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Abstract
Purpose  To construct machine learning models based on radiomics features combing conventional transrectal ultrasound 
(B-mode) and contrast-enhanced ultrasound (CEUS) to improve prostate cancer (PCa) detection in peripheral zone (PZ).
Methods  A prospective study of 166 men (72 benign, 94 malignant lesions) with targeted biopsy-confirmed pathology 
who underwent B-mode and CEUS examinations was performed. Risk factors, including age, serum total prostate-specific 
antigen (tPSA), free PSA (fPSA), f/t PSA, prostate volume and prostate-specific antigen density (PSAD), were collected. 
Time-intensity curves were obtained using SonoLiver software for all lesions in regions of interest. Four parameters were 
collected as risk factors: the maximum intensity (IMAX), rise time (RT), time to peak (TTP), and mean transit time (MTT). 
Radiomics features were extracted from the target lesions from B-mode and CEUS imaging. Multivariable logistic regres-
sion analysis was used to construct the model.
Results  A total of 3306 features were extracted from seven categories. Finally, 32 features were screened out from radiomics 
models. Five models were developed to predict PCa: the B-mode radiomics model (B model), CEUS radiomics model (CEUS 
model), B-CEUS combined radiomics model (B-CEUS model), risk factors model, and risk factors-radiomics combined 
model (combined model). Age, PSAD, tPSA, and RT were significant independent predictors in discriminating benign and 
malignant PZ lesions (P < 0.05). The risk factors model combing these four predictors showed better discrimination in the 
validation cohort (area under the curve [AUC], 0.84) than the radiomics images (AUC, 0.79 on B model; AUC, 0.78 on 
CEUS model; AUC, 0.83 on B-CEUS model), and the combined model (AUC: 0.89) achieved the greatest predictive efficacy.
Conclusion  The prediction model including B-mode and CEUS radiomics signatures and risk factors represents a promising 
diagnostic tool for PCa detection in PZ, which may contribute to clinical decision-making.
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Introduction

Prostate cancer (PCa) is the most diagnosed urologic can-
cer and the second most frequently diagnosed malignant 
tumor in men worldwide [1]. In 2020, there were approxi-
mately 1,414,259 newly diagnosed cases of PCa worldwide, 
accounting for 375,304 cancer-related deaths. Although the 
incidence and mortality rates of PCa in China are relatively 
low, due to its large population, China accounts for 8.2% of 
the global new cases and 13.6% of the PCa-related deaths, 
highlighting the urgent need for increased attention to PCa 
[2, 3]. In 1980s, John McNeal described four distinct zones 
of the prostate: the peripheral zone (PZ), the central zone, 
the transition zone, and the anterior fibromuscular stroma, 
and 70–80% prostate carcinomas originate from the PZ [4, 
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5]. Diagnostic tools generally include digital rectal exami-
nation (DRE), prostate-specific antigen (PSA), multipara-
metric magnetic resonance imaging (mpMRI), transrectal 
ultrasound (TRUS), and prostate biopsy [6]. DRE is always 
incorporated as part of a routine primary care examination, 
and may result in a large number of false-positives lead-
ing to unnecessary invasive diagnostic methods [7]. PSA, 
including total PSA (tPSA) and free PSA (fPSA), is the 
most widely used procedure in clinical screening but has 
low specificity [8]. MpMRI has shown promising advances 
for patient selection and focal treatment guidance [9]. How-
ever, concerns remain regarding high costs, limited avail-
ability due to, for example, the presence of metal implants, 
and inconsistencies in the reliability of reporting despite the 
recognized Prostate Imaging Reporting and Data System 
(PI-RADS), which has its problems, namely, a slow learn-
ing curve and high operator disagreement [9, 10]. TRUS is 
cost-effective, practical, safe and widely available, and it 
especially plays an important role in the evaluation of the 
PZ [11, 12]. However, PCa can be either hypoechoic, isoec-
hoic or hyperechoic on conventional B-mode TRUS, which 
is limited due to the heterogeneity of lesion echogenicity, 
resulting in limited value for PCa diagnosis, with a sensitiv-
ity and positive predictive value of approximately 11–35% 
and 27–57%, respectively [11–13]. Imaging-guided biopsy 
is still the standard diagnostic approach using a core needle 
mainly under ultrasound imaging guidance. However, the 
systematic biopsy is invasive, and more than 30% of patients 
experience side effects such as pain, infection, sepsis and 
bleeding [14]. Thus, we need to explore methods to increase 
PCa detection and to avoid unnecessary biopsy.

As a novel ultrasound technology, contrast-enhanced 
ultrasound (CEUS), which can reveal the dynamic patterns 
of blood flow in the cancer region, allows improved PCa 
visualization [15]. Specifically, through quantitative param-
eters of the measured time intensity curve (TIC), CEUS 
has produced encouraging results in previous studies [16, 
17]. An improved PCa detection rate has been shown when 
applying CEUS for TRUS-guided biopsy compared to sys-
tematic biopsies without CEUS [18, 19], and a few methods 
involving tissue perfusion assessments have been proposed 
for PCa detection [20, 21].

Radiomics extracts several quantitative characteristics 
from various images, and has been demonstrated to have 
clinical value [22]. In previous studies, a growing number 
of studies have focused on MRI using radiomics or deep 
learning approaches [23]. Only a few studies have focused 
on ultrasound in PCa-related medical decisions [24–26], 
and no prospective studies have been made to evaluate the 
diagnostic performance of CEUS combined with parameters 
through a machine learning approach.

In this study, we aimed to construct machine learning 
models based on radiomic features combing conventional 

B-mode TRUS, CEUS, and risk factors to improve PZ PCa 
detection. To our knowledge, there has not been any simi-
lar prospective study that comprehensively predicts benign 
and malignant prostate lesions by using the aforementioned 
imaging and factors. In addition, we will develop a new 
nomogram prediction model for clinical use through a more 
convenient platform.

Materials and methods

Patients

A total of 176 inpatients from our hospital were prospec-
tively included from January 2021 to August 2022. All of the 
patients were prospectively selected on the basis of suspi-
cious PZ prostate lesions on TRUS. When a patient had mul-
tiple lesions, only the most suspicious one was evaluated. 
Finally, 166 PZ prostate lesions constituted the research 
group. The institutional ethics committee of aerospace cen-
tral hospital approved this research.

The inclusion criteria were as follows: (1) serum PSA 
testing (including tPSA, fPSA, and f/t PSA) within 1 month 
before biopsy; (2) B-mode and CEUS imaging showing a 
suspicious lesion in PZ; (3) clear B-mode and CEUS imag-
ing, with the position of the lesion on the two different 
images showing good correspondence; and (4) available tar-
geted biopsy results. The exclusion criteria were as follows: 
(1) incomplete imaging data for either B-mode or CEUS; 
(2) surgery, radiotherapy or endocrine therapy before the 
ultrasound examination; and (3) no satisfactory pathological 
results for the lesion biopsy. Fig. 1 shows a patient selection 
diagram.

Risk factors, including age, serum tPSA, fPSA, f/t PSA, 
prostate volume (PV) and prostate-specific antigen density 
(PSAD), DRE result (positive vs. negative) were acquired 
from the enrolled patients. PV was measured by TRUS, 
and PSAD was calculated as tPSA/PV. In addition, CEUS-
related parameters were also included as risk factors, which 
are described in detail below.

Ultrasound technique and biopsy

For the procedure, each patient underwent B-mode ultra-
sound, CEUS examination and biopsy in the left lateral 
decubitus position using an Aixplorer® Ultrasound scanner 
(SuperSonic Imagine, Aix en Provence, France) equipped 
with an SE 12-3 transrectal probe. These procedures were 
performed by two sonographers (L.L. with 10 years of diag-
nostic prostate CEUS experience and 7 years of prostate 
biopsy experience and S.Y. with 5 and 3 years of such expe-
rience, respectively). All men or their legal guardians pro-
vided written informed consent.
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B-mode US was first used to perform volumetry of the 
prostate gland and identify the best approach for the target 

lesion (Fig. 2a). For the CEUS examination, a low mechani-
cal index of 0.04 were used. CEUS recording started after a 

Fig. 1   Diagram of patient 
inclusion for the study. TRUS 
transrectal ultrasound, CEUS 
contrast-enhanced ultrasound, 
PSA prostate-specific antigen

Fig. 2   Example image of a 
68-year-old PCa patient with an 
elevated PSA of 6.3 ng/mL and 
a hypoechoic lesion in the left 
PZ of the prostate. a B-mode, 
b CEUS mode, c target TRUS 
biopsy, and d the time-intensity 
curve. a and b represent ROI 
placement within the target 
lesion, which is depicted in the 
red circle. In b, the analysis and 
reference ROIs are encircled in 
green and yellow, respectively. 
CEUS contrast-enhanced ultra-
sound, TRUS transrectal ultra-
sound, ROI region of interest
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standardized dose of 2.4 mL of the contrast agent SonoVue 
(Bracco, Milan, Italy) followed by a 5-mL saline flush was 
administered intravenously by bolus. Lesions were evaluated 
by continuous scanning for 120 s and DICOM video clips 
were stored. After all the ultrasound examinations, a BARD 
Biopsy gun (Tempe, Arizona, USA) with an 18-gauge 
biopsy needle and a penetration depth of 15 mm or 22 mm 
was applied to perform the biopsy procedure. After the 
systematic 12-core biopsies, a standardized biopsy scheme 
(base, mid or apex gland; left or right) and 1–2 needles were 
added to the suspicious lesion area (Fig. 2c). The specimens 
were placed into corresponding labeled bottles.

CEUS evaluation

CEUS video clips were evaluated using TomTec’s Sono-
Liver software (1.0 version) to draw the TIC in this study 
(Fig. 2d). An ellipsoid region of interest (ROI) was placed 
within each target lesion. First, the ROI, including the lesion 
and the surrounding tissue, was delimited; second, for the 
ROI analysis, most of the lesion to be targeted compared to 
an area of the corresponding part of the contralateral side of 
the prostate parenchyma measuring approximately 1 cm was 
taken as a reference, which was located at the same depth as 
the reference ROI (Fig. 2b). TICs with a quality of fit > 75% 
were enrolled. The following SonoLiver output data were 
recorded: the maximum intensity (IMAX), the maximum 
echo-power with respect to that in the reference ROI; the rise 
time (RT), the wash-in time; the time to peak (TTP), which 
is defined as the instant at which the echo-power reaches the 
maximum; and the mean transit time (MTT) for the contrast 
agent in the ROI. These parameters were collected from clin-
ical data, and the contrast image corresponding to the TTP 
was selected for inclusion in the next radiomics analysis.

Segmentation and radiomics feature extraction

The images were imported into the open-source software 
ITK-SNAP (version 3.8.0), which was used to segment ROIs 
separately in the B-mode and CEUS images. The analyzed 
lesion was manually segmented by tracing the contour of the 
lesion on the B-mode image and the CEUS image at the time 
to peak by a radiologist. The red circle in Fig. 2b shows the 
lesion segmentation.

A total of 3306 features were extracted in this study from 
the Dr. Wise Multimodal Research Platform (https://​keyan.​
deepw​ise.​com) (Beijing Deepwise and League of PHD 
Technology Co., Ltd, 193 Beijing, China). The following 
standard classes of features were extracted: First-order 
statistics (19 features), shape-based features (10 features), 
gray-level co-occurrence matrix (GLCM) features (24 fea-
tures), gray-level run length matrix (GLRLM) features (16 
features), gray-level size zone matrix (GLSZM) features (16 

features), neighboring gray tone difference matrix features 
(5 features) and gray-level dependence matrix features (14 
features). These features are presented in the Appendix.

Feature selection and model construction

Feature correlation analysis was used to implement feature 
selection. The B-mode radiomics model (B model), CEUS 
radiomics model (CEUS model), B-CEUS combined radi-
omics model (B-CEUS model), risk factors model, and risk 
factors-radiomics combined model (combined model) were 
built based on the features from each individual image and 
their combination. The fivefold cross validation method 
was used to verify the results of various models. In terms 
of selecting the most useful predictive combination of fea-
tures, six kinds of feature-screening techniques (i.e., F test, 
the Pearson correlation coefficient, mutual information, the 
L1-based model, tree-based models, and recursive feature 
elimination) were adopted. Each method was selected for 
feature screening to build the model one by one. Finally, the 
L1-based model was demonstrated to be the most effective 
method for discriminating benign and malignant lesions. A 
logistic regression model was used to build each radiomics 
signature, and then a formula called radiomics score (Rad-
score) was generated by analyzing the regression character-
istics weighted by their coefficients. To build the risk fac-
tors model, univariate and multivariate logistic regression 
analyses incorporating the risk factors (i.e., age, PV, PSAD, 
tPSA, fPSA, f/t PSA, RT, TTP, MTT, and Imax) were used. 
An integrated combined model was then built.

Statistical analysis

Quantitative data are presented as the mean ± standard 
deviation. An independent t test or the Mann–Whitney U 
test was implemented to analyze the continuous variables, 
including nonnormally distributed data. When building the 
risk factors model, univariate logistic regression was applied 
first to choose the independent predictors with P < 0.05, and 
then multivariable logistic regression analysis was adopted 
to identify these factors in the combination of features. The 
enter stepwise selection method was applied in this step. 
The odds ratio (OR) was used to indicate the degree of risk. 
The diagnostic efficiency of a predictor was evaluated by 
its sensitivity, specificity, and accuracy. Receiver operating 
curves (ROC) and the area under the curves (AUCs) with 
95% confidence intervals (95% CIs) of the different models 
were obtained to assess their diagnostic performance and 
were compared using the Delong test. The nomogram of 
the combined model and decision curve analysis (DCA) was 
established to facilitate clinical decision-making. Statistical 
analyses were performed using R software (version 4.0.2) 

https://keyan.deepwise.com
https://keyan.deepwise.com
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and SPSS (version 23.0). P < 0.05 in two-tailed analyses was 
used to define statistical significance.

Results

In total, 166 patients (mean age, 73.9 ± 8.8 years; age range, 
47–83 years) were enrolled. The median diameter of the 
lesions was 7.8 mm (min–max 4.6–35.5 mm). The Gleason 
scores (GSs) of all patients were as follows: 3 + 3 = 6 (30 
cases); 3 + 4 = 7 (24 cases); 4 + 3 = 7 (45 cases); and > 4 + 3 
(67 cases). Based on the univariate logistic regression analy-
sis, significant differences in age, PV, PSAD, tPSA, fPSA, 
and f/t PSA and in the presence of the CEUS parameter RT 
were identified between the benign and malignant groups 
(P < 0.05). No differences in the distribution of the remain-
ing three parameters of CEUS (TTP, MTT, and Imax) were 
noted between the two groups (P > 0.05). In the multivariate 
logistic analysis, age, PSAD, tPSA, and RT were significant 
independent predictors (P < 0.05). Patient demographic and 
clinical characteristics are shown in Table 1.

1653 B-mode features were reduced to 20 risk predic-
tors in the training set, and the B-mode Rad-score was 
obtained. The same steps were also completed for the 
CEUS training set, and 11 risk predictors together with the 
CEUS Rad-score was obtained. Then, the 3306 features of 
the two modes were reduced to 32 related features, includ-
ing 20 features related to B-mode and 12 to CEUS, and the 
multiparametric B-CEUS Rad-score was obtained, as pre-
sented in the Appendix. ROC curves were used to compare 
different models’ ability to discriminate between benign 
and malignant lesions. In the training set, the AUC values 

of B-mode radiomics, CEUS radiomics, and B-CEUS 
combined radiomics were 0.94 (CI 0.89–0.98), 0.87 (CI 
0.81–0.94), and 0.97 (CI 0.95–1.0), respectively. In the 
validation set, the AUC values of the machine learning 
models were 0.79 (CI 0.71–0.88), 0.78 (CI 0.70–0.87), 
and 0.83 (CI 0.76–0.91), respectively, as shown in Fig. 3a.

For PCa prediction, the sensitivity, specificity, accuracy 
and AUC of risk factors model were 0.76, 0.81, 0.78, and 
0.87, respectively in the training set. In the validation set, 
they were 0.69, 0.77, 0.74, and 0.84, respectively. The 
risk factors-radiomics combined model displayed a good 
predictive capacity with an AUC of 0.91 in the training 
group and the best predictive capacity with an AUC of 
0.89 in the validation group, as shown in Fig. 3c. The 
specific indicators of diagnostic efficacy for these models 
are shown in Table 2.

The Delong test (Fig. 3e, f) revealed that the B-CEUS 
model performed the best in the training set, and in the vali-
dation set, significant differences were observed between 
the AUCs of the combined model and the single-imaging 
morality radiomics model (B model, P < 0.05; CEUS model, 
P < 0.05). The combined model also showed not only the 
highest specificity and accuracy (0.83 and 0.82, respectively) 
but also high sensitivity (0.80) for PCa prediction.

According to the DCA (Fig.  3b, d), using the com-
bined model added more benefit if the high-risk threshold 
probability was > 40% within a wide range. A nomogram 
including age, tPSA, PSAD, RT and Rad-score was built 
(Fig. 3g). The AUCs of this diagnostic nomogram were 
0.91 (0.85–0.97) in the training set and 0.89 (0.83–0.96) in 
the validation set. The accuracies were 0.84 in the training 
cohort and 0.82 in the testing cohort.

Table 1   Characteristics of patients in the benign and malignant groups.

PV prostate volume, PSAD prostate-specific antigen density, PSA prostate-specific antigen, tPSA total PSA, fPSA free PSA, IMAX maximum 
intensity, RT rise time, TTP time to peak, MTT mean transit time, DRE digital rectal examination

Benign group (N = 72) Malignant group (N = 94) Univariate logistic analysis 
results

Multivariate logistic analysis results

OR (95% CI) P value OR (95% CI) P value

Age (years) 71.9 ± 9.0 76.0 ± 8.3 1.058 (1.009, 1.109) 0.020 1.078 (1.009, 1.152) 0.026
PV (mL) 63.9 ± 36.4 50.0 ± 28.4 0.985 (0.971, 0.999) 0.034 1.020 (0.994, 1.047) 0.139
PSAD (ng/mL2) 0.2 ± 0.2 1.0 ± 1.4 45.630 (3.462, 601.372) 0.004 35,162.63 (11.110, 

11,287,346)
0.011

tPSA (ng/mL) 11.0 ± 12.5 55.2 ± 137.9 1.041 (1.011, 1.071) 0.007 0.930 (0.875, 0.989) 0.020
fPSA (ng/mL) 2.3 ± 4.1 6.6 ± 9.7 1.104 (1.018, 1.196) 0.017 0.945 (0.743, 1.203) 0.647
f/t PSA (%) 18.8 ± 7.9 14.3 ± 7.9 0.927 (0.878, 0.978) 0.005 0.910 (0.808, 1.024) 0.117
RT (s) 15.0 ± 4.7 11.6 ± 3.2 0.796 (0.706, 0.898) 0.000 0.781 (0.644, 0.947) 0.012
TTP (s) 35.15 ± 6.9 32.85 ± 8.9 0.961 (0.910, 1.015) 0.151
MTT (s) 38.53 ± 10.6 32.8 ± 7.0 0.921 (0.880, 0.975) 0.004 0.977 (0.898, 1.062) 0.582
IMAX (%) 125.3 ± 82.0 165.7 ± 112.4 1.005 (1.000, 1.009) 0.056
Positive DRE 41 54 3.232 (1.077, 9.703) 0.134
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Discussion

Our study presents new opportunities for PZ PCa detection. 
A combined model was finally set up with the goal of estab-
lishing an easy-to-use tool.

Previous studies have presented controversial results 
regarding hypoechoic lesions in the detection of PZ PCa. 
Kwang Suk Lee et  al. [27] reported a high proportion 
(76.9%) of high-grade GSs for hypoechoic PCa lesions, and 
hypoechoic lesions generally have worse pathologic differ-
entiation with increasing size. Nakano Junqueira et al. [28] 
showed that patients with hypoechoic lesions who under-
went prostatectomy had significantly worse outcomes than 
those who did not. A hypoechoic lesion was defined as a 
region with a lower grayscale value than the surrounding tis-
sue [29]. In our study, the suspicious lesions mostly included 
hypoechoic lesions and few isoechoic or mixed lesions. 
However, hypoechoic lesions may become hyperechoic, iso-
echoic, or mixed lesions depending on whether they grow, 
invade other issues, or develop calcification [11, 15].

Li et al. [19] noted the indicators predicting suspicious 
lesions when using CEUS: (1) hypoechoic lesions in the 
peripheral zone showed high enhancement, (2) the peak 
intensity of enhancement within the lesion was increased, 
(3) asymmetric enhancement, etc. Various enhancement 
patterns can coexist due to the uniformity of microves-
sel density. Notably, we chose the CEUS image of the 
TTP moment to segment ROIs because the image at this 
moment reflected the section with the most abundant blood 
supply due to its microvessel density (MVD). Bono et al. 
[30] detected a significant difference in the MVD of PCa 
among different groups of GS scores, and a higher GS 
score corresponded to higher MVD in PCa. Addition-
ally, in Andreas Maxeiner’s study [17], within a subgroup 
analysis [> vs. ≤ 3 + 4 = 7a (ISUP 2)], peak enhancement 
(PE) [a.u] showed statistical significance with the software 
used (VueBox, Bracco). As a wash-in parameter index, 
PE exactly reflected the real maximum echo-power of the 
target lesion at the TTP moment. However, in our software 
TomTec’s SonoLiver, only one related index, ‘Imax’, was 
identified, which is a percentage, reflecting the ratio of the 
peak enhancement of the target ROI and the reference ROI 

at the peak time, rather than the echo-power itself. There-
fore, the CEUS image of the TTP moment was selected for 
the radiomic analysis.

Jiang et al. [18] showed that the peak intensity of PCa 
was significantly higher than that of benign prostatic hyper-
plasia (BPH) lesions. BPH is the most common benign 
lesion in the prostate and corresponds to a histopathologi-
cal hyperplastic process causing glandular-epithelial growth 
and stromal/muscle tissue in the prostate, especially in the 
periurethral region of the prostate [27]. Nevertheless, the 
pathological changes associated with PCa mostly originate 
from the growth of cancer cells and changes in the extracel-
lular space [8]. Moreover, the low specificities may also be 
explained by prostatitis, which causes high enhancement on 
CEUS [19].

Radiomics can reflect the distribution of various cell 
components, fluid, collagen, and fibromuscular matrix in 
different prostate lesions, which can provide value through 
quantitative analysis of different imaging features. Accord-
ing to the high weights of the characteristic coefficients, 
“Cluster Shade” and “Zone Entropy” on CEUS imaging and 
“Zone Entropy” and “Dependence Non Uniformity Normal-
ized (DN)” on conventional ultrasound imaging were rela-
tively vital characteristics for PCa identification in our study. 
“Cluster shade” is a measure of the skewness and uniformity 
of the GLCM. A higher cluster shade implies greater asym-
metry about the mean; it was higher in PCa than in benign 
tumors. ZoneEntropy measures the uncertainty/randomness 
in the distribution of zone sizes and gray levels. A higher 
value on either CEUS or B-mode US indicates greater het-
erogeneity in the texture patterns, which can be used as a 
predictor of PCa. DN measures the similarity of dependence 
throughout an image, with a lower value indicating more 
homogeneity among dependencies in the image.

As for risk factors, those with statistical significance are 
consistent with those obtained by performing univariate 
analysis followed by multivariate analysis. Given the consid-
erable lack of evidence supporting its efficacy, although the 
DRE is commonly performed to screen for prostate cancer, 
researches [7] recommend against routine performance of 
DRE to screen for prostate cancer in the primary care set-
ting. Previous studies have demonstrated that age and PSA 
levels are related to prostate cancer. Junxiao Liu et al. [31] 
reported that tPSA (AUC = 0.74), fPSA (AUC = 0.68), PV 
(AUC = 0.62), and PSAD (AUC = 0.77) were significant pre-
dictors in the detection and localization of prostate cancer 
from suspicious mpMRI results, and PSAD and tPSA had 
higher diagnostic accuracy than other single parameters, 
which is consistent with our study. Our research indicated 
that PV, PSAD, tPSA, fPSA and f/t PSA were all significant 
factors by univariate logistic analysis, and age, PSAD, and 
tPSA were independent risk factors by multivariable logistic 
regression analysis.

Fig. 3   The performance of the different models for PZ PCa predic-
tion. a ROC curves and b DCA curves of the B model, CEUS model, 
and B-CEUS model in the validation cohort. c ROC curves and d 
DCA curves of the risk factors model, B-CEUS model, and combined 
model in the validation cohort. e, f Delong test for the AUCs of dif-
ferent models. a = B model; b = CEUS model; c = B-CEUS model; 
d = risk factors model; e = combined model. e Training cohort; f 
Validation cohort. g Nomogram of the combined model for PZ PCa 
prediction. ROC receiver operating curves, DCA decision curve anal-
ysis, PCa prostate cancer, AUC​ area under the curve, CEUS contrast-
enhanced ultrasound

◂
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Except for these usual clinical risk factors, we also incor-
porated CEUS parameters in the analysis. A common prob-
lem with CEUS is the examiner’s subjective judgment. For 
example, early enhancement and the peak intensity determi-
nation relied on the subjective judgment of the radiologist. 
Therefore, quantitative measurements are needed. According 
to Jung’s study [16], tumor detection was possible in 85.3% 
and 73.5% of cases by evaluating RT and MTT, respectively. 
Baur’s research revealed that the TTP showed significant 
differences between benign lesions and PCa (AUC 0.65) 
[32]. In our study, RT and MTT demonstrated significant 
performance, as reported in the literature, which reflected 
the hypothesized hypervascularity owing to angiogenesis 
during tumor growth [30], and RT was the only independ-
ent factor by multivariable logistic regression analysis. The 
TTP showed no significance in our analysis, which may be 
due to sample differences.

Radiomic models have mostly been used with mpMRI 
to discriminate PCa, predict the GS score, identify lesions, 
and plan radiotherapy. However, studies on ultrasound-
based radiomics are rare. Lorusso’s et  al. retrospec-
tively analyzed data from 64 patients with PCa followed 
by a computerized artificial neural network analysis of 
the TRUS based on an artificial intelligence, and on a 

per-sectors analysis, the sensitivity, specificity and accu-
racy were 62%, 81%, and 78% respectively [26]. Wilde-
boer et al. studied 48 patients demonstrating that mul-
tiparametric machine learning combined with B-mode, 
shear-wave elastography (SWE), and CEUS radiomics 
achieved ROC curves of 0.75 and 0.90 for PCa and sig-
nificant PCa, respectively [24]. In our study, a more widely 
used pyradiomic approach was adopted together with risk 
factors, which also demonstrated that the Rad-score can 
improve diagnostic performance and the clinical net ben-
efit in PCa distinction.

To date, nomograms have been widely used in the medi-
cal field. In our research, by using risk scores, we validated 
a combined risk factors-radiomics combined nomogram 
including age, tPSA, PSAD, RT, and Rad-score to diag-
nose PCa, providing a more quantifiable, distinct, and indi-
vidualized auxiliary tool to clinicians.

Despite a positive role for the prediction model in PZ 
PCa detection, we acknowledge further limitations of the 
present study. First, this is a single-center analysis with a 
small population, and although the radiomics features dif-
fered between different GSs [33], they were not separated in 
our research because of the sample size. Therefore, larger, 
multicenter datasets are needed. In addition, manual seg-
mentation might influence stability and repeatability, and 
automatic segmentation may be used to solve this problem 
in the future. Furthermore, ultrasound may be restricted by 
a large prostate volume because of the far-field attenuation 
effect. Last, the quantitative perfusion analysis relied on one 
cross-sectional image, providing limited information, which 
can possibly be overcome by 3D/4D-ultrasound probes.

Conclusion

In conclusion, we developed radiomics models to discrim-
inate PZ benign and malignant lesions. The nomogram 
incorporating both the radiomic signature and clinical risk 
characteristics will better contribute to accurate identifica-
tion of PZ PCa lesions with intuitive evaluation indicators. 
Further studies with large sample sizes from multiple cent-
ers are necessary to validate our primary results.
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Table 2   The diagnostic performance of the various models for pre-
dicting prostate cancer.

CEUS contrast-enhanced ultrasound, AUC​ area under the curve

Sensitivity Specificity Accuracy AUC (95% CI)

B-mode radiomics model
 Training set 0.88 0.91 0.89 0.94 (0.89–

0.98)
 Validation set 0.67 0.78 0.73 0.79 (0.71–

0.88)
CEUS radiomics model
 Training set 0.82 0.69 0.75 0.87 (0.81–

0.94)
 Validation set 0.76 0.65 0.70 0.78 (0.70–

0.87)
B-CEUS combined radiomics model
 Training set 0.92 0.89 0.90 0.97 (0.95–1.0)
 Validation set 0.82 0.74 0.78 0.83 (0.76–

0.91)
Risk factors model
 Training set 0.76 0.81 0.78 0.87 (0.81–

0.94)
 Validation set 0.69 0.77 0.74 0.84 (0.76–

0.92)
Risk factors-radiomics combined model
 Training set 0.80 0.87 0.84 0.91 (0.85–

0.97)
 Validation set 0.80 0.83 0.82 0.89 (0.83–

0.96)
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