sections attaining accuracies of 77.3% using CaffeNet 
and 77.9% for VGGNet both of which exceeded the 71.7% 
accuracy achieved by a radiologist. Xu et al. [28] examined 
classification of 11 ultrasound abdominal cross sections as 
part of a wider study on landmark detection, the Single-task 
learning (STL) ResNet-50 attained an accuracy of 81.22% in 
comparison to the radiologist who achieved 78.87%. Reddy 
et al. [29], tested a number of neural networks on 6 visually 
distinct abdominal cross sections achieving an accuracy of 
98.77% using a ResNet-50.

This study examines 16 upper abdominal cross sections as 
defined by the Japanese abdominal screening protocol [30]. 
This protocol was chosen due to its overlapping coverage of 
the upper abdomen, which would underline and potential 
difficulties applying deep learning to complex ultrasound 
abdominal protocols. While the Japanese abdominal screen-
ing protocol includes pelvic and bladder scans, these were 
excluded from this study to focus on the upper abdomen.

Materials and methods

Ultrasound data acquisition

The ultrasound data were captured using a Canon TUS-
AI800 [31] using a curved linear array, with each of the 16 
cross sections (examples of which are displayed in Fig. 1.) 
classified at the time of capture by a single experienced 
sonographer. While the data are anonymous, acceptance 
criteria was that participants be of adult age with no under-
lying pathology detected by the sonographer that may influ-
ence the study results at time of recording. The sonographer 
strictly adhered to the standardised capture method defined 

by the Japanese society of sonographers [30], starting the 
scan in the location defined within the method and progres-
sively sweeping through the region of interest ensuring com-
plete coverage of the defined target anatomy. The ultrasound 
data were recorded as a stream of 8-bit greyscale images of 
varying length (between 14 and 46 s), these sequences were 
effectively raw ultrasound images and contained no text or 
graphical annotation from the User Interface. These were 
then stored in a DICOM format [32] and anonymised before 
being provided for use in this work.

The dataset consists of 64 patient studies with 16 recorded 
anatomical cross sections each for a total of 1024 image 
streams and a total of 33,093 individual images. These 
patient studies were split 50/14 (approximately 80/20 split) 
between training and test sets, both training and test sets 
were resampled at the patient level for each training run for 
cross validation purposes, although this significantly reduces 
the pool of possible test images it was done to ensure no data 
leakage that could artificially inflate results.

Two training sets were produced alongside a single test 
set as reported in Table 1. The first training set was pro-
duced to provide a balanced, idealised dataset by defining 
a single image frame (an example of which can be seen in 
Fig. 1.) from each set of cross sectional sweeps for a total 
of 800 images, this was done to simplify the problem space, 
while in many cases a sonographer must move the probe 
to fully visualise the region of interest, reduction to a sin-
gle ideal cross section provides the neural network with the 
most opportunity to make the correct prediction. The sec-
ond training set takes into account the entire sonographic 
sweep and as such essentially consists of multiple short vid-
eos centred on the correct region of interest during exami-
nation and is made up of 26,294 images, this data contain 
significant repetition, minor deviations such as changes in 
attenuation, shadowing, natural physiological changes, and 
the slight movements of the patient and sonographer that 
occur naturally during clinical examination. This provides 
a more realistic training set but also significantly increases 
the complexity of classification. The test set consists of 224 
images with each of the 16 cross sections represented by 14 
precise images. Those images and videos corresponding to 
the test set were excluded from all training datasets.

As the transfer learning neural networks are trained on 3 
channel RGB images, the single channel greyscale images 
were duplicated into three channels during the process to 
convert the image into tensors of size 299 × 299. Results 
from version 1 and version 3, as well as the other highlighted 
architectures, are analysed in this work. The full image was 
used with no cropping or adjustment beyond minor con-
trast normalisation using the standard method provided 
in Pytorch in order to ensure standardisation across the 
imagery. No additional de-speckling, image filtering or post 
processing was performed post capture, this was to ensure 
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that imagery was representative of the classification task 
required of sonographers.

Neural network architectures

The experiment was performed on a computer with an Intel 
CPU with a clock speed of 2.4 GHz and a Nvidia 20 series 
GPU using the Pytorch framework [33] and Cuda toolkit 
(version 11.6). As with previous literature [26, 28, 29] pub-
licly available neural networks pre-trained on the ImageNet 
challenge dataset [27] were used as the basis for transfer 
learning. The neural networks architectures chosen for this 

experiment can be classified by the principles behind their 
design. These being two linear convolutional neural net-
works (Alexnet [34, 35], VGGNet [36]), five residual net-
works (ResNet-18, 32, 50, 101, 152) [37], and two inception 
networks (GoogLeNet (Inception V1) [38] and InceptionV3 
[39]). A summary of the exact number of layers and param-
eters used by the neural networks in this study is provided 
in Table 2. These neural networks were chosen as typical 
examples of their respective architectures, with five residual 
networks evaluated to test how the depth of residual network 
effects network response to ultrasound data. Three train-
ing procedures were used: transfer learning using dataset 

Fig. 1   Example of the 16 upper abdominal ultrasound cross sections: 
1. Epigastric sagittal (liver/aorta), 2. Epigastric horizontal (hepatic 
vein), 3. Right Epigastric oblique (horizontal portal vein), 4. Right 
Subcostal (gallbladder), 5. Right hypochondrium vertical (gallblad-
der), 6. Right hypochondrium vertical (bile duct), 7. Right subcostal 

(liver), 8. Right intercostal (liver), 9. Right intercostal (liver), 10. 
Right intercostal (liver), 11. Right intercostal (kidney), 12. Epigastric 
vertical (bile duct/pancreas), 13. Epigastric horizontal (pancreas), 14. 
Epigastric oblique (Pancreas), 15. Spleen, 16. Left intercostal (kid-
ney)
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1, transfer learning using dataset 2, and a baseline using 
only training dataset 2 without pre-trained transfer learn-
ing weightings being applied at initialisation. Training used 
the ADAM optimiser [40] with an initial learning rate of 

1 × 10–4 with the learning rate degrading every 5 steps, over 
20 epochs. Each network was trained 20 times with the train-
ing and test sets resampled for each training run in order to 
benchmark performance while reducing performance vari-
ation from any single training run. The final layer of each 
neural network was adjusted from 1000 to 16 in order for the 
neural networks to perform the required classification task, 
no additional changes were made from the standard network 
architecture used for ILSVR Challenge [27].

Results

The results for highest single neural network accuracy of 
the nine neural networks (as shown in Table 3) show that 
the Inception architecture achieved the highest accura-
cies on the test set for both transfer learning with dataset 
2 and the Baseline, with GoogLeNet (InceptionV1) and 
InceptionV3 attaining the top result of 83.93% for data-
set 2, with inceptionV3 attaining 79.91% and GoogLeNet 

Table 1   Identified upper abdominal cross section categories in training and test sets

Upper abdominal cross section Training Set 1 Training Set 2 Test Set

1. Epigastric sagittal scan: Liver/aorta 50 (6.3%) 1478 (5.6%) 14 (6.3%)
2. Epigastric horizontal scan to right subcostal scan: Hepatic vein 50 (6.3%) 1722 (6.5%) 14 (6.3%)
3. Right Epigastric oblique scan: Horizontal portal vein 50 (6.3%) 1605 (6.1%) 14 (6.3%)
4. Right Subcostal scan: Gallbladder 50 (6.3%) 1545 (5.9%) 14 (6.3%)
5. Right hypochondrium vertical scan: Gallbladder 50 (6.3%) 1539 (5.9%) 14 (6.3%)
6. Right hypochondrium vertical to oblique scan: Bile duct 50 (6.3%) 1575 (6%) 14 (6.3%)
7. Right subcostal scan: Liver 50 (6.3%) 1528 (5.8%) 14 (6.3%)
8. Right intercostal upper scan: Liver 50 (6.3%) 1558 (5.9%) 14 (6.3%)
9. Right intercostal mid scan: Liver 50 (6.3%) 1670 (6.4%) 14 (6.3%)
10. Right intercostal lower scan: Liver 50 (6.3%) 1609 (6.1%) 14 (6.3%)
11. Right intercostal scan: Right kidney 50 (6.3%) 1516 (5.8%) 14 (6.3%)
12. Epigastric vertical scan: Extrahepatic bile duct/pancreas 50 (6.3%) 1717 (6.5%) 14 (6.3%)
13. Epigastric horizontal scan: Pancreas 50 (6.3%) 1886 (7.2%) 14 (6.3%)
14. Epigastric oblique scan: Pancreas 50 (6.3%) 1972 (7.5%) 14 (6.3%)
15. Left intercostal scan: Spleen 50 (6.3%) 1759 (6.7%) 14 (6.3%)
16. Left intercostal scan: Left kidney 50 (6.3%) 1615 (6.1%) 14 (6.3%)
Total 800 26,294 224

Table 2   Summary of neural network shape and parameters

Model Method Convolution Fully 
con-
nected

Parameters

Alexnet Linear 5 3 57,069,392
VGG16 Linear 13 3 134,326,096
GoogleNet Inception 22 1 11,996,288
InceptionV3 Inception 48 1 25,145,048
ResNet-18 Residual 18 1 11,184,720
ResNet-34 Residual 34 1 21,292,880
ResNet-50 Residual 50 1 23,540,816
ResNet-101 Residual 101 1 42,532,944
ResNet-152 Residual 152 1 58,176,592

Table 3   Highest accuracy achieved after 20 epochs from nine neural networks over 20 training runs

Alexnet (%) VGG16 (%) GoogLeNet 
(%)

InceptionV3 
(%)

ResNet 18 
(%)

ResNet 34 
(%)

ResNet 50 
(%)

ResNet 101 
(%)

ResNet 152 
(%)

Baseline 
Accuracy

69.20 70.09 77.68 79.91 75.06 73.66 73.21 71.88 71.43

Dataset 1 
Accuracy

79.46 77.23 62.05 71.88 67.41 73.21 73.21 70.98 70.54

Dataset 2 
Accuracy

80.80 82.59 83.93 83.93 83.04 83.48 83.48 82.14 83.04
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77.68% for the Baseline. Linear neural network architec-
tures attained the highest results for dataset 1 with Alexnet 
achieving 79.46% and 77.23% for VGG16.

The confusion matrix in Fig. 2 confirms that the largest 
misclassification errors are: between cross sections within 
close proximity such as cross Sects. 8, 9 and 10 which 
focus on the liver; where anatomical structures overlap 
such as in cross Sects. 5 and 6 which focus on vertically 
oriented biliary system, as well as 6 and 12 which the bile 

duct is a significant landmark; and differentiating between 
the kidneys in cross Sects. 11 and 16.

Top-2 accuracy results (shown in Table 4) continue the 
trend with InceptionV3 attaining the highest top-2 accuracy 
of 92.86% for Baseline with the second-best result being 
GoogLeNet with 90.18%. The linear architectures attained 
the highest top-2 accuracy in dataset 1 with Alexnet attaining 
91.52% and 90.18% for VGG16. InceptionV3 also achieved 
the highest top-2 for dataset 2 at 95.09% but ResNet 18, 34 
and 50 jointly attained the second-best result of 94.64%. 

Fig. 2   Confusion Matrix for top performing neural networks: a Alexnet Dataset 1, b InceptionV3 Dataset 2, c InceptionV3 Baseline Control 
Dataset
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The neural networks with the highest overall accuracy did 
not correspond to that of the highest top-2 accuracy. Those 
that did match were ResNet101, ResNet152 for Baseline; 
Alexnet, VGG16 and GoogLeNet corresponded for Dataset 
1 and VGG16, ResNet34 and ResNet50 for Dataset 2.

The testing algorithm included category specific accuracy 
results (shown in Table 5) allowing for a deeper examination 
of the strengths and weaknesses of ultrasound plane catego-
risation. When examining the plane specific categorisation 
results from the InceptionV3 neural network trained from 
Dataset 2 it was possible to correctly categorise the right 
kidney plane 78.57% and the left kidney plane 89.71% of 
the time suggesting sufficient visual information is avail-
able to achieve successful classification. When examining 
the overall performance of transfer learning with Dataset 
2 (from Table 5), the cross sections with the lowest accu-
racy were plane 6 (Right hypochondrium vertical to oblique 
scan: Extrahepatic bile duct) with an average accuracy of 
64.29%, and Plane 12 (Epigastric vertical scan: Extrahepatic 
bile duct/pancreas) with an average of 67.46%. These cross 
sections see the highest error in each of the three exampled 
confusion matrixes, this is likely due to intersecting ana-
tomical structures within the plane classifiers.

Examining the variation in training outcome between the 
20 runs (detailed in Table 6), shows that in most cases using 
the full dataset and transfer learning (dataset 2) reduced 
variation in training result with the exception of ResNet-18 
with a variation of 13%. Inception based neural networks 
achieved the lowest variance with GoogLeNet had the small-
est variation of 6% and InceptionV7 achieving 7%. Alexnet 
achieved the highest accuracy for dataset 1 but there was 
notable variance in the result of 22%, GoogLeNet achieved 
the poorest overall accuracy but also smallest variance.

Discussion

This study examined the effectiveness of transfer learning 
for a small ultrasound abdominal cross-sectional dataset, 
providing comparative accuracy data for a larger number of 
neural network architectures on standard abdominal cross 

sections than has been previously studied. This will serve 
both to aid selection of neural networks in future, but also 
further highlights the potential uses and difficulties of uti-
lising deep learning for identifying and classifying upper 
abdominal cross sections. While the size of the test set is 
small, this study provides a benchmark as to expected per-
formance of neural networks for medical ultrasound clas-
sification tasks on 16 upper abdominal cross sections. It has 
been possible to compare traditional learning using a rela-
tively small medical ultrasound dataset of just 26,294 uneven 
non-ideal samples, with two transfer learning experiments 
using the ILSVRC data set [27], one leveraging a balanced 
idealised sample set of just 800 and the other using trans-
fer learning the augment the entire dataset. Optimisation 
of techniques for convolutional neural networks has seen 
many improvements with traditional machine learning using 
the InceptionV3 neural network able to achieve a result of 
79.91%, just 4.02% lower than the highest result achieved by 
transfer learning in only 20 epochs. Furthermore, with trans-
fer learning it was possible to use just 800 samples to train 
a network to attain an accuracy of 79.46%, just 4.47% from 
the best result from the larger dataset 2. The use of transfer 
learning and the complete dataset produced the best result 
of 83.93% with the result being shared by both Inception 
neural networks tested.

The residual network architecture did not produce the 
highest accuracy models (as seen in Table 3) but does 
improve in accuracy as the size dataset increases with results 
for dataset 2 showing accuracies typically within 1% of the 
highest result. As previously discussed, residual mapping 
should have allowed each of the ResNet models to attain 
similar accuracy results with some variation expected from 
training randomisation. ResNet 34 and 50 both achieved the 
highest accuracies of 73.21% for dataset 1 and 83.48% for 
dataset 2 but ResNet18 achieved the highest baseline accu-
racy of 75.06%. The difference between highest and lowest 
performing ResNet neural network was 3.63% for the Base-
line, 5.80% for dataset 1, and 1.34% for dataset 2, suggesting 
that residual mapping struggled with the smaller datasets 
which would also partially account for the subsequent drop 
off in accuracy in the larger ResNet-101 and 152 models.

Table 4   Highest top-2 accuracy attained accuracy after 20 training runs

a Accuracy and Top-2 attained from same neural network model

Alexnet (%) VGG16 (%) GoogLeNet 
(%)

InceptionV3 
(%)

ResNet 18 
(%)

ResNet 34 
(%)

ResNet 50 
(%)

ResNet 101 
(%)

ResNet 152 
(%)

Baseline 
Top-2

86.16 83.04 90.18 92.86 87.95 87.50 89.29 87.05a 87.05a

Dataset 1 
Top-2

91.52a 90.18a 79.46a 88.84 84.38 88.84 87.05 86.16 87.05

Dataset 2 
Top-2

92.86 93.75a 94.20 95.09 94.64 94.64a 94.64a 94.20 93.75
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Table 5   Accuracy of individual cross sections: highest single neural network accuracy trained using dataset 2

Cross section Alexnet (%) VGG16 (%) GoogLeNet 
(%)

InceptionV3 
(%)

ResNet 18 
(%)

ResNet 34 
(%)

ResNet 50 
(%)

ResNet 101 
(%)

ResNet 152 
(%)

1. Epigastric 
sagittal: 
Liver/aorta

92.86 100 100 100 100 100 100 100 100

2. Epigastric 
horizontal: 
Hepatic 
vein

78.57 92.86 85.71 78.57 92.86 85.71 92.86 85.71 92.86

3. Right 
Epigastric 
oblique: 
Horizontal 
portal vein

92.86 78.57 78.57 78.57 78.57 78.57 85.71 85.71 85.71

4. Right 
Subcostal: 
Gallblad-
der

71.43 64.29 78.57 78.57 71.43 85.71 71.43 64.29 78.57

5. Right 
hypochon-
drium 
vertical: 
Gallblad-
der

71.43 71.43 71.43 78.57 71.43 85.71 71.43 78.57 71.43

6. Right 
hypochon-
drium 
vertical: 
Bile duct

71.43 50.00 64.29 71.43 64.29 57.14 64.29 57.14 78.57

7. Right 
subcostal: 
Liver

85.71 85.71 78.57 85.71 92.86 78.57 85.71 78.57 71.43

8. Right 
intercostal: 
Liver

78.57 85.71 100 85.71 92.86 92.86 85.71 78.57 100

9. Right 
intercostal: 
Liver

92.86 85.71 85.71 85.71 78.57 92.86 85.71 78.57 92.86

10. Right 
intercostal: 
Liver

78.57 85.71 85.71 92.86 78.57 85.71 85.71 85.71 71.43

11. Right 
intercos-
tal: Right 
kidney

64.29 78.57 78.57 78.57 85.71 78.57 92.86 85.71 64.29

12. Epi-
gastric 
vertical: 
Bile duct/
pancreas

57.14 71.43 71.43 78.57 64.29 64.29 64.29 71.43 64.29

13. Epi-
gastric 
horizontal: 
Pancreas

85.71 100 85.71 78.57 92.86 100 100 92.86 100

14. Epi-
gastric 
oblique: 
Pancreas

85.71 78.57 85.71 85.71 71.43 57.14 71.43 71.43 71.43
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Despite the use of 16 upper abdominal cross sections with 
many overlapping anatomical structures the top performing 
neural networks (Table 5) achieved an average overall accu-
racy of 82.94% with greatest error occurring between cross 
sections containing overlapping identifiers. Where the top-2 
accuracy is considered, the neural networks studied achieved 
an accuracy between 79.46% and 95.09% with the top 10 
models being within 2.2% accuracy. The high top-2 accuracy 
and confusion matrix (Fig. 2) suggests that while a positive 
prediction was being made the similarities between cross 
sections played a major role in reducing accuracy as the 
majority of errors correspond with cross sections contain-
ing the same anatomical structures such as right liver cross 
Sects. 8, 9 and 10, cross Sects. 6 and 12 which both contain 
the extrahepatic bile duct as the main region of interest and 
differentiating the left and right kidneys in cross Sects. 11 
and 16.

The variation in accuracy recorded suggests that larger 
neural networks benefitted from the larger dataset (dataset 2) 
and transfer learning the most, ResNet-101 and ResNet-152 
displayed notably lower per-plane accuracy results for data-
set 1, improved accuracy results for the baseline and then 
most improved with the addition of transfer learning (data-
set 2). While variance itself is less relevant than accuracy 
as a training metric, neural networks with a smaller vari-
ance are more likely to achieve a result closer to the highest 

accuracy in fewer iterations. Transfer learning can signifi-
cantly improve accuracy but is no substitute for data. While 
dataset 1 was too small to provide sufficient information for 
traditional machine learning to provide a useful result it was 
capable of producing surprisingly accurate results rivalling 
the larger baseline dataset and warrants further examination 
of the effect of ultrasound sample size on neural network 
learning and generalisation in future works. This study also 
suggests that the number of layers was less important than 
dataset size when performing upper abdominal ultrasound 
plane classification with the difference in accuracy of neural 
networks for dataset 2 being just 2.2%. Transfer learning 
also significantly improved neural network accuracy with 
the larger dataset, when comparing dataset 2 with the base-
line, the per-plane training variance is noticeably reduced 
with the addition of transfer learning along with a significant 
improvement in accuracy. While dataset size was a more 
significant factor in reducing variance and increasing accu-
racy, transfer learning allows for significant improvements 
to ultrasound plane classification accuracy where the data 
is sufficient for the number of parameters in the neural net-
work used.

While there are limitations to the amount of direct com-
parison that can be made as previous studies used different 
cross sections, it is possible to highlight a number of trends 
when classifying abdominal ultrasound data. As seen in 
Table 7, comparing the accuracy results of transfer learning 
on dataset 2, the overall the results of this study are in line 
with those of previous studies. Smaller networks such as 
Alexnet achieved an accuracy result just 3.13% lower than 
the highest accuracy network, show significant potential to 
classify ultrasound cross sections, CaffeNet (a variant of 
Alexnet) achieved just 0.6% lower than the significantly 
larger VGGNet used in Cheng and Malhi [26], and 3.5% 
lower in the case of Reddy et al. [29]. Linear neural network 
architectures such as these traditionally suffer from the van-
ishing gradient problem, whereby the size of the gradient 
is halved in rectified linear unit layer, as the network back-
propagates up through the layers of parameters the size of 
the gradient decreases with each additional layer, effectively 
decreasing the effectiveness of backpropagation with each 

Table 5   (continued)

Cross section Alexnet (%) VGG16 (%) GoogLeNet 
(%)

InceptionV3 
(%)

ResNet 18 
(%)

ResNet 34 
(%)

ResNet 50 
(%)

ResNet 101 
(%)

ResNet 152 
(%)

15. Left 
intercostal: 
Spleen

100 100 100 100 100 100 100 100 100

16. Left 
intercostal: 
Left kidney

85.71 92.86 92.86 85.71 92.86 92.86 78.57 100 85.71

Total 80.80 82.59 83.93 83.93 83.04 83.48 83.48 82.14 83.04

Table 6   Variance in training outcome based on the standard deviation 
for neural networks over 20 runs

Model Dataset 1 (%) Dataset 2 (%) Baseline (%)

Alexnet 22 7 11
VGG-16 21 8 10
ResNet-18 19 13 8
ResNet-34 21 9 15
ResNet-50 25 10 13
ResNet-101 26 10 15
ResNet-152 22 10 13
GoogLeNet 9 6 14
InceptionV3 13 7 10
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additional layer. This limits the useful depth possible with 
linear architectures in complex without significant augmen-
tation [41, 42].

As in this study, cross sections containing overlapping 
landmarks and regions of interest such as the kidneys are 
shown to be a significant cause of classification error, in 
Cheng & Malhi [26] and Xu et al. [28] both transverse and 
longitudinal scans of the left and right kidneys cause signifi-
cant additional classification error, Reddy et al. [29] while 
not containing multiple kidney classifiers, experienced 
similar error in liver cross sections where the right kidney 
appeared within the ultrasound image. A small reduction in 
accuracy can also be noted for larger scale Resnet networks 
in Reddy et al. [29] the resnet-50 achieved classification 
accuracy results 0.53% higher than that of the Resnet-101 

compared to 1.34% in this study. While this would be 
expected in linear style networks, residual networks create 
feature maps of specific residual identifiers. These residual 
feature maps are propagated higher up the neural network 
with each training epoch effectively creating shortcuts 
within the model therefore reducing the effect of vanish-
ing gradient [37]. Despite this, results suggest that standard 
ultrasound data may not have enough visual information to 
fully utilise networks larger than Resnet-50. The inception 
architecture uses a modular design approach to mitigate the 
vanishing gradient problem in GoogLeNet (Inception V1) 
[38] and InceptionV3 [39] convolution layers are clustered 
together into modules (as exampled in Fig. 3) instead of 
activated linearly. While more effective in this study, it did 
not achieve highest accuracy in Reddy et al. [29] where 

Table 7   Highest classification 
accuracy of study results in 
comparison to those previously 
published abdominal ultrasound 
studies

Author Images Sets Cross sections Model Average 
accuracy 
(%)

Cheng and Malhi [26] 5518 185 11 CaffeNet (Alexnet) 77.30
VGGNet (VGG-16) 77.90

Xu et al. [28] 187,219 706 11 ResNet50 (STL) 81.22
Reddy et al. [29] 1906 983 6 Alexnet 95.27

VGG-16 97.37
VGG-19 98.03
GoogLeNet 96.49
InceptionV3 97.89
Resnet-18 97.37
Resnet-50 98.77
Resnet-101 98.24

This studies results 26,294 64 16 Alexnet 80.80
VGG-16 82.59
Resnet-50 83.48
Resnet-101 82.14
GoogLeNet 83.93
InceptionV3 83.93

Fig. 3   Example of an Inception 
module [38]
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results were 2.28% lower for GoogLeNet and 0.88% lower 
for InceptionV3.

The results of this study are limited by the size of the 
test set of 14 patients, containing just 224 samples, neces-
sary to ensure that no data leakage occurred during training. 
All patient sets are within normal range with no abnormal 
pathology or underlying conditions noted during ultrasound 
screening. All images were produced by a single machine, 
with all classification occurring at time of sampling by a 
single experienced operator. Only a single manually selected 
ideal plane image for each of the 16 plane categories was 
taken, while it would have been possible to take multiple 
samples from each patient set, there was insufficient differ-
ences to warrant including these results with a variance of 
less than 1% when the sample size was quadrupled.

Conclusion

This study builds upon the current knowledge by evaluating 
the classification accuracy of three major neural network 
architectures using 16 upper abdominal ultrasound cross sec-
tions. Transfer learning using linear, residual and inception 
neural network architectures were all showed to be effective 
in classifying upper abdominal cross sections with the num-
ber of layers in the neural network being a less significant 
factor than the size of the dataset.

Applying neural networks to the recognition of cross-sec-
tional abdominal imagery has much potential clinical signifi-
cance, there networks could increase adherence to protocol 
by reducing scan variance due to user performance, both 
through assisting with sonographic training and through 
certifying that the region of interest has been fully captured 
for less experienced sonographers. It will allow experi-
enced sonographers to put their full focus on the detection 
of anomalies while performing a required sweep with the 
neural network capturing the images mandated within the 
protocol automatically potentially reducing the time required 
to perform scans. Automatic capture of cross sections will 
also allow for better comparison in the case of surveillance 
scans in at risk populations and annual check-ups.

As neural network architectures further develop for image 
classification techniques it is important to continue to test 
their effectiveness on medical imaging such as ultrasound 
which provides more constrained visualisation data than 
that of traditional imagery. The study of neural networks 
for upper abdominal cross section classification has so far 
been limited, future works should examine the use of smaller 
networks potentially opening up use on mobile devices, as 
well as expanding the dataset size to allow for more effec-
tive training and validation. This should be achieved using 
methodologies that are cost effective [43].
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