Skip to main content
Log in

Quantitative and qualitative liver CT: imaging feature association with histopathologically confirmed hepatic cirrhosis

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the diagnostic performance of quantitative and qualitative imaging features of hepatic cirrhosis on CT.

Methods

A single-center retrospective cohort study was performed on all patients who had undergone non-targeted liver biopsy < 3 months following abdominal CT imaging between 2007 and 2020. Histopathology was required as a reference standard for hepatic cirrhosis diagnosis. Two readers independently assessed all CT quantitative and qualitative features, blinded to the clinical history and the reference standard. The diagnostic performance of each imaging feature was assessed using multivariate regression and logistic regression in a recursive feature elimination framework.

Results

98 consecutive patients met inclusion criteria including 26 with histopathologically confirmed hepatic cirrhosis, and 72 without cirrhosis. Liver surface nodularity (p < 0.0001), lobar redistribution (p < 0.0001), and expanded gallbladder fossa (p < 0.0016) were qualitative CT features associated with liver cirrhosis consistent between both reviewers. Liver surface nodularity demonstrated highest sensitivity (73–77%) and specificity (79–82%). Falciform space width was the only quantitative feature associated with cirrhosis, for a single reviewer (p < 0.04). Using a recursive feature elimination framework, liver surface nodularity and falciform space width were the strongest performing features for identifying cirrhosis. No feature combinations strengthened diagnostic performance.

Conclusion

Many quantitative and qualitative CT imaging signs of hepatic cirrhosis have either poor accuracy or poor inter-observer agreement. Qualitative imaging features of hepatic cirrhosis on CT performed better than quantitative metrics, with liver surface nodularity the most optimal feature for diagnosing hepatic cirrhosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garcia-Tsao G, Friedman S, Iredale J, Pinzani M. Now there are many (stages) where before there was one: In search of a pathophysiological classification of cirrhosis. Hepatology. 2010;51(4):1445–9. https://doi.org/https://doi.org/10.1002/hep.23478

    Article  PubMed  Google Scholar 

  2. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014;383(9930):1749–61. https://doi.org/https://doi.org/10.1016/S0140-6736(14)60121-5

    Article  PubMed  Google Scholar 

  3. Statistics Canada. Table 13-10-0801-01. Leading ca uses of death, total population (age standardization using 2011 population). https://doi.org/10.25318/1310080101-eng

  4. Heron M. National Vital Statistics Reports Deaths: leading causes for 2017. Natl Vital Stat Rep. 2019;68(6):1–77.

    PubMed  Google Scholar 

  5. Flemming JA, Djerboua M, Booth CM TN. Increasing burden of cirrhosis projected to 2040 in Canada: implications for prevention, screening, and management. Int Liver Congr. 2020;73:S45.

    Google Scholar 

  6. Best AF, Haozous EA, de Gonzalez AB, Chernyavskiy P, Freedman ND, Hartge P, et al. Premature mortality projections in the USA through 2030: a modelling study. Lancet Public Health. 2018;3(8):e374–84. https://doi.org/https://doi.org/10.1016/S2468-2667(18)30114-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ravaioli F, Colecchia A, Alemanni LV, Vestito A, Dajti E, Marasco G, et al. Role of imaging techniques in liver veno-occlusive disease diagnosis: recent advances and literature review. Expert Rev Gastroenterol Hepatol. 2019;13(5):463–84. https://doi.org/https://doi.org/10.1080/17474124.2019.1588111

    Article  CAS  PubMed  Google Scholar 

  8. Iqbal U, Perumpail B, Akhtar D, Kim D, Ahmed A. The Epidemiology, Risk Profiling and Diagnostic Challenges of Nonalcoholic Fatty Liver Disease. Medicines. 2019;6(1):41. https://doi.org/https://doi.org/10.3390/medicines6010041

    Article  CAS  PubMed Central  Google Scholar 

  9. Myers RP, Fong A, Shaheen AAM. Utilization rates, complications and costs of percutaneous liver biopsy: A population-based study including 4275 biopsies. Liver Int. 2008;28(5):705–12. https://doi.org/https://doi.org/10.1111/j.1478-3231.2008.01691.x

    Article  PubMed  Google Scholar 

  10. Perrault J, McGill DB, Ott BJ, Taylor WF. Liver biopsy: Complications in 1000 inpatients and outpatients. Gastroenterology. 1978;74(1):103–6. https://doi.org/https://doi.org/10.1016/0016-5085(78)90364-5

    Article  CAS  PubMed  Google Scholar 

  11. Kamphuisen PW, Wiersma TG, Mulder CJJ, De Vries RA. Plugged-percutaneous liver biopsy in patients with impaired coagulation and ascites. Pathophysiol Haemost Thromb. 2002;32(4):190–3. https://doi.org/https://doi.org/10.1159/000070426

    Article  PubMed  Google Scholar 

  12. Horvath B, Allende D, Xie H, Guirguis J, Jeung J, Lapinski J, et al. Interobserver Variability in Scoring Liver Biopsies with a Diagnosis of Alcoholic Hepatitis. Alcohol Clin Exp Res. 2017;41(9):1568–73. https://doi.org/https://doi.org/10.1111/acer.13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vuppalanchi R, Ünalp A, Van Natta ML, Cummings OW, Sandrasegaran KE, Hameed T, et al. Effects of Liver Biopsy Sample Length and Number of Readings on Sampling Variability in Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2009;7(4):481–6. https://doi.org/https://doi.org/10.1016/j.cgh.2008.12.015

    Article  PubMed  Google Scholar 

  14. Carey E, Carey WD. Noninvasive tests for liver disease, fibrosis, and cirrhosis: Is liver biopsy obsolete? Cleve Clin J Med. 2010;77(8):519–27. https://doi.org/https://doi.org/10.3949/ccjm.77a.09138

    Article  PubMed  Google Scholar 

  15. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 1, principles and techniques. Am J Roentgenol. 2015;205(1):22–32. https://doi.org/https://doi.org/10.2214/AJR.15.14552

    Article  Google Scholar 

  16. Bertot LC, Jeffrey GP, Wallace M, MacQuillan G, Garas G, Ching HL, et al. Nonalcoholic fatty liver disease-related cirrhosis is commonly unrecognized and associated with hepatocellular carcinoma. Hepatol Commun. 2017;1(1):53–60. https://doi.org/https://doi.org/10.1002/hep4.1018

    Article  PubMed  PubMed Central  Google Scholar 

  17. Axley P, Mudumbi S, Sarker S, Kuo YF, Singal AK. Patients with stage 3 compared to stage 4 liver fibrosis have lower frequency of and longer time to liver disease complications. PLoS One. 2018;13(8):1–11. https://doi.org/https://doi.org/10.1371/journal.pone.0197117

    Article  CAS  Google Scholar 

  18. Harbin P, Robert J, Ferrucci T. Diagnosis of cirrhosis based on regional changes in hepatic morphology. Radiology. 1980;135:273–83. https://doi.org/https://doi.org/10.1148/radiology.135.2.7367613

    Article  CAS  PubMed  Google Scholar 

  19. Ito K, Mitchell DG, Kim MJ, Awaya H, Koike S, Matsunaga N. Right Posterior Hepatic Notch Sign: A Simple Diagnostic MR Finding of Cirrhosis. J Magn Reson Imaging. 2003;18(5):561–6. https://doi.org/https://doi.org/10.1002/jmri.10387

    Article  PubMed  Google Scholar 

  20. Lafortune M, Matricardi L, Denys A, Favret M, Déry R, Pomier-Layrargues G. Segment 4 (the quadrate lobe): A barometer of cirrhotic liver disease at US. Radiology. 1998;206(1):157–60. https://doi.org/https://doi.org/10.1148/radiology.206.1.9423666

    Article  CAS  PubMed  Google Scholar 

  21. Awaya H, Mitchell DG, Kamishima T, Holland G, Ito K, Matsumoto T. Cirrhosis: Modified caudate-right lobe ratio. Radiology. 2002;224(3):769–74. https://doi.org/https://doi.org/10.1148/radiol.2243011495

    Article  PubMed  Google Scholar 

  22. Kok CT. Enlargement of the hilar periportal space. Radiology. 2008;248(2):699–700. https://doi.org/https://doi.org/10.1148/radiol.2482060463

    Article  Google Scholar 

  23. Yoshikawa J, Matsui O, Takashima T, Sugiura H, Katayama K, Nishida Y, et al. Focal fatty change of the liver adjacent to the falciform ligament: CT and sonographic findings in five surgically confirmed cases. Am J Roentgenol. 1987;149(3):491–4. https://doi.org/https://doi.org/10.2214/ajr.149.3.491

    Article  CAS  Google Scholar 

  24. Bolondi L, Gandolfi L, Arienti V, Caletti GC, Corcioni E, Gasbarrini G, et al. Ultrasonography in the diagnosis of portal hypertension: Diminished response of portal vessels to respiration. Radiology. 1982;142(1):167–72. https://doi.org/https://doi.org/10.1148/radiology.142.1.7053528

    Article  CAS  PubMed  Google Scholar 

  25. Kok CT. The right posterior hepatic notch sign. Radiology. 2008;248(1):317–8. https://doi.org/https://doi.org/10.1148/radiol.2481051024

    Article  Google Scholar 

  26. Li S, Sun X, Chen M, Ying Z, Wan Y, Pi L, et al. Liver Fibrosis Conventional and Molecular Imaging Diagnosis Update. J Liver. 2019;08(01):1–21.

    Article  Google Scholar 

  27. Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33(1):159. https://doi.org/https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  28. Kudo M, Zheng RQ, Kim SR, Okabe Y, Osaki Y, Iijima H, et al. Diagnostic accuracy of imaging for liver cirrhosis compared to histologically proven liver cirrhosis. Intervirology. 2008;51:17–26. https://doi.org/https://doi.org/10.1159/000122595

    Article  PubMed  Google Scholar 

  29. Yeom SK, Lee CH, Cha SH, Park CM. Prediction of liver cirrhosis, using diagnostic imaging tools. World J Hepatol. 2015;7(17):2069–79. https://doi.org/https://doi.org/10.4254/wjh.v7.i17.2069

    Article  PubMed  PubMed Central  Google Scholar 

  30. Elkassem AA, Allen BC, Lirette ST, Cox KL, Remer EM, Pickhardt PJ, et al. Multiinstitutional Evaluation of the Liver Surface Nodularity Score on CT for Staging Liver Fibrosis and Predicting Liver-Related Events in Patients with Hepatitis C. Am J Roentgenol. 2021; https://doi.org/https://doi.org/10.2214/AJR.21.27062

    Article  Google Scholar 

  31. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–25. https://doi.org/https://doi.org/10.1002/hep.21178

    Article  CAS  PubMed  Google Scholar 

  32. Smith AD, Branch CR, Zand K, Subramony C, Zhang H, Thaggard K, et al. Liver surface nodularity quantification from routine ct images as a biomarker for detection and evaluation of cirrhosis. Radiology. 2016;280(3):771–81. https://doi.org/https://doi.org/10.1148/radiol.2016151542

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Chung.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 473 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubino, J.G., Nasirzadeh, A.R., van der Pol, C.B. et al. Quantitative and qualitative liver CT: imaging feature association with histopathologically confirmed hepatic cirrhosis. Abdom Radiol 47, 2314–2324 (2022). https://doi.org/10.1007/s00261-022-03550-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03550-0

Keywords

Navigation