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Abstract
Purpose  To evaluate the potential application of radiomics in predicting Tumor-Node-Metastasis (TNM) stage in patients 
with resectable esophageal squamous cell carcinoma (ESCC).
Methods  This retrospective study included 122 consecutive patients (mean age, 57 years; 27 women). Corresponding tumor 
of interest was identified on axial arterial-phase CT images with manual annotation. Radiomics features were extracted 
from intra- and peritumoral regions. Features were pruned to train LASSO regression model with 93 patients to construct a 
radiomics signature, whose performance was validated in a test set of 29 patients. Prognostic value of radiomics-predicted 
TNM stage was estimated by survival analysis in the entire cohort.
Results  The radiomics signature incorporating one intratumoral and four peritumoral features was significantly associated 
with TNM stage. This signature discriminated tumor stage with an area under curve (AUC) of 0.823 in the training set, with 
similar performance in the test set (AUC 0.813). Recurrence-free survival (RFS) was significantly different between differ-
ent radiomics-predicted TNM stage groups (Low-risk vs high-risk, log-rank P = 0.004). Univariate and multivariate Cox 
regression analyses revealed that radiomics-predicted TNM stage was an independent preoperative factor for RFS.
Conclusions  The proposed radiomics signature combing intratumoral and peritumoral features was predictive of TNM stage 
and associated with prognostication in ESCC.
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Graphical abstract

Decoding Tumor Stage by Peritumoral and Intratumoral Radiomics 
in Resectable Esophageal Squamous Cell Carcinoma

Xian-Zheng Tan et al; 2023

The radiomics signature incorpora�ng one 
intratumoral and 4 peritumoral features 
dis�nguished tumor stage with an AUC of 
0.823 in the trainset and showed similar 
performance in the testset (AUC, 0.813).

Recurrence-free survival was significantly 
worse in pa�ents at high risk of radiomics-
predicted TNM stage compared with those 
at low risk.
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Abbreviations
ESCC	� Esophageal squamous cell carcinoma
CT	� Computed tomography
NLR	� Neutrophil-to-lymphocyte ratio
PLR	� Platelet-to-lymphocyte ratio
TNM	� Tumor-node-metastasis
LN	� Lymph node
RFS	� Recurrence-free survival
ROI	� Region of interest
LASSO	� Least absolute shrinkage and selection operator
GLDM	� Gray level dependence matrix
GLCM	� Gray level co-occurrence matrix
GLRLM	� Gray level run length matrix
GLSZM	� Gray level size zone matrix
NGTDM	� Neighboring gray tone difference matrix
ICC	� Intra-class correlation coefficient
AUC​	� Area under curve
CI	� Confidence interval

Introduction

Esophageal cancer remains an important cancer worldwide 
and is responsible for over 600,000 new cases in 2020 and 
an estimated 544,000 deaths, ranking seventh for incidence 
and sixth for mortality globally [1]. Esophageal squamous 
cell cancer (ESCC), as the dominant histological subtype, 
comprises over 90% of all esophageal cancer cases in the 
high-risk areas such as East and Central Asia [2, 3].

Local-regional staging is essential for decision making 
and prognostication of esophageal carcinoma [1, 4]. Impor-
tant findings were, first, that staging accuracy of current 
imaging modalities is still relatively inadequate [5–7]. Sec-
ond, clinical staging, currently based largely on imaging, 
cannot predict the survival as accurately as pathologic stag-
ing, which overestimated the survival of early-stage tumor 
and underrated the survival of advanced-stage tumor [8]. 
Therefore, new tools for accurate clinical staging have to be 
developed to facilitate precision cancer care.

Radiomics enable non-invasive decoding of clinical stag-
ing in various cancers including ESCC [9–11]. However, 
previous radiomics studies mainly focused on the intratu-
moral region alone, whereas there is paucity of data evalu-
ating the potential value of peritumoral radiomics features 
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for predicting ESCC staging. Recently, peritumoral radiom-
ics features have been shown to be predictive in treatment 
response assessment in ESCC [12]. Therefore, the primary 
objective of the study was to assess the ability of intratu-
moral and peritumoral radiomics in predicting local-regional 
staging in ESCC. The secondary objectives were to investi-
gate associations between radiomics-based staging pheno-
type and patient survival.

Materials and methods

This retrospective study was approved by the ethics commit-
tee of our institution (no. ky-2023-109) without the require-
ment of written informed consent.

Patients

Esophageal cancer patients who underwent radical 
esophagostomy and regional lymphadenectomy (i.e., patho-
logical T1-4aN1-2M0) in our institution from January 2012 
to September 2016 were retrospectively recruited. Inclusion 
criteria were as follows: (1) ESCC confirmed histologically 
and (2) standard contrast-enhanced computed tomography 
(CT) performed within 2 weeks before surgery. Exclusion 
criteria included (1) preoperative anticancer therapy; (2) 
concurrence other malignant tumors; (3) missing clinico-
pathological data (preoperative blood-routine character-
istics, pathological data for definite TNM stage, etc.); (4) 
uninterpretable enhanced CT images; and (5) Postopera-
tive following up time < 1 year. One hundred twenty-two 

patients who met the criteria were allocated randomly to 
the training cohort (n = 93) and internal validation cohort 
(n = 29) in a 3:1 ratio. Patient enrollment pathway is shown 
in Fig. 1. These patients were previously reported as part 
of a radiomics study [13]. Yet, the current study exploits a 
different study purpose, methodology, and results as com-
pared with the prior publication. Whereas previous study 
dealt with intratumoral radiomics and focused on prediction 
of lymph node (LN) metastasis, the present study evaluates 
the diagnostic performance of intratumoral and peritumoral 
radiomics in predicting local-regional staging and prognos-
tic value of radiomics-predicted Tumor-Node-Metastasis 
(TNM) stage.

Clinicopathological characteristics

Clinical information, including demographic data (age, sex), 
laboratory test (serum albumin, fibrinogen, blood-routine 
characteristics), and histopathological reports (tumor site, 
grade, Tumor stage, Node stage) were collected from elec-
tronic medical record databases. Neutrophil-to-lymphocyte 
ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were 
calculated based on neutrophil, lymphocyte, and platelet 
count within 2 weeks before surgery. The threshold values 
for serum albumin and fibrinogen used here were 35 g/L 
and 4 g/dL, respectively. The pathologic stage was defined 
according to the Union for International Cancer Control 
TNM staging system (8th edition) [8, 14]. Stage I and II 
were classified as the early-stage, and stage III and IV the 
late-stage.

Fig. 1   Flow diagram of patient 
enrollment, eligibility, and 
exclusion criteria. ESCC esoph-
ageal squamous cell carcinoma, 
CT computed tomography
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Follow‑up strategy

Patients were followed up every 3 months for the 1st year 
after surgery, every 6 months for thereafter. At each out-
patient visit, thoraco-abdominal CT scans, brain magnetic 
resonance images or brain CT scans and bone scans were 
routinely performed to detect any evidence of recurrence. 
The recurrence date was recorded as the date when the 
aforementioned scans first showed signs of recurrence. 
Recurrence-free survival (RFS) was defined as the duration 
from the date of surgery to the first radiographic detection 
of recurrence, death, or the last follow-up was set as the end 
point.

CT acquisition

All patients underwent contrast-enhanced chest CT using a 
64-slice LightSpeed VCT (GE Healthcare), which was per-
formed in the axial plane with 5-mm-thick sections.

Details on the imaging protocols are shown in Sup-
plementary S1 (online). Arterial-phase CT images, as the 
optimal one for visualization of esophageal cancer, were 
retrieved from picture archiving and communication sys-
tem (Carestream, Canada) for tumor annotation [15]. CT-
reported lymph node (LN) status was assessed in consensus 
on the pretreatment CT by two radiologists (Z.T. and R.M., 
with 12 and 6 years of clinical experience in esophageal 

imaging, respectively). LN short-axis diameter greater than 
10 mm was defined as a radiological positive nodal status 
[16].

Tumor segmentation and feature extraction

Tumor segmentation and radiomic features extraction were 
performed by using the open software 3D Slicer (version 
4.10.2, http://​www.​slicer.​org). The intratumoral three-
dimensional regions of interests (ROIs) covering the whole 
tumor in all patients were manually delineated slice by slice 
on the CT images by the one investigator (R.M), who was 
blinded to pathological TNM stage. After intratumoral seg-
mentation, peritumoral masks with a radial distance of 3 
mm were automatically created using morphologic outward 
dilation by 2 mm and inside erosion by 1 mm of the tumor 
boundaries. Airway, lung, left atrium, aorta, vertebrae, and 
azygos were manually excluded (Fig. 2). To evaluate the 
interreader agreement, an independent investigator (X.T) 
also placed three-dimensional ROIs of the intratumoral 
and peritumoral areas in a randomly selected subset of 30 
patients.

Before features extraction, image normalization was 
performed by remapping the histogram to fit within μ ± 3σ 
(μ: mean gray level within the VOI; σ: gray level stand-
ard deviation). For each ROI, 1223 quantitative features 
were extracted, including 14 shape features, 234 first-order 

Fig. 2   Lesion segmentation 
for radiomics analysis. First, A 
Region of interest was manu-
ally segmented in axial view 
to obtain intratumoral mask, B 
then the peritumoral masks with 
a radial distance of 3 mm were 
semiautomatically generated 
using morphologic outward 
dilation by 2 mm and inside 
erosion by 1 mm of the tumor 
boundaries, with airway, lung, 
left atrium, aorta, vertebrae, and 
azygos excluded manually. C, D 
Three-dimensional view of the 
intratumoral and peritumoral 
volumes of interest

http://www.slicer.org
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features, and 975 second-order texture features derived 
from gray level dependence matrix (GLDM), gray level co-
occurrence matrix (GLCM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM), and neigh-
boring gray tone difference matrix (NGTDM).

Construction of a TNM‑related radiomic signature

The reproducibility of features was calculated by using intra-
class correlation coefficients (ICC). After being normalized 
using the z score standardization method, all radiomics fea-
tures were filtered using the criteria of ICC ≥ 0.80 and cor-
relation coefficient ≥ 0.90. The remaining features were then 
input into the least absolute shrinkage and selection operator 
(LASSO) logistic regression model to avoid overfitting and 

construct radiomic signature. The output of LASSO model 
was converted into a probability score, namely the radiomic 
score, indicating the individual relative risk for high patho-
logic tumor stage.

Statistical analysis

All statistical analyses were performed using R version 4.2.1 
(The R Foundation). A two-tailed P value less than 0.05 was 
considered as statistical significance. The clinicopathologi-
cal characteristics between two datasets were compared with 
Chi-Square, t test or Mann–Whitney U test, where appro-
priate. The discrimination performance of the radiomic 
signature was quantified by the area under curve (AUC) 
value in the primary training set and internally validated 

Table 1   Baseline characteristics 
of patients in training and test 
sets

P value is derived from Chi-Square, t test or Mann–Whitney U test, where appropriate
SD standard deviation, NLR neutrophil-to-lymphocyte ratio, PLR platelet count to lymphocyte ratio, CT 
computed tomography, LN lymph node, G grade, TNM tumor-node-metastasis

Characteristics Trainset (n = 93) Testset (n = 29) P value

Age, mean ± SD, years 57.01 ± 8.84 59 ± 8.51 0.288
Gender, no (%) 0.638
 Male 71 (76.3%) 24 (82.8%)
 Female 22 (23.7%) 5 (7.2%)

Tumor location, no (%) 0.896
 Upper third 14 (15.1%) 4 (13.8%)
 Middle third 45 (48.4%) 13 (44.8%)
 Lower third 34 (36.6%) 12 (42.4%)

NLR, median (interquartile range) 2.000 (1.500–3.000) 2.000 (1.500–3.000) 0.524
PLR, median (interquartile range) 121.00 (96.00–171.50) 119.75 (93.5–173.00) 0.904
Fibrinogen 0.645
 ≤ 4 g/dL 17 (58.6%) 61 (65.6%)
 > 4 g/dL 12 (41.4%) 32 (34.4%)

Serum albumin 1.000
 ≤ 35 g/L 7 (24.1%) 22 (23.7%)
 > 35 g/L 22 (75.9%) 71 (76.3%)

Tumor volume (mm3) (interquartile range) 17.92 (12.11, 23.22) 13.78 (7.71, 23.02) 0.175
CT-reported LN status, no (%) 0.169
 LN-negative 98 (63.6%) 56 (73.7%)
 LN-positive 56 (36.4%) 20 (26.3%)

Histological grade 0.474
 G1 2 (6.9%) 14 (15.1%)
 G2 20 (69.0%) 55 (59.1%)
 G3 7 (24.1) 24 (25.8%)

TNM stage (8th) 1.000
 Low stage (I–II) 13 (44.8%) 42 (45.2%)
 High stage (III–IVa) 16 (55.2%) 51 (54.8%)

Recurrence, no (%) 0.806
 Absence 12 (41.4%) 43 (46.2%)
 Presence 17 (58.6%) 50 (53.8%)

Recurrence-free time, months 19.2 (8.2, 40.9) 22.1 (12.2, 42.7) 0.459
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in the independent test set. To explore the prognostic value 
of radiomics-predicted TNM stage, the optimum threshold 
of the radiomic score was determined using the surv_cut-
point  function of survival R package. Accordingly, the 
patients were divided into low- and high-risk groups in the 
entire cohort, for which the survival outcomes were com-
pared with Kaplan–Meier analysis and the 2-sided log-rank 
tests. Univariable and multivariable Cox regression analyses 
were conducted to analyze the relationship between radiom-
ics-predicted TNM stage and RFS.

Results

Patient characteristics

After applying the exclusion criteria, 122 patients (mean 
age, 57 years; 27 women) with ESCC were included for 
radiomics signature training, internal validation, and sur-
vival comparison analysis. The details of clinical-pathologic 
characteristics are shown in Table 1. High TNM stage in 
training set and test set was 55.2% and 54.8%, respectively. 

Fig. 3   Selection of TNM-
associated radiomics features 
via least absolute shrinkage and 
selection operator algorithm. 
Top figure shows the coeffi-
cient profiles of 122 radiomics 
features against the log (λ), bot-
tom figure the cross-validation 
curve. Pink dotted vertical 
lines were drawn at the optimal 
value by using fivefold cross-
validation and the 1 standard 
error of the minimum criteria. 
Five nonzero coefficients were 
selected. TNM tumor-node-
metastasis

Fig. 4   Receiver operating characteristic curves to predict TNM stage 
for the radiomics signature in the training and test sets. The radiom-
ics signature incorporating one intratumoral and four peritumoral 
features distinguished tumor stage with an area under curve (AUC) 
of 0.823 in the trainset, with similar performance in the testset (AUC 
0.813)
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The median follow-up time was 47.6 months (interquartile 
range 39.8-63.2). The median RFS duration for the entire 
cohort was 21.9 months, with 67 of 122 (54.9%) patients 
experiencing recurrence after complete surgical resection 
(median RFS time: 19.2 and 22.1 months for training set and 
test set, respectively). No significant differences in clinico-
pathological characteristics between two datasets justified 
their use as training and test sets (see Table 1).

Radiomics features selection and signature 
construction

A total of 2446 features were extracted from two ROIs per 
patient. After the reproducibility and correlation analy-
sis, a list of 122 features was retained with 2324 ineli-
gible features excluded. Next, five radiomics features, 
including one intratumoral feature and four peritumoral 
features, were selected by the LASSO algorithm (Fig. 3) 
and quantitatively integrated into the radiomics signature. 
The radiomic score was computed as follows: radiomic 
score = 0.22885113 − (0.13596893 × Intratumoral_wave-
let-LHH.glcm.DifferenceAverage) − (0.02591146 × Peritu-
moral_log-sigma-1-5-mm-3D.gldm.SmallDependenceLowG-
rayLevelEmphasis) + (0.08734137 × Peritumoral_wavelet-HLH.
firstorderKurtosis) + (0.08575472 × Peritumoral_wavelet-

HHH.glszm.SizeZoneNonUniformity) + (0.05001215 × Peri-
tumoral_original.glcmInverseVariance).

Validating the radiomics signature

The receiver operating characteristic curves analysis indi-
cated that the radiomics signature exhibited AUCs of 0.823 
(95% CI 0.739–0.906) in the training set, and 0.813 (95% CI 
0.632–0.993) in the test set (Fig. 4).

Survival risk stratification based on the radiomics 
signature

To explore the relationship between radiomics-predicted 
TNM stage and RFS, the entire cohort was clustered into 
low-risk (radiomic score < 0.17) and high-risk (radiomic 
score ≥ 0.17) groups according to the optimal cutoff value 
of the radiomic score determined by the surv_cutpoint func-
tion of survival R package (Fig. 5). The distribution of the 
radiomic score indicated that patients with low scores were 
commonly associated with favorable RFS, while those with 
high scores showed an increasing frequency of recurrence 
(log-rank P = 0.004, Fig. 6), with a hazard ratio of 0.47 
(95% CI 0.27–0.83, P = 0.009). Multivariable Cox regres-
sion analysis revealed that radiomics-predicted TNM stage 
was an independent preoperative factor for RFS (hazard 

Fig. 5   The classification of 
radiomics-predicted TNM stage 
status was derived using the 
optimal threshold of radiomic 
score (0.17) determined by the 
surv_cutpoint function of the R 
package survminer
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ratio, 0.32 [95% CI 0.17, 0.64]; P = 007) following cura-
tive-intent resection of ESCC, as was CT-reported LN status 
(hazard ratio, 1.95 [95% CI 1.13, 3.35]; P = 016) (Table 2).

Discussion

In this study, we developed and validated a radiomics signa-
ture for the preoperative prediction of TNM stage in patients 
with resectable ESCC. The radiomics signature, which com-
bined one intratumoral feature and four peritumoral features, 
performed well in distinguishing TNM stage with an AUC of 
0.823 in the training set, and showed similar discrimination 
on internal validation (AUC 0.813). The comparable per-
formance implied that the radiomics signature was a robust 
imaging biomarker in predicting tumor stage. In addition, 
the staging phenotype predicted by radiomics emerged as an 
independent preoperative predictor of RFS, thereby provid-
ing potentially prognostic information for medical decision 

making. To our knowledge, this study is the first exploring 
the combined predictive value of intratumoral and peritu-
moral radiomics features for tumor stage in ESCC patients, 
and also the first investigating the prognostic value of radi-
omics-based staging phenotype.

Pretreatment prediction of TNM stage is important for 
risk stratification and individualized therapy [4, 17]. Patients 
with late-stage ESCC are likely to be offered neoadjuvant 
chemoradiation in hopes of improving survival. Yet, clinical 
staging based chiefly on imaging modalities is still relatively 
inaccurate and more precise clinical staging tools are needed 
[8]. Prior studies supported the potential use of radiomics as 
a useful tool for tumor stage prediction in different clinical 
settings [9, 11, 18]. Wu et al. developed a radiomics signa-
ture to predict TNM stage of ESCC, resulting in an AUC 
of 0.762 at internal validation [11]. Unlike our signature 
that is based on radiomics features extracted from intratu-
moral and peritumoral areas, Wu et al. extracted and ana-
lyzed intratumoral features alone. Our radiomics signature 

Fig. 6   Kaplan–Meier sur-
vival analyses stratified by 
radiomics-predicted TNM stage 
in the entire cohort (n = 122). 
Recurrence-free survival was 
significantly worse in patients at 
high risk compared with those 
at low risk. Shaded areas repre-
sent 95% confidence intervals



309Abdominal Radiology (2024) 49:301–311	

1 3

demonstrated a slightly better performance (AUCs: 0.813 
vs 0.762), although a head-to-head comparison is needed. 
One possible explanation was that peritumoral regions may 
potentially contain complementary predictive information, 
as aggressiveness is a hallmark of cancer and peritumoral 
invasion is related to tumor stage [19–22]. Therefore, a 
combination of intratumoral and peritumoral features, 
which potentially capture the intratumoral heterogeneity 
and peritumoral microenvironment simultaneously, could 
enhance the predictive ability of radiomics in tumor stag-
ing in patients with ESCC. Since the developed radiomics 
signature can reliably predict tumor stage preoperatively, it 
may contribute to improve selection of ESCC patients most 
likely to benefit from neoadjuvant therapy while sparing oth-
ers from the toxic effects of the treatment.

Opposed to previous studies [11, 23, 24] that showed the 
usefulness of shape-based features (such as tumor volume, 
tumor length) for assessment of TNM stage, our signature 
did not include any shape features, likely because shape fea-
tures do not reflect comprehensively tumor heterogeneity 
and aggressiveness, thus are less predictive of TNM stage.

Another critical result found in our study was that the 
radiomics-based staging phenotype was independently asso-
ciated with RFS, implying its prognostic relevance for ESCC 
patients. More frequent follow-ups and more positive tai-
lored therapy may be needed for high-risk patients probed 
by the proposed radiomics signature.

The following study limitations merit consideration. First, 
the retrospective study may induce inevitable selection bias. 

Second, we collected patient data from single center. Future 
multicenter external validation is warranted to validate the 
generalization of the proposed radiomics signature. Third, 
manual volumetric segmentation was time-consuming and 
labor-intensive. Automatic annotation is required to simplify 
the process in the future. Fourth, we considered the hand-
crafted radiomic features alone in this study. The role of 
deep learning features has not been explored. An integrated 
analysis of the handcrafted and deep learning features may 
potentially improve predictive performance [25, 26]. Finally, 
clinical data (such as endoscopic results) for preoperative 
stage were unavailable in all patients in this retrospective 
study, so we were unable to compare the efficacy of our 
radiomics signature with that of clinical stage.

In conclusion, the proposed radiomic signature incor-
porates features of intratumoral and peritumoral regions, 
allowing the non-invasive evaluation of tumor stage in 
ESCC and potentially predicting prognosis.
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