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Abstract
Background  This study aimed to construct a computed tomography (CT) radiomics model to predict programmed cell 
death-ligand 1 (PD-L1) expression in gastric adenocarcinoma patients using radiomics features.
Methods  A total of 169 patients with gastric adenocarcinoma were studied retrospectively and randomly divided into train-
ing and testing datasets. The clinical data of the patients were recorded. Radiomics features were extracted to construct a 
radiomics model. The random forest-based Boruta algorithm was used to screen the features of the training dataset. A receiver 
operating characteristic (ROC) curve was used to evaluate the predictive performance of the model.
Results  Four radiomics features were selected to construct a radiomics model. The radiomics signature showed good efficacy 
in predicting PD-L1 expression, with an area under the receiver operating characteristic curve (AUC) of 0.786 (p < 0.001), 
a sensitivity of 0.681, and a specificity of 0.826. The radiomics model achieved the greatest areas under the curve (AUCs) 
in the training dataset (AUC = 0.786) and testing dataset (AUC = 0.774). The calibration curves of the radiomics model 
showed great calibration performances outcomes in the training dataset and testing dataset. The net clinical benefit for the 
radiomics model was high.
Conclusion  CT radiomics has important value in predicting the expression of PD-L1 in patients with gastric adenocarcinoma.
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Introduction

One of the leading causes of cancer deaths worldwide is gas-
tric cancer [1]. Gastric adenocarcinoma is the most common 
pathological type, and immunotherapy has shown applica-
tion prospects. For gastric adenocarcinoma, tumor hetero-
geneity is a challenge in diagnosis and treatment, and tumor 
gene sequencing provides a potentially valuable resource [2]. 
Immunotherapy and targeted therapy are effective methods 
for the treatment of gastric adenocarcinoma. Biomarkers 
such as programmed cell death-ligand 1 (PD-L1), human 

epidermal growth factor receptor 2 (HER2), and microsat-
ellite instability (MSI) gradually promote systemic therapy 
[1]. Clinical studies have shown that PD-L1 combined with 
chemotherapy can benefit patients with gastric adenocarci-
noma and has acceptable safety [3, 4]. PD-L1 expression 
has been shown to be a tumor marker that can predict the 
response to targeted therapy in patients with gastric adeno-
carcinoma [5].

Immunohistochemistry is the gold standard to determine 
the expression level of PD-L1 in pathological specimens, but 
it cannot be implemented in patients in whom it is difficult 
to obtain samples, and the diagnosis process takes a long 
time. If the samples are taken under an endoscope, the diag-
nostic accuracy is affected due to the heterogeneity of the 
tumor. As a noninvasive and rapid diagnostic method, com-
puted tomography (CT) is widely used in clinical practice. 
Radiomics data can be used to develop models to provide 
evidence for cancer immunotherapy [6, 7]. Previous studies 
have shown that quantitative radiomics features based on 
CT can be used to predict the expression of PD-L1 in small 
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cell lung cancer and provide information for clinical immu-
notherapy [8, 9]. Other studies have shown that radiomics 
models can predict the prognosis of metastatic urothelial 
cancer patients receiving immunotherapy [10]. Thus, the 
relationship between radiomics features and PD-L1 expres-
sion in gastric adenocarcinoma is worth studying.

Radiomics is increasingly being used to predict immune 
markers. The aim of this study was to establish a radiomics 
model based on CT in gastric adenocarcinoma to predict 
PD-L1 expression.

Methods

Study design and study population

This retrospective study was approved by the ethics com-
mittee (protocol number 2022KY235); the requirement for 
written informed consent was waived owing to the use of 
deidentified retrospective data. Patients were enrolled from 
January 2020 to November 2021. The inclusion criteria were 
as follows: (1) patients underwent surgical resection with no 
distant metastasis; (2) patients had confirmed gastric cancer 
by histology and underwent PD-L1 testing; and (3) patients 
underwent pretreatment contrast-enhanced abdominal CT 
scanning. The exclusion criteria were (1) previous anticancer 
therapy, (2) incomplete clinical data, and (3) CT images that 
were incomplete or of poor quality.

The clinical evaluation index

One author analyzed the clinical features of the patients. 
The following clinical features were recorded: (1) sex, (2) 
age, (3) smoking history, (4) drinking history, (5) Eastern 
Cooperative Oncology Group (ECOG) score, (6) location of 
gastric adenocarcinoma, (7) tumor (T) stage, (8) node (N) 
stage, and (9) degree of differentiation.

Immunohistochemistry and evaluation of PD‑L1 
expression

All postoperative tumor specimens were subjected to immu-
nohistochemistry (IHC) according to a standard procedure. 
The samples were processed as follows. The use of forma-
lin-fixed, paraffin-embedded tissues has been validated. 
Specimens were sectioned to a thickness of 4 mm, fixed in 
formalin, dehydrated and cleared in a series of alcohols and 
xylene, followed by melted paraffin infiltration. The samples 
were fixed for 12 to 72 h in 10% neutral buffered formalin. 
A three-in-one procedure of deparaffinization, rehydration, 
and target retrieval was performed. Sections were stained 
with PD-L1 IHC 22C3 pharmDx (Agilent, USA) on a Dako 
immunohistochemical staining instrument. When membrane 

staining was detected in tumor cells, PD-L1 expression was 
considered positive. The expression of PD-L1 was evaluated 
by the combined positive score (CPS). The expression of 
PD-L1 was positive when the CPS score was greater than 1.

CT acquisition technique and image segmentation

All patients underwent pretreatment contrast-enhanced 
diagnostic abdominal CT. CT plain scan and arterial phase 
and venous phase enhanced scans were performed on all 
patients. All CT examinations were performed using one of 
three multidetector CT scanners: a 256-detector CT scanner 
(Revolution CT, GE Medical systems) and two 128-detec-
tor CT scanners (SOMATOM Definition Flash, Siemens 
Healthineers and Brilliance iCT, Philips Healthcare). The 
scan parameters were as follows: tube voltage 120 kV and 
tube current using automatic milliampere second technol-
ogy. The scan ranged from the dome of the diaphragm to the 
pubic symphysis. For enhanced scanning, nonionic contrast 
medium (iodine content of 300 mg/ml), an injection flow 
rate of 3.0 ml/s, and a total contrast medium of 2 mL/kg 
body weight were used. The arterial phase and venous phase 
were scanned at 25 s and 70 s after injection. The raw data 
were transferred to the postprocessing workstation (syngoM-
MWP, VE36A) to generate images in the venous phase. The 
reconstruction thickness was 1.0 mm.

For gastric adenocarcinoma tumors, the venous phase 
images of a slice thickness of 1 mm were semiautomati-
cally segmented by software (Radiomics, Frontier, Siemens 
Healthineers, Forchheim, Germany). A radiologist (GXL 
with 7 years of abdominal radiology experience) delineated 
the ROIs. ROIs were drawn from each of the three positions 
(axial, sagittal, and coronal) in turn. The tumor boundary of 
the delineation slices was validated by another radiologist 
(YL with 19 years of experience in abdominal radiology). 
Consensus was reached through negotiation to resolve dif-
ferences. The CT image of the region of interest and the 
segmented 3D image were obtained. Figure 1 shows an 
example.

Radiomics feature selection and model 
development

The training dataset and testing dataset were randomly 
generated in a 7:3 ratio. The software (Radiomics, Fron-
tier, Siemens Healthineers, Forchheim, Germany v1.2.5), 
which was a research platform, was used to extract all fea-
tures and parameters as follows. The following radiomic 
feature groups were selected: gray level dependence matrix 
(GLDM) features, gray level co-occurrence matrix (GLCM) 
features, shape features, first-order features, gray level run 
length matrix (GLRLM) features, gray level size zone matrix 
(GLSZM) features, and neighboring gray tone difference 
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matrix (NGTDM) features (Table 1). For filtering, the LoG 
sigma values (mm) were 0.5, 1.5, 2.5, 3.5, 3.5, and 4.5 (with 
5 sigma levels and 1 level of wavelet decomposition yielding 

8 derived images and images derived using square, square 
root, logarithm and exponential filters). The coiflet wave-
let was selected. Resampling was not selected due to the 
consistent layer thickness. The characteristic data were not 
normalized because doing so could lead to the loss of some 
features. The bin width when making a histogram for dis-
cretization of the image gray levels was 25. To verify the 
stability of the features, radiologists redrew the ROIs for 50 
random cases one month after the first delineation was com-
pleted. The intragroup correlation coefficients of the features 
were calculated. Any feature with ICC < 0.8 was excluded. 
A total of 434 features remained. The random forest-based 
Boruta algorithm was used to screen the features of the train-
ing set. The cross-verification method was used to select the 
value. The radiomics model was constructed based on the 

Fig. 1   a–d. Region of interest and the segmented images. a Axial position. b Sagittal position. c Coronal position. d Segmented image

Table 1   Summary of the radiomics features

Group of features Image phase

Gray level dependence matrix Venous phase
Gray level co-occurrence matrix Venous phase
Shape Venous phase
First order Venous phase
Gray level run length matrix Venous phase
Gray level size zone matrix Venous phase
Neighboring gray tone difference matrix Venous phase
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screened radiomics features. The testing dataset was used to 
test the performance of the model.

Statistical analysis

All statistical analyses were performed using R version 
4.0.5. Averages and standard deviations, as well as medians 
and ranges, are used to present the data. The patient charac-
teristics were compared by the Mann‒Whitney U test, χ2 
test, and Student’s t test. The random forest-based Boruta 
algorithm was used to screen the features. In random for-
est, multiple decision trees are generated and then the final 
results are decided [11]. The receiver operating characteris-
tic (ROC) curve was used to determine the optimal critical 
value, sensitivity, and specificity of the model. P < 0.05 was 
considered statistically significant. Calibration curve and 
decision curve analyses were used to assess clinical utility.

Results

Patient characteristics

A total of 169 patients with GC who underwent pretreatment 
contrast-enhanced abdominal CT were included in this retro-
spective study. The median age was 62 years (range, 55–69). 

Sixty-five of the 169 GC patients in our study were male, 
and 104 were female. The expression of PD-L1 was negative 
in 75 patients and positive in 94 patients. The full results are 
reported in Table 2. Computer-generated random numbers 
were applied to assign 118 patients to the training dataset 
and 51 patients to the testing dataset. In the training dataset, 
70 people were positive for PD-L1 expression, and 48 people 
were negative. In the testing dataset, 24 people were positive 
for PD-L1 expression, and 27 people were negative. There 
was no statistically significant difference between the two 
datasets in PD-L1 expression (p > 0.05) (Table 3).

Table 2   Clinical Data

Variable Classification item Total (n = 169)

Sex, n (%) Male 104 (61.5)
Female 65 (38.5)

Smoking, n (%) No 103 (60.9)
Yes 66 (39.1)

Drinking, n (%) No 124 (73.4)
Yes 45 (26.6)

ECOG, n (%) 0 points 141 (83.4)
1–2 points 28 (16.6)

T stage, n (%) Stage 1 8 (4.7)
Stage 2 9 (5.3)
Stage 3 5 (3.0)
Stage 4 147 (87.0)

N stage, n (%) Stage 0 33 (19.5)
Stage 1 57 (33.7)
Stage 2 37 (21.9)
Stage 3 42 (24.9)

Differentiation, n (%) Poorly differentiated 147 (87.0)
Moderately differentiated 22 (13.0)

Age, median [IQR] 62 [55.0,69.0]
PD-L1 expression Negative 75 (44.4)

Positive 94 (55.6)

Table 3   Training and testing datasets

Training Testing p overall
N = 118 N = 51

PD-L1 expression 0.192
 Negative 48 (40.7%) 27 (52.9%)
 Positive 70 (59.3%) 24 (47.1%)

Sex 0.156
 Male 68 (57.6%) 36 (70.6%)
 Female 50 (42.4%) 15 (29.4%)

Age 62.5 [54.2;69.0] 59.0 [55.0;67.5] 0.297
Drinking 0.976
 No 86 (72.9%) 38 (74.5%)
 Yes 32 (27.1%) 13 (25.5%)

Smoking 0.115
 No 77 (65.3%) 26 (51.0%)
 Yes 41 (34.7%) 25 (49.0%)

ECOG score 0.636
 0 point 100 (84.7%) 41 (80.4%)
 1–2 point 18 (15.3%) 10 (19.6%)

Location 0.981
 Cardia 38 (32.2%) 15 (30.0%)
 Fundus 7 (5.93%) 4 (8.00%)
 Body 36 (30.5%) 15 (30.0%)
 Horn 2 (1.69%) 1 (2.00%)
 Antrum 35 (29.7%) 15 (30.0%)

T stage 0.960
 Stage 1 6 (5.08%) 2 (3.92%)
 Stage 2 7 (5.93%) 2 (3.92%)
 Stage 3 2 (1.69%) 0 (0.00%)
 Stage 4 103 (87.3%) 47 (92.2%)

N stage 0.078
 Stage 0 26 (22.0%) 7 (13.7%)
 Stage 1 36 (30.5%) 21 (41.2%)
 Stage 2 22 (18.6%) 15 (29.4%)
 Stage 3 34 (28.8%) 8 (15.7%)

Differentiation 0.668
 Poorly differentiated 104 (88.1%) 43 (84.3%)
 Moderately differen-

tiated
14 (11.9%) 8 (15.7%)
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Associations between clinical factors and PD‑L1 
expression

Table 4 shows the relationship between clinical features and 
PD-L1 expression in the training and testing datasets. None 
of the clinical features showed apparent differences between 
the positive and negative PD-L1 groups in the training and 
testing datasets.

Construction of the radiomics signature

The radiomics analysis identified 1226 features, all of 
which were extracted from the segmented pretreatment 
CT images of 118 patients with GC. A total of 792 features 
were excluded because they had an ICC greater than 0.8. 
A total of 434 features were stable. Finally, four features 
were screened out, including one first-order feature, one 
GLRLM feature, one NGTDM feature and one GLCM fea-
ture. The importance of the 4 radiomics features is shown 
in Fig. 2. The ‘wavelet. LLL_glcm_DifferenceEntropy’ 
feature had the largest mean importance.

Development and testing of the predictive model

A radiomics predictive model was constructed based on 
only four radiomic features since clinical features were 
not significantly different (Table 4). PD-L1 expression 
prediction using the above radiomics signature showed 
a favorable assessment efficacy, with an AUC of 0.786 
(p < 0.001), a sensitivity of 0.681, and a specificity of 
0.826. The radiomics model achieved the greatest AUC 
in the training group (AUC = 0.786) and validation group 
(AUC = 0.774) (Fig. 3). Table 5 shows the specificity and 
sensitivity of the model.

The calibration curves of the radiomics model showed 
great calibration performance outcomes in the training 

Table 4   Relationship between clinical features and PD-L1 expression

Negative Positive p overall
N = 75 N = 94

Sex 0.599
 Male 44 (58.7%) 60 (63.8%)
 Female 31 (41.3%) 34 (36.2%)

Age 59.0 [50.0;68.0] 62.5 [56.2;69.0] 0.076
Drinking 0.592
 No 53 (70.7%) 71 (75.5%)
 Yes 22 (29.3%) 23 (24.5%)

Smoking 0.483
 No 43 (57.3%) 60 (63.8%)
 Yes 32 (42.7%) 34 (36.2%)

ECOG score 0.388
 0 point 60 (80.0%) 81 (86.2%)
 1–2 point 15 (20.0%) 13 (13.8%)

Location 0.166
 Cardia 22 (29.3%) 31 (33.3%)
 Fundus 5 (6.67%) 6 (6.45%)
 Body 29 (38.7%) 22 (23.7%)
 Horn 2 (2.67%) 1 (1.08%)
 Antrum 17 (22.7%) 33 (35.5%)

T stage 0.385
 Stage 1 2 (2.67%) 6 (6.38%)
 Stage 2 3 (4.00%) 6 (6.38%)
 Stage 3 0 (0.00%) 2 (2.13%)
 Stage 4 70 (93.3%) 80 (85.1%)

N stage 0.551
 Stage 0 12 (16.0%) 21 (22.3%)
 Stage 1 24 (32.0%) 33 (35.1%)
 Stage 2 17 (22.7%) 20 (21.3%)
 Stage 3 22 (29.3%) 20 (21.3%)

Differentiation 0.050
 Poorly differentiated 70 (93.3%) 77 (81.9%)
 Moderately differen-

tiated
5 (6.67%) 17 (18.1%)

Fig. 2   Weights of the four radi-
omics features in the radiomics 
model
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dataset (Fig. 4) and testing datatset (Fig. 5). The predic-
tions and observations were in good agreement. As shown 
in Fig. 6 and Fig. 7, the net clinical benefit for the radiomics 
model was high. This indicates that it is beneficial to use 
radiomics features to predict PD-L1.

Discussion

The application value of immunotherapy in the treatment 
of gastric adenocarcinoma is continuously being revealed. 
CT radiomics is a noninvasive diagnostic method that can 
be used to predict PD-L1 expression. Our study shows that 
radiomics features can be used to construct a model for pre-
dicting tumor PD-L1 expression.

Radiomics features with predictive value can be used 
to build a radiomics model with a good prediction effect. 
The ‘wavelet. LLL_glcm_DifferenceEntropy’ feature had 
the largest mean importance. This feature indicates that a 
process of variable-speed entropy increases has occurred, 
reflecting the degree of tumor immunosuppression. From the 
perspective of entropy, life depends on the negative entropy 

provided by the external environment to maintain the degree 
of order. Tumors develop from mutated cells, accumulate 
mutation effects, and have the ability to escape the regulation 
of the immune system. The tumor absorbs negative entropy 
from the external environment to keep its own entropy low 
and keep itself active [12]. The PD-L1 expression level was 
thus revealed.

A dramatic development is occurring in the field of radi-
omics for gastric cancers. For example, radiomics has been 
used to predict T stage [13], N stage [14, 15], M stage [16, 
17], neoadjuvant chemotherapy [18, 19], Lauren classifica-
tion [20], and histological grade [21]. Studies showed that 
CT radiomics is an important preoperative predictor and 
provides prognostic information for pathological staging 
markers [22]. Other studies showed that CT radiomics can 
be used to distinguish whether EGFR2 is positive [23]. This 
study showed that the radiomics model is an important pre-
operative predictor for the expression of PD-L1. Compared 
with other similar studies, we focused on the study of PD-L1 
other than CD8 + TILs, which was also one of the directions 
of further research [24]. CT radiomics is subjective in the 
standardization of tumor segmentation methods. The image 
acquisition parameters may also affect the standardization of 
radiomics data. Therefore, we used semiautomatic manual 
adjustment and uniform CT scanning parameters to avoid 
design bias in the real world.

The selection of the CPS score in PD-L1 research is of 
significance to discuss. We considered the pathological 
and clinical significance. For pathology, PD-L1 negativity 
and positivity were distinguished by a CPS score of 1. The 
KEYNOTE59 and KEYNOTE61 studies [25] have shown 
that it is important to select a CPS score greater than 1, 
and these patients can benefit from immunotherapy. This 
could be further studied in future research.

Fig. 3   ROC curves of the training dataset (red) and testing dataset 
(blue)

Table 5   Performance of the radiomics model for predicting PD-L1 
expression

AUC (95%CI) Sensitivity Specificity

Training dataset 0.786 (0.700–0.872) 0.681 0.826
Testing dataset 0.774 (0.640–0.907) 0.591 0.828

Fig. 4   Calibration curve for the radiomics model in the training data-
set. The horizontal axis represents the predicted probability of the 
radiomics feature model, and the vertical axis represents the actual 
probability. The predictions and observations were in good agreement
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The details of tumor segmentation and the selection of 
radiomics features are important to maintain the prediction 
level of the model. Three-dimensional sketches are used 
to ensure that gastric adenocarcinomas are displayed and 
adjusted in multiple directions to avoid missing details 
of different growth directions of different tumors. Resa-
mpling was not selected due to consistent layer thickness 
[26]. The characteristic data were not normalized because 
doing so could lead to the loss of some features [26]. The 
intergroup correlation coefficient and cross-validation 
were used to ensure that the radiomics feature selection 
of the tumor was repeatable.

Future research directions should include further exter-
nal verification. A similar study could be conducted on 

colorectal cancer and other digestive tract cancers as well. 
The use of modalities other than CT, different sets of tested 
characteristics, or different algorithms could also be stud-
ied. Larger datasets could help to improve the generalization 
ability of our model. Our further investigation will focus on 
these research directions.

There are still some shortcomings in this study. First, the 
research is preliminary, with limited accumulation of data 
to date that could bring this to the clinic. Second, the size of 
the population sample was limited.

In conclusion, CT radiomics is of great value in predict-
ing the expression of PD-L1 in patients with gastric adeno-
carcinoma. The diagnostic performance was improved by 
establishing a combined model of clinical factors and CT 
radiomics features.
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Fig. 5   Calibration curve for the radiomics model in the testing data-
set. The horizontal axis represents the predicted probability of the 
radiomics feature model, and the vertical axis represents the actual 
probability. The predictions and observations were in good agreement

Fig. 6   Decision curve for the radiomics model in the training dataset. 
The x- and y-axes of the curve represent the threshold probability and 
the net benefit, respectively

Fig. 7   Decision curve for the radiomics model in the testing dataset. 
The x- and y-axes of the curve represent the threshold probability and 
the net benefit, respectively
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