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Abstract
Background To evaluate two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) radiomics analysis 
for the T stage of esophageal squamous cell carcinoma (ESCC).
Methods 398 patients with pathologically confirmed ESCC were divided into training and testing sets. All patients underwent 
chest CT scans preoperatively. For each tumor, based on CT images, a 2D region of interest (ROI) was outlined on the larg-
est cross-sectional area, and a 3D ROI was outlined layer by layer on each section of the tumor. The radiomics platform was 
used for feature extraction. For feature selection, stepwise logistic regression was used. The receiver operating characteristic 
(ROC) curve was used to assess the diagnostic performance of the 2D radiomics model versus the 3D radiomics model. The 
differences were compared using the DeLong test. The value of the clinical utility of the two radiomics models was evaluated.
Results 1595 radiomics features were extracted. After screening, two radiomics models were constructed. In the training 
set, the difference between the area under the curve (AUC) of the 2D radiomics model (AUC = 0.831) and the 3D radiom-
ics model (AUC = 0.830) was not statistically significant (p = 0.973). In the testing set, the difference between the AUC of 
the 2D radiomics model (AUC = 0.807) and the 3D radiomics model (AUC = 0.797) was also not statistically significant 
(p = 0.748). A 2D model was equally useful as a 3D model in clinical situations.
Conclusion The performance of 2D radiomics model is comparable to that of 3D radiomics model in distinguishing between 
the T1-2 and T3-4 stages of ESCC. In addition, 2D radiomics model may be a more feasible option due to the shorter time 
required for segmenting the ROI.
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Introduction

Esophageal cancer (EC) had been identified as the sixth 
leading cause of cancer-related mortality, posing a sub-
stantial challenge to global public health [1]. Globally, 
esophageal squamous cell carcinoma (ESCC) was the 
most common histologic subtype [2]. The mortality rate 
among EC patients ranged from 15 to 20% [3]. The tumor-
node-metastasis (TNM) system was the most widely used 
staging system in clinical practice [4]. Oncology hospitals 
and medical centers had widely adopted it as the primary 
approach for cancer clinical, pathological, and imaging 
reporting. Multidisciplinary treatment approaches could 
improve outcomes and prognosis for EC patients, espe-
cially those at advanced tumor stages. Tumors at differ-
ent stages could be treated with different strategies, so 
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accurate staging is crucial in guiding treatment decisions 
[5].

Currently, EC could be treated in a variety of ways [6]. 
Accurate T-stage helps to develop the treatment plan for 
EC. For the T1/T2 stage of EC, surgery is the treatment of 
choice, while for the T3/T4a stage, a combination of neo-
adjuvant chemotherapy and surgery is recommended [7]. 
Endoscopic ultrasound (EUS) is an operator-dependent 
modality highly influenced by the operator’s experience 
and subjective proficiency, so the result could be affected. 
Tumor-associated edema can lead to overstaging, while 
limited tumor penetration might lead to understaging. For 
patients with a noticeable narrowing of the esophageal 
lumen, if endoscopy could not pass through the lesion, 
it might be impossible to accurately evaluate the whole 
tumor [8]. Computer tomography is a non-invasive imag-
ing method for determining the stage of EC [9]. However, 
the accuracy for stages T1/T2 was lower than that of EUS 
[10–12]. Dynamic contrast-enhanced multi-slice computed 
tomography (CT) had been shown to improve the accuracy 
of the T stage of EC [13]. PET/CT could not accurately 
identify the depth of tumor infiltration, limiting its value in 
assessing the T stage of EC [14, 15]. In a previous study, 
MRI was found to be unsatisfactory for the T stage of EC, 
especially for early-stage tumors [16]. With the develop-
ment of MRI imaging techniques, the diagnostic perfor-
mance of MRI for tumor staging had improved compared 
to CT and EUS for resectable EC [13, 17, 18]. However, 
MRI also had some disadvantages that were difficult to 
overcome, such as its high cost, long examination time, 
and inability to analyze images due to patient breathing 
and motion artifacts. In addition, MRI had several con-
traindications. For example, patients with pacemakers, coil 
implants, or generalized anxiety disorders were not can-
didates for MRI. Radiomics could extract high-through-
put image features from radiological images, providing a 
wealth of additional information hidden behind the images 
[19]. Currently, CT-based radiomics had shown promising 
applications in digestive system tumors [20, 21]. It had 
been demonstrated by Liu et al. [22] that texture analysis 
of CT images could be used to assess the preoperative 
staging of ESCC. Wu et al. [23] developed a radiomics 
model for preoperative identification of stages I–II and 
III–IV ESCC. Yang et al. [20] revealed that CT-based radi-
omics could predict the pathological T stage of patients 
with ESCC preoperatively, which, in combination with 
existing examinations, could help in the accurate assess-
ment of patients. Therefore, tumor segmentation was a key 
step in many radiomics-related studies [24–26].

There had been a long debate about whether to use a two-
dimensional (2D) or three-dimensional (3D) region of inter-
est (ROI) to perform the radiomics analysis [25, 27, 28]. 
Therefore, our study aimed to analyze 2D and 3D models for 

predicting the T stage of ESCC in order to provide a method 
for the pre-treatment evaluation of ESCC.

Methods

Patient population and study design

A retrospective study was conducted on patients who under-
went radical esophagectomy at the Fourth Hospital of Hebei 
Medical University from February 2016 to March 2020. The 
inclusion criteria were: (1) EC patients who underwent a 
routine chest contrast-enhanced CT (CECT) scan two weeks 
before surgery; (2) postoperative pathological results con-
firmed the ESCC without any other pathological type; and 
(3) both pathological and clinical data were complete. The 
exclusion criteria were: (1) patients who received any form 
of anti-tumor treatment (n = 228); (2) patients for whom 
thin-slice CECT images were unavailable in the PACS sys-
tem (n = 57); (3) patients with poor image quality or notice-
able artifacts affect assessment(n = 32); (4) patients for 
whom no perceptible lesion was observed on CECT images 
(n = 59). Finally, 398 ESCC patients were included and were 
randomly divided into a training set and a testing set at a 
ratio of 7:3. A flowchart of the patient selection process is 
shown in Fig. 1.

Clinical and pathological characteristics collection

A retrospective analysis of the postoperative histopathologi-
cal characteristics of the patients was conducted, including 
T stage (divided into T1-2 and T3-4), lymph node status 
(positive or negative), length, thickness, histological grade, 
lymphovascular invasion (LVI), perineural invasion (PNI), 
and pTNM stage. According to the 8th Ed. of the AJCC/
UICC staging system, the staging had been reclassified.

Image acquisition and tumor segmentation

The images were obtained from our hospital's PACS system 
and imported into 3D Slicer software for tumor segmenta-
tion. All images were acquired using two commercial CT 
scanners. Scanner 1: a 128-slice second-generation dual-
source CT scanner (SOMATOM Definition Flash, Siemens 
Healthcare, Forchheim, Germany). Scanner 2: a 256-slice 
CT scanner (Revolution CT, GE Healthcare, Milwaukee, 
USA). The tube voltage was 120 kVp, the tube current was 
set to auto mAs, the slice thickness was 5.0 mm with incre-
ments of 5.0 mm, and the reconstructed thin-slice thickness 
was 1-2 mm. After intravenous injection of contrast agent 
(3.0–4.0 ml/s, 1.5 ml/kg, Iohexol,300 mg I/ml) via a syringe 
pump, an arterial phase scan was performed after a 30 sec-
onds delay, followed by a 20 ml saline flush.
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Tumor segmentation was performed using mediastinal 
window settings thin-slice CECT images. The images were 
linearly interpolated with a voxel size of 1x1x1 mm. The 
criterion for diagnosing esophageal wall abnormalities was 
a thickness greater than 5 mm on the transverse axis of the 
CECT images [29–31]. 2D ROI was delineated on the largest 
cross-sectional area of the tumor, while 3D ROI was deline-
ated on each slice. The process of tumor segmentation is 
shown in Fig. 2.

The reliability of feature extraction was assessed by cal-
culating the inter- and intra-class correlation coefficient 
(ICC). 30 patients were randomly selected, and two radi-
ologists delineated 2D and 3D ROIs for each tumor. One 
radiologist repeated the segmentation of these 30 tumors 
one month later. The ICC value was 0.75. If there were 
potential disagreements, they would be resolved by seeking 
consensus. During the segmentation process, gas within the 
esophagus was excluded, and surrounding soft tissues, blood 
vessels, and bone structures were avoided.

Radiomics features selection and model 
construction

2D and 3D ROIs segmentation were performed for each 
tumor, and feature extraction was performed using the PyRa-
diomics platform in nii.gz format. The images were discre-
tized in grayscale with bandwidth set to 25. In addition, 
these features also include images filtered with Gaussian 
Laplacian (LoG, σ: 1, 3, 5), wavelet, logarithmic, gradient, 
and local binary pattern (LBP). Moreover, the 2D radiomics 

features included nine morphological features, while the 3D 
radiomics features included 14 morphological features. To 
evaluate the relationship between the two sets, unsupervised 
clustering and radiomics heat maps were used. 2D and 3D 
radiomics features were extracted, respectively. All radiom-
ics features were preprocessed with z-score method in the 
training set and applied in the test set.

The process of selecting radiomics features and build-
ing models involved five consecutive steps. Firstly, radiom-
ics features extracted with an ICC higher than 0.75 were 
retained. Secondly, the Wilcoxon rank-sum test was used. 
Thirdly, Spearman correlation analysis removed features 
with correlation coefficients greater than 0.9. To select 
the most useful predictive features in the training set, the 
least absolute shrinkage and selection operator (LASSO) 
method was applied. Logistic regression with 10-fold cross-
validation was involved. Finally, stepwise logistic regression 
was used to select the feature set with the minimum Akaike 
information criterion (AIC) and incorporate it into the logis-
tic regression model. The workflow of radiomics analysis is 
shown in Fig. 3.

Statistical analysis

All patients were divided into T1-2 and T3-4 stage 
groups. Continuous variables with a normal distribution 
were expressed as mean ± standard deviation, whereas 
those with a non-normal distribution were described as 
median (interquartile range). The independent sample 
t-test was used to compare continuous variables with a 

Fig. 1  Flowchart illustrating the included patients
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normal distribution. The Mann-Whitney U test was used to 
compare continuous variables with a non-normal distribu-
tion. Categorical variables were expressed as counts and 
compared using a chi-square test. The receiver operating 
characteristic curve (ROC) and the area under the curve 
(AUC) were used to evaluate the diagnostic performance 
of the model. The DeLong test was performed to compare 
the differences between the 2D and 3D radiomics mod-
els. The model's sensitivity, specificity, accuracy, positive 

predictive value (PPV), and negative predictive value 
(NPV) were calculated. The Hosmer-Lemeshow (HL) test 
and calibration curve were used to evaluate the degree of 
fit of the radiomics model, and decision curve analysis 
(DCA) was used to evaluate the clinical application value 
of the model. All tests were two-tailed, and a p-value of 
less than 0.05 was considered statistically significant. R 
software (version 4.2.2) was used for all statistical analy-
ses and modeling.

Fig. 2  The process of tumor segmentation. The 3D ROI covered the 
whole tumor area by delineating the tumor tissue layer by layer on 
axial CT images (a). Subsequently, adjustments were made with ref-
erence to the coronal (b) and sagittal (c) CT images to finally recon-

struct the 3D ROI (d). The 2D ROI was delineated on the largest 
cross-sectional area of the tumor (e). Subsequently, adjustments were 
made with reference to the coronal (f) and sagittal (g) CT images to 
finally reconstruct the 2D ROI (h)

Fig. 3  Workflow of radiomics analysis
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Results

Patient clinical and pathological characteristics

Three hundred ninety-eight patients with ESCC, including 
266 males and 132 females, were enrolled in this study. 
The ages of the patients ranged from 37 to 80 years. There 
were 113 patients with the T1-2 stages, including 30 cases 
of the T1 stage and 83 cases of the T2 stage, and 285 
patients with the T3-4 stages, including 281 cases of T3 
and 4 cases of T4a. There was no statistically significant 
difference between patients with T1-2 and T3-4 stages. 
However, the two groups had statistically significant 
differences regarding gender, pLength, pThick, tumor 

differentiation, lymph node metastasis, PNI, LVI status, 
and pTNM stage. The detailed clinical and pathological 
characteristics were provided in Table 1.

Radiomics features selection and model 
construction

A total of 1595 radiomics features were extracted from 
the 2D and 3D ROIs of each tumor, respectively. We used 
unsupervised clustering analysis to visualize the cor-
relation between 2D and 3D radiomics features using a 
heatmap (Fig. 4). The ICC analysis revealed that 492 2D 
radiomics features and 1350 3D radiomics features had 
ICC values greater than 0.05, respectively, indicating good 
consistency and reproducibility. 431 2D radiomics features 

Table 1  Clinical and pathological characteristics of esophageal squamous cell carcinoma patients

a Pearson’s Chi-squared test
b Mann-Whitney U test
LVI lymphovascular invasion, PNI perineural invasion, CEA carcinoembryonic antigen, SCCA  squamous cell carcinoma antigen

Variable Training Testing

T1–2 (N = 80) T3–4 (N = 200) P T1–2 (N = 33) T3–4 (N = 85) P

Gender (n) 0.001a 1.000a

 Male 41 145 22 58
 Female 39 55 11 27

Age (n) 0.953a 0.780a

 ≤65 years 49 125 17 48
 >65 years 31 75 16 37

Location (n) 0.008a 0.314a

 Upper 9 12 0 4
 Middle 44 148 22 61
 Lower 27 40 11 20

Degree (n) 0.655a 0.773a

 I–II 53 138 22 58
 III 89 62 11 26

N (n) 0.0851a 18 38 0.450a

 Positive 47 93 15 47
 Negative 33 107

pTNM (n) 0.007a 0.053a

 I–II 53 95 22 38
 III-IV 27 105 11 47

LVI (n) 0.182a 0.012a

 Positive 63 140 30 56
 Negative 17 60 3 29

PNI (n) 0.001a 0.003a

 Positive 71 121 0 52
 Negative 9 79 3 33

pLength (cm) 3.000 [2.275;3.500] 3.500 [3.000;4.500] <0.001b 3.500 [2.500;4.000] 3.500 [3.000;4.500] 0.071b

pThick (cm) 1.000 [0.600;1.000] 1.000 [1.000;1.500] <0.001b 1.000 [0.700;1.300] 1.200 [1.000;1.500] 0.003b

CEA (ng/ml) 2.795 [2.105;3.360] 2.925 [2.100;3.360] 0.687b 2.920 [1.970;3.360] 2.880 [2.120;3.360] 0.683b

SCCA (ng/ml) 1.000 [0.700;1.710] 1.300 [0.780;1.710] 0.052b 0.900 [0.700;1.450] 1.200 [0.700;1.710] 0.190b
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and 741 3D radiomics features showed statistically sig-
nificant differences between patients with T1-2 and T3-4 
stage tumors. These radiomics features were included in 
subsequent Spearman correlation analyses. Radiomics fea-
tures with an ICC greater than 0.9 were discarded, leaving 
86 2D radiomics features and 123 3D radiomics features 
for LASSO analysis (Fig. 5). The minimum criterion was 
used to determine the selection of the tuning parameter 
(λ). After LASSO analysis, 16 radiomics features were 
retained. Finally, multivariate stepwise logistic regression 
was used to establish the 2D and 3D radiomics models, 
respectively, and the feature set with the lowest AIC value 
was retained. Figure 6 describes the selected 2D and 3D 
radiomics features and their coefficients. The correlation 
between the selected 2D and 3D radiomics features was 
analyzed using Spearman correlation and visualized as a 
heat map (Fig. 7). For each patient, the radiomics score 
(Radscore) was calculated, which could be expressed as:

2 D  R a d s c o r e = 1 . 3 3 7 1 + o r i g i n a l _ n g t d m _
B u s y n e s s _ 2 D * 0 . 3 8 4 6 - w a v e l e t .  L H  f i r s t -
order_Minimum_2D*0.9596-wavelet .  LH glcm_
Imc2_2D*0.5414-wavelet. LL glrlm_LongRunLowGr
ayLevelEmphasis_2D*0.5414-wavelet. LL glrlm_Lon
gRunLowGrayLeve lEmphas i s_2D*0.3355- loga-
rithm_glcm_MaximumProbability_2D*0.6636+1bp
.2D_firstorder_Entropy_2D.

3 D  R a d s c o r e = 1 . 2 8 3 9 + o r i g i n a l _ n g t d m _
Busyness_3D*0.8804+log.sigma.1.0.mm.3D_ngtdm_
Complex i ty_3D*0.5897- log . s igma.1 .0 .mm.3D_
n g t d m _ C o n t r a s t _ 3 D * 0 . 6 1 5 9 + w a v e l e t .
L H L _ f i r s t o rd e r _ Ku r to s i s _ 3 D * 0 . 4 1 8 0 - wave l e t .
HLL_glcm_MaximumProbability_3D*0.274+logari

thm_gldm_DependenceEntropy_3D*0.4766-lbp.3D.
m2_glszm_SmallAreaLowGrayLevelEmphasis_3D.

The bar charts of 2D and 3D Radscore is shown in Fig. 8.

Model evaluation and comparison

Table 2 presented the detailed diagnostic performance of 
the models. Figure 9 depicts the ROC curves of these two 
models. In the training set, the AUC for 2D was 0.831 and 
for 3D was 0.830, with a p-value of 0.973 (DeLong test). 
In the testing set, the AUC for 2D was 0.807 and for 3D 
was 0.797, with a p-value of 0.748 (DeLong test). The 3D 
radiomics model had higher specificity, accuracy, and PPV 
in the training and testing sets. Meanwhile, the 2D radiom-
ics model had a higher sensitivity and NPV. The calibration 
curves of the 2D and 3D radiomics models showed good 
consistency (Fig. 10). The HL test indicated no significant 
deviation from the perfect fit. DCA showed that the two 
models had a similar clinical net benefit (Fig. 11). Therefore, 
the performance of the 2D radiomics model in the identifica-
tion of T1-2 and T3-4 stages of ESCC was comparable to 
that of the 3D model in terms of net clinical benefit.

Discussion

In this study, extracted radiomics features were utilized to 
develop 2D and 3D radiomics models for differentiation 
between T1-2 and T3-4 stages of ESCC. The results showed 
that 2D and 3D radiomics models effectively distinguished 
between T1-2 and T3-4 stages of ESCC before treatment.

The CECT scan was a common diagnostic method for 
ESCC and was widely used in clinical practice due to its low 
cost, easy accessibility, and non-invasiveness [22]. However, 
high-order radiomics features were not incorporated into the 
analysis. Radiomics was a promising approach for extracting 
image features from radiographic images in a high-through-
put manner, capable of capturing additional information that 
conventional images could not reveal [19]. The first step 
in the radiomics workflow was to acquire high-quality and 
standardized medical images, which were then used to seg-
ment the tumor ROI. Subsequently, high-throughput quanti-
tative image features were extracted from the defined tumor 
ROI [19]. From a dimensional perspective, they could be 
mainly categorized into single-slice 2D ROI and whole-
tumor volume 3D ROI. The 2D or 3D ROI segmentation 
pattern for tumors could impact radiomics feature values and 
the performance of discrimination models [24–26].

There had been a longstanding debate about whether 
2D or 3D ROI should be used. However, the practical effi-
cacy of radiomics features differed in clinical practice. The 
results were attributed to variances in image parameters, the 
involved organs, pathological tumor characteristics, tumor 

Fig. 4  Heat map of radiomics feature cluster containing four distinct 
classifications. The areas that appear redder indicate stronger correla-
tions between the 2D and 3D radiomics features, while darker green 
areas signify weaker correlations
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morphology, growth patterns, clinical endpoints, and the 
modeling methods utilized in the studies, in addition to other 
contributing factors. It was relatively easy for radiologists 
to delineate the 2D ROI of a tumor, which resulted in fewer 
feature calculations and less time spent [24]. Nonetheless, 
3D ROI radiomics analysis covered the whole tumor volume 
and could better characterize the spatial heterogeneity of the 
tumor than 2D ROI radiomics analysis [32, 33]. However, 
using only a single-slice tumor ROI might not be appropri-
ate for radiomics analysis because 2D image features could 
not express the heterogeneity of the whole tumor volume 
[34]. In our training and testing sets, the AUC values of 
the 2D radiomics model were 0.830 and 0.807, respectively. 

These values were comparable to those of the 3D radiom-
ics model. The DeLong test did not reveal any statistically 
significant difference between the two models. Moreover, the 
DCA curved indicated that both models possess comparable 
clinical utility.

Currently, there is no research that compares the perfor-
mance differences between 2D and 3D radiomics models 
in predicting T-stage for ESCC. For some solid tumors, 
the predictive performance of models built on 3D ROI was 
better or close to that of those built on 2D ROI [24, 26]. 
Previous studies [34–36] had demonstrated that 3D ROI 
contained more stable and reproducible radiomics features 
than 2D ROI. However, the esophagus was a hollow organ, 

Fig. 5  The least absolute shrinkage and selection operator (LASSO) 
logistic regression for 2D and 3D radiomics feature selection. Spe-
cifically, for 2D radiomics, we selected log (λ)  = -− 1.628 and 
λ = 0.024 (a, b), and for 3D radiomics, we selected log (λ) = −1.562 

and λ = 0.027 (c, d). We then plotted the LASSO coefficient profile 
for the 86 and 123 radiomics features in 2D and 3D, respectively. The 
vertical red line in each plot represents the value of λ selected using 
10-fold cross-validation
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and esophageal tumors were usually irregular. In delineating 
EC tumors, a specific challenge existed in determining the 
superior and inferior borders of the tumor. The delineation 
process might include varying degrees of normal esopha-
geal tissue. Therefore, manual segmentation was necessary 
to ensure the accuracy of tumor ROI delineation. The issue 
with 2D ROI segmentation was that the selection of the 
maximum slice might be subjectively influenced by indi-
vidual judgment, while such variability did not exist in 3D 
ROI segmentation. In radiomics studies of hollow organs, 
such as esophageal, gastric, and rectal cancers, 3D radiom-
ics models showed superior performance compared to 2D 
radiomics models. Peng et al. [37] found that the 3D radiom-
ics model had higher efficacy than 2D radiomics model in 
predicting the LVI status of ESCC. Huang et al. [21] found 

that, in gastric cancer, 3D radiomics features demonstrated 
greater stability and reproducibility when compared to 2D 
radiomics features. They also observed a higher abundance 
of features with an ICC > 0.75. Du et al. [38] found that the 
3D radiomics model showed more encouraging performance 
in differentiating squamous cell carcinoma and adenocarci-
noma at the gastroesophageal junction. Li et al. [39] found 
that 3D radiomics model outperformed 2D radiomics model 
in predicting LVI status in rectal cancer. Our results differed 
from the previous study, which was mainly due to the differ-
ent pathological features considered. The largest area of the 
tumor could reflect the T-stage to some extent.

However, in some other studies, the performance of 2D 
radiomics was superior. Shen et al. [28] found that regard-
ing the prognosis for non-small cell lung cancer, the 2D 

Fig. 6  The selected radiomics features and their coefficients in the 
training set (a) and testing set (b). The red bars represented negative 
coefficients, and the light blue bars represented positive coefficients. 

Negative coefficients were depicted by red bars, while positive coeffi-
cients were shown by blue bars. The greater the length of the bars, the 
greater the absolute value of the coefficients

Fig. 7  The heat map displays the correlation coefficients between radiomics features in the training set (a) and testing set (b)
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radiomics model outperformed. In another study [40], tumor 
heterogeneity analyzed by 2D radiomics of CT images was 
more accurate than 3D radiomics of tumors in predicting 

treatment response in patients with colorectal cancer with 
liver metastases. Meng et al. [25] compared the performance 
of 2D and 3D CT radiomics features in identifying lymph 

Fig. 8  The bar charts displaying the Radscore of 2D (a, b) and 3D (c, 
d) radiomics models in training and testing sets, respectively. The red 
bars indicated T1–2 stage patients, while the light green bars repre-
sented the Radscore of T3–4 stage patients. Correctly identified T1–2 

stage patients were shown by red bars below the threshold, and incor-
rect identifications were represented by red bars above the threshold. 
Blue bars above the threshold indicated correctly identified T3–4 
stage patients, and those below indicated incorrect identifications

Table 2  Diagnostic performance of two-dimensional (2D) and three-dimensional (3D) radiomics models

2D two-dimensional, 3D three-dimensional, AUC  area under the curve, SEN sensitivity, SPE specificity, ACC  accuracy, PPV positive predictive 
value, NPV negative predictive value

AUC ACC SEN SPE PPV NPV

Training
 2D 0.831 (0.778–0.883) 0.757 (0.703–0.806) 0.745 (0.555–0.845) 0.787 (0.650–0.863) 0.898 (0.867–0.909) 0.553 (0.505–0.575)
 3D 0.830 (0.776–0.884) 0.779 (0.725–0.826) 0.775 (0.565–0.860) 0.787 (0.650–0.875) 0.901 (0.869–0.910) 0.583 (0.536–0.609)

Testing
 2D 0.807 (0.713–0.902) 0.805 (0.722–0.872) 0.871 (0.670–0.965) 0.636 (0.454–0.818) 0.860 (0.826–0.872) 0.656 (0.577–0.711)
 3D 0.797 (0.703–0.892) 0.771 (0.685–0.843) 0.800 (0.482–0.918) 0.697 (0.454–0.848) 0.872 (0.804–0.886) 0.575 (0.468–0.622)
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node metastasis, lymphatic invasion, and pT stage in a mul-
ticenter study of advanced gastric cancer. The results showed 
that the 2D model performed superiorly to the 3D model in 
all three tasks. Considering the time and labor required for 
segmentation, the 2D radiomics model was recommended 
for clinical applications due to its practicality and efficiency. 
The lower performance of the 3D model might be attributed 
to the additional noise introduced by the 3D ROI segmenta-
tion, which could obscure useful information and adversely 

affect diagnostic accuracy. Alternatively, the multi-slice seg-
mentation used in the 3D model magnified the delineation's 
subjective and noise-related effects. The 3D ROI covering 
the whole tumor provided better average tissue property fea-
tures for lesion classification in radiomics. For the delinea-
tors, obtaining a more accurate model took more time and 
patience, and the amount of data for analysis increased in 
geometric quantities. However, a potential drawback of 3D 
ROI was that including more segmented image slices led to 

Fig. 9  The receiver operating characteristic (ROC) curves of the 2D 
and 3D radiomics models. The area under the curve (AUC) values 
of the 2D radiomics model and the 3D radiomics model were nearly 

equivalent in the training (a) and testing (b) sets, and the difference 
between the two models was not statistically significant

Fig. 10  Calibration curves of the 2D and 3D radiomics models in both the training (a) and testing (b) sets. The Y-axis denoted the actual prob-
ability, whereas the X-axis signifies the predicted probability
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more non-tumor tissue, which could distort the results [41]. 
The 2D ROI could minimize potential motion and respira-
tory artifacts to the greatest extent, and these artifacts might 
become more pronounced with increased ROI slices. In sum-
mary, the advantage of 2D imaging-based radiomics analysis 
lied in its convenience, making it the preferred segmentation 
method for improving efficiency without significantly sacri-
ficing accuracy in clinical practice [42].

There were several limitations to our study that should 
be noted. First, as a single-center study, this led to selection 
bias. Furthermore, the limited number restricted the model's 
performance, and further external validation was necessary. 
Secondly, we used CT scans from two different machines to 
obtain the images. However, collecting data in a heterogene-
ous environment might improve the generalizability of our 
results. Third, we focused on comparing the diagnostic per-
formance of 2D and 3D models rather than combining them 
with conventional CT features for diagnosis, which could be 
a direction for future research. In addition, another interest-
ing direction worth exploring is to compare the differences 
between EUS and 2D radiomics analysis in the staging of 
ESCC, utilizing postoperative pathology serving as the gold 
standard for evaluation

In conclusion, the predictive models constructed by 
2D and 3D radiomics features could be used for preopera-
tive, non-invasive identification of T1-2 and T3-4 stages of 
ESCC, which had potential clinical applications for guiding 
individualized treatment decisions and accurately stratifying 
ESCC patients. In addition, 2D radiomics model may be a 

more feasible option due to the shorter time required for 
segmenting the ROI. Considering the simplicity and afford-
ability of 2D radiomics model and its comparable predic-
tive performance compared to 3D radiomics model, the 2D 
radiomics model may be a more feasible option due to the 
shorter time required for segmenting the ROI.

Main points

This large retrospective study demonstrated that 2D and 3D 
radiomics analysis could effectively differentiate the T-stage 
of ESCC preoperatively.

Our results provided a new reference and direction for 
ESCC radiomics analysis, which could help clinicians allo-
cate treatment.
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els in the training (a) and testing (b) sets. The black line denotes the 
scheme of no treatment. The dark gray line corresponds to the 2D 

radiomics model, whereas the yellow line represents the 3D radiom-
ics model. DCA curves showed similar clinical utility between 2D 
and 3D radiomics models
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