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Abstract
Purpose For patients affected by autosomal-dominant polycystic kidney disease (ADPKD), successful differentiation of 
cysts is useful for automatic classification of patient phenotypes, clinical decision-making, and disease progression. The 
objective was to develop and evaluate a fully automated semantic segmentation method to differentiate and analyze renal 
cysts in patients with ADPKD.
Methods An automated deep learning approach using a convolutional neural network was trained, validated, and tested 
on a set of 60 MR T2-weighted images. A three-fold cross-validation approach was used to train three models on distinct 
training and validation sets (n = 40). An ensemble model was then built and tested on the hold out cases (n = 20), with each 
of the cases compared to manual segmentations performed by two readers. Segmentation agreement between readers and 
the automated method was assessed.
Results The automated approach was found to perform at the level of interobserver variability. The automated approach had 
a Dice coefficient (mean ± standard deviation) of 0.86 ± 0.10 vs Reader-1 and 0.84 ± 0.11 vs. Reader-2. Interobserver Dice 
was 0.86 ± 0.08. In terms of total cyst volume (TCV), the automated approach had a percent difference of 3.9 ± 19.1% vs 
Reader-1 and 8.0 ± 24.1% vs Reader-2, whereas interobserver variability was − 2.0 ± 16.4%.
Conclusion This study developed and validated a fully automated approach for performing semantic segmentation of kidney 
cysts in MR images of patients affected by ADPKD. This approach will be useful for exploring additional imaging biomark-
ers of ADPKD and automatically classifying phenotypes.

Keywords Autosomal-dominant polycystic kidney disease · Semantic cyst segmentation · Deep learning · Magnetic 
resonance imaging

Introduction

Autosomal-dominant polycystic kidney disease (ADPKD) is 
the most common hereditary renal disease, affecting roughly 
12 million people worldwide, and is currently the fourth 
leading cause of kidney failure [1, 2]. Its pathology is such 
that the continuous growth of cysts causes a progressive 
increase in total kidney volume (TKV). A typical ADPKD 
patient exhibits progressive renal function decline and 

roughly 70% progress to end-stage renal disease between 
age 40 and age 70 [3, 4].

TKV has been shown in a number of studies to be a useful 
predictor of ADPKD progression [5–7]. Similarly, the abil-
ity to delineate and measure cystic burden further contrib-
utes to our knowledge of disease progression, structure, and 
genotypic variances. It is well understood that the develop-
ment and growth of cysts is strongly correlated with renal 
function decline [6, 8]. In addition, it has been shown that 
there is a direct correlation between TKV growth and cyst 
growth; however, the rate at which the cysts grow and new 
cysts form is dependent on each individual [9]. Furthermore, 
longitudinal studies have found that over time, patients with 
ADPKD experience an increase in TKV and cyst volume 
and a decrease in total parenchyma volume suggesting that 
the non-cystic kidney tissue is being replaced by more cysts 
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and continuously enlarging cysts [10]. Interestingly, cyst 
growth and cystic index (ratio of cyst volume to TKV) var-
ies significantly between the PKD1 and PKD2 genotypes, as 
patients within the PKD1 population tend to develop cysts 
earlier [11, 12]. Additional analysis of cystic burden and 
growth has the potential to inform on disease trends and 
therapeutic strategies.

As new imaging biomarkers emerge, scientists seek fast 
and efficient methods for isolating the cystic and non-cystic 
kidney regions for more in-depth, quantitative analysis of tis-
sue properties [13, 14]. In the past, cyst and kidney regions 
have been segmented manually, which is highly labor 
intensive and subjective [15]. Various semi-automated cyst 
segmentation approaches have been proposed using inten-
sity-based thresholding as an initialization [16, 17] as well 
as classical machine learning techniques such as k-means 
clustering [18], contour methods [19], and shape prior prob-
ability maps [20]. However, a fully automated deep learning 
approach using neural networks has the potential to rid the 
image analyst from the tedium of manual tracing and provide 
reproducible and robust volume calculations and segmenta-
tions. Deep learning is unique to the above mentioned seg-
mentation methods in that the model is capable of “learning” 
important image features from the data inputs that allow it 
to perform its ultimate segmentation task. Through training, 
the model is capable of detecting patterns, pixel intensities, 
and shape information that may not be easily detectable to 
the human eye.

Convolutional neural networks (CNNs) that begin with 
reducing spatial resolution followed by restoration of resolu-
tion excel at pixel/voxel-level medical image segmentation 
tasks due to their unique architecture. In short, the first con-
traction section is a series of convolutional and resolution 
reducing layers which are used to decrease the complexity 
of the image and the second expansion section is essentially 
a mirror image of the first path used to combine feature and 
spatial information. The U-Net architecture [21] is one such 
network that has been significantly leveraged in medical 
image analysis to solve segmentation tasks. A particular 
benefit of this architecture is that it doesn’t require a large 
training set compared to other networks and yields highly 
accurate segmentation outputs.

In this study, we utilize a dataset of MR images of PKD 
kidneys with cyst tracings by two readers serving as ground 
truth. An automated approach is developed (a modified 
U-Net type architecture), and an ensemble model is estab-
lished and tested on a test dataset. The deep neural network 
model described in this study allows for semantic segmenta-
tion of kidney cysts for total cyst volume (TCV) determina-
tion and may prove useful for further evaluation of disease 
phenotypes.

Materials and methods

MR image data

This retrospective study received approval from the insti-
tutional review board at https ://githu b.com/TLKli ne/
AutoK idney Cyst. MR scans of 60 unique patients with 
ADPKD of varying levels of severity were drawn from 
our PKD image database. T2-weighted fat (N = 42) and 
non-fat saturated (N = 18) scans were used in this analysis. 
The MR images were coronal single shot fast spin echo 
(SSFSE) T2 sequences, acquired with a GE scanner, with 
matrix size 256 × 256xZ (with Z large enough to cover 
the full extent of the kidneys within the imaged volume). 
Image voxel sizes were on the order of 1.5 mm in-plane 
with typically 3.0 mm slice thicknesses.

Manual segmentations

The kidney and cyst tracings were manually performed 
by two image analysts (https ://githu b.com/TLKli ne/AutoK 
idney Cyst) with years of experience performing these trac-
ings. The training/validation set were traced by one reader, 
and the test set was traced by both in order to assess inter-
observer variability. The image analysis protocol excludes 
the renal pelvis and vascular structures. From the tracings, 
TKV and TCV were calculated as the number of voxels 
multiplied by the voxel volume. Each analyst was blinded 
to the other’s tracings. These tracings were exported as 
NIfTI files.

Data stratification

From the TKV segmentations that were generated for each 
scan, the scans were sorted into 40 training/validation 
cases and 20 cases for the hold out test set. The training/
validation dataset had 28 fat saturated cases and 12 non-fat 
saturated cases (70% fat saturated). The hold out test set 
had 14 fat saturated cases and 6 non-fat saturated cases 
(70% fat saturated).

Preprocessing

The model was trained as a two-channel approach with the 
MR image slice as one channel, and the kidney segmenta-
tion as the other. Note that with this two-channel approach, 
the neural network learns to only identify cysts within the 
kidney. The images were rescaled to 256 × 256 matrix 
size using inter-cubic interpolation for the MR images, 
and nearest neighbor interpolation for the kidney and cyst 
segmentation masks. The intensity of each MR scan was 
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first normalized to all have the same  95th percentile level 
and then standard scalar normalization was applied (zero 
mean, unit standard deviation).

Semantic segmentation model

The network architecture was similar to our previous works 
[22, 23]. The convolution blocks consist of 2D convolutions, 
followed by dropout (dropout = 0.1), batch normalization, 2D 
convolutions, and max pooling (pool size = 2 × 2). The higher 
-resolution layers have larger kernels (going from 7 × 7 to 5 × 5 
to 3 × 3 in blocks down the encoder path, and in reverse up 
the decoder path) in order to learn larger and more complex 
filter types. The skip connections are implemented as additive 
layers (Resnet-like [24]). The optimizer is Adam [25] with 
an initial learning rate of 1e-3, and decay of 1e-5. The loss 
metric is the Dice similarity metric. The model is trained for 
200 epochs with a batch size = 8 and the model with the best 
validation measure is saved during the training process. The 
model was implemented in Keras with TensorFlow as the 
backend. The model was trained on an Nvidia Tesla P40 GPU 
(24 GB memory). The input to the model is a two-channel 
matrix (256 × 256 × 2). The first channel is an MR image slice 
and the second is the corresponding kidney mask. The out-
put is the prediction for the cyst segmentation. In total, three 
models were trained on the three different training/validation 
folds, and an ensemble, majority vote model was then made 
and applied to the hold out test set. Code is made available at: 
https ://githu b.com/TLKli ne/AutoK idney Cyst.

Evaluation

As described in the model section, the training/validation 
set was broken up into three folds in order to train on differ-
ent subsets of the data. For each fold, training and validation 
curves were generated during the learning process and the best 
model from each fold was saved. A majority ensemble model 
was then generated and applied to the hold out test dataset. 
Comparison of cyst volume and cyst index was performed 
by linear regression, and cystic index was also assessed by 
Bland–Altman analysis in order to assess bias and precision 
of the measurements. In addition, visual overlays were made 
to qualitatively assess the automated method, and similarity 
metrics were generated for quantitative assessment. In each 
case, the two reader segmentations were compared in order to 
assess interobserver variability, and the automated approach 
was compared individually to each reader.

Results

There was no significant difference between the training, 
validation, and testing datasets in terms of disease severity 
(i.e., TKV). Shown in Fig. 1 are the volume distributions 
visualized as kernel density plots. These are shown for the 
three folds, as well as the overall distribution between train-
ing/validation, and the test set. This overall distribution is 
representative of the large degree of variability seen in the 
ADPKD patient population.

The automated method had similar performance train-
ing on the three different folds. Figure 2 shows the learning 
curves for the three different folds, including both training 
and validation Dice values during model training. The model 
weights are updated on the training set and evaluated at the 
end of each epoch on the separate validation set. The model 
with best validation performance is saved during the train-
ing process and used to develop the final ensemble model.

The automated approach was excellent at segmenting 
the cysts accurately. Shown in Figs. 3 and 4 are the linear 
regression comparisons for interobserver variability, the 
automated method vs. Reader-1, and the automated method 
vs. Reader-2 for cyst volume (Fig. 3), as well as cyst index 
(Fig. 4). In addition, the automated method performed at 
a similar level to that of human readers. Shown in Fig. 5 
are the Bland–Altman comparisons for cystic index. Note 
that the patients encompass a wide range of disease sever-
ity, from cases with very few cysts, to cases will almost 
complete replacement of kidney parenchyma by cysts. The 
cystic index ranged from ~ 0 to > 90%.

Visually there was exceptional agreement between the 
automated segmentation approach and the manual readers. 
Figure 6 shows the visual comparisons for one of the better 
cases (top row, Dice = 0.98), the worst case (middle row, 
Dice = 0.50), and an average case (bottom row, Dice = 0.86).

In general, the automated approach was indistinguishable 
from the variability seen by two different readers perform-
ing the tracings. Shown in Table 1 are the similarity statis-
tics comparing the interobserver variability to that obtained 
between the automated approach and Reader-1, as well as 
the automated approach and Reader-2.

Discussion

Deep learning within the field of AI has provided scientists 
with countless tools for evaluating data efficiently and thor-
oughly, particularly in medical image analysis. The algo-
rithm developed in this study accurately segmented renal 
cysts from kidney tissue without user intervention. Prior to 
this model, approaches to delineate cystic structures from 
organ tissue implemented semi-automated intensity-based 
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thresholding techniques [16, 17, 20]. One limitation of inten-
sity-based approaches is that, unlike CT, MR pixel values 
can drastically vary between acquisitions, and even between 
slices within one acquisition, requiring extensive preproc-
essing techniques to appropriately normalize the data [26]. 
Furthermore, this technique of intensity-based thresholding 
will completely miss complex cysts that have lower signal 
intensity [16].

The model presented in this study achieved a mean Dice 
score of 85% for cyst segmentation, this result is comparable 
to the other state of the art techniques implemented for organ 
segmentation. In ADPKD, all automated approaches using 
deep learning reported in the literature have focused on the 
organ segmentation task, mostly for kidney segmentation. 
Some of these approaches include, a customized VGG-16 
network implemented by Sharma et. al [27] to segment kid-
neys in CT images. The average Dice score from this study 
was 86%. Keshwani et. al, [28] similarly used CT scans to 
predict kidney segmentations, a multi-task 3D convolutional 
neural network was implemented achieving a mean Dice 
score of 95%. Mu et al. [29], on the other hand, used MR 

Fig. 1  Visualization of density 
distributions of total kidney 
volume for the three folds (Fold 
1: top left, Fold 2: top right, 
Fold 3: bottom left), and the 
entire training and validation 
sets as well as the separate hold 
out test set (bottom right). The 
cross-validation folds were 
randomly separated into the 
distinct subsets. The network 
model was trained on the three 
folds and an ensemble network 
was made and applied to the 
hold out test set

Fig. 2  Learning curves for training and validation datasets from the 
three different folds. The darkness of the line corresponds to the 
higher fold number (i.e., Fold 3 is the darkest line). The Dice similar-
ity metric was calculated at each epoch. In the case of fold 1, the final 
training Dice was 0.91 and validation was 0.76. In the case of fold 2, 
the final training Dice was 0.92 and validation was 0.87. For fold 3, 
the final training Dice was 0.94 and validation was 0.84
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images to automatically generate kidney segmentations 
using a V-Net model, and the reported Dice score was 95%.

The automated approach compared very closely to man-
ual tracings in all metrics. In terms of linear regressions, the 
automated approach compared very closely to both of the 

Fig. 3  Linear regression comparisons for Cyst Volume. Compari-
sons are shown for interobserver (left panel), the automated method 
vs. Reader-1 (middle panel), and the automated method vs. Reader-2 
(right panel). The automated approach performed very similar in 

the case of cyst volume with the two readers. The regression line 
is shown as a solid line (from the fit of y = mx + b) and the shaded 
region is the 95% confidence interval

Fig. 4  Linear regression comparisons for Cyst Index. Comparisons 
are shown for interobserver (left panel), the automated method vs. 
Reader-1 (middle panel), and the automated method vs. Reader-2 

(right panel). The automated approach performed very similar in the 
case of cyst index compared with the two readers



1058 Abdominal Radiology (2021) 46:1053–1061

1 3

readers. In addition, the cystic index had a similar bias and 
precision to human readers. The better precision is likely 
owed to the fact that the automated approach will be more 
consistent than a human reader. It was found that the largest 
difference was seen in the Hausdorff distance, which may be 
the result of some minor false positives which could likely 
be handled by simple post-processing (e.g., multiplying the 
output of the model’s cyst segmentation mask by the kid-
ney mask). In addition, the visual agreement was incredibly 
strong. The worst case, in terms of similarity metrics, was 
for a very mild presentation of the disease. In this case, a 
human reader could quickly provide a quality assessment 
to finalize the cyst segmentation. In general the approach 
accurately segments cysts of a wide range of sizes. In this 
study, cysts were measured down to ~ 3-5 mm. This is lim-
ited by the reconstructed image resolution, which in-plane 
is on the order of ~ 1.5 mm. In addition, the largest cyst had 
a diameter of 118 mm.

Having the ability to automatically assess cystic burden 
opens up the door to retrospective studies applying the tech-
nique presented here. Prior studies have applied more basic 
approaches for assessing cystic burden and have shown the 
promising informative value of these image-derived param-
eters. Previous short-term studies have shown that tolvaptan 
decreased cyst volume in treated ADPKD patients when cyst 
volume was measured on a small cohort [30]. Further analy-
sis should be completed to evaluate whether these effects 
continue throughout long-term administration of the drug. 
The automated method presented in this study will allow 
for quick and easy analysis of a larger dataset. Tracking cyst 
growth can also inform on specific genotypes. One study 
found that patients with PKD1 have a greater number of 
cysts than patients with PKD2. More specifically, patients 
with PKD1 progress faster because more cysts develop early 
on, not because they grow faster [11].

One limitation of this study is that it evaluated a rela-
tively small cohort (n = 60). However, generating gold-
standard cyst segmentations took up to 8 h depending on 
disease severity. Due to this limitation, we developed this 
particular cohort to span the full extent of disease pheno-
typic presentations, from kidneys composed of few cysts 
(cystic index = 0.5%) up to kidneys with renal parenchyma 
almost entirely replaced by cysts (cystic index = 90%). Hav-
ing established a method to assess cystic burden over the 
full extent of disease phenotypes will make this approach 
strongly generalizable. Another limitation is that we are not 
detecting microscopic cysts below the imaging resolution. 
However, these microcysts contribute a relatively small 
amount to the total cyst volume [31]

Future studies can evaluate larger cohorts, and automated 
methods can be explored to segment and differentiate indi-
vidual cysts. This will facilitate automatically counting the 
number of cysts and evaluating cyst size distributions. This 
may also allow for automatically classifying typical from 
atypical patients, which informs on risk of progression and 
likelihood to benefit from drug therapies. Most of the crite-
ria that separate the atypical from the typical cases rely on 
cyst index, count, and size. For example, a patient is con-
sidered atypical if ≤ 5 cysts account for ≥ 50% TKV and 
there is mild replacement of kidney tissue from cysts [32]. 
A tool which calculates this automatically would allow for 
extremely fast and objective classifications during the criti-
cal study enrollment phase.

Cyst structure and composition are also seen as highly 
informative when assessing ADPKD. Once the cystic regions 
are delineated from the renal parenchyma, further intensity- 
and/or texture-based analysis may be performed to determine 
the percentage or distribution of complex cysts. Typically, 
these complex cysts are characterized by “darker” intensities 
in T2-weighted MR imaging. Seemingly, healthy parenchyma 

Fig. 5  Bland–Altman results for the comparison of cystic index for 
interobserver (left panel), the automated method vs. Reader-1 (middle 
panel), and the automated method vs. Reader-2 (right panel). The two 

readers had very little bias between the overall measurements, but 
actually had a slightly larger precision than what was found for the 
automated method vs either reader independently
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Fig. 6  Visual comparisons between the interobserver segmentations 
and the automated approach compared to Reader-1. Shown in the left 
column are the MR images, the middle column are the gold-stand-
ard tracings comparing Reader-1 (violet) to Reader-2 (green), and 
right column compares Reader-1 (violet) to the automated approach 
(green). The top row highlights one of the best cases, with a Dice of 
0.96 for interobserver, and 0.97 for the automated approach compared 
with Reader-1. The middle row is the worst case in terms of the auto-
mated methods performance, with an interobserver Dice metric of 

0.66 and an automated Dice of 0.50 vs. Reader-1. The bottom row 
highlights a fairly typical case in terms of performance, with inter-
observer Dice of 0.84, and automated Dice of 0.86 vs. Reader-1. 
Regions that are seen to cause the greatest variability for both man-
ual tracings as well as the automated approach are bright vessels, 
the renal pelvis, as well as complex cysts (appearing dark on the 
T2-weighted images). Agreement between the two is shown as dark 
gray/transparent. The background image is darkened in order to better 
visualize the segmentation overlap
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tissue can be analyzed in a similar way after being isolated 
from larger cysts. Another approach will be to incorporate mul-
tiple image acquisitions (e.g., combining T1- and T2-weighted 
MR images) in order to not only aid in the segmentation of 
cysts but also to help classify them as well. Extension to other 
imaging modalities (e.g., CT) and organs (e.g., liver) will also 
be important to provide a comprehensive characterization of 
the PKD phenotype and perform large-scale studies where 
mixed imaging data (e.g., ultrasound, computed tomography, 
and/or magnetic resonance imaging) are available for different 
patients, and extra-renal manifestations (e.g., PLD) are present.

Conclusions

We have developed a fully automated method for semantic 
segmentation of kidney cysts from MR images of patients 
affected by ADPKD. The method performs on par with human 
readers and will be useful in future retrospective and prospec-
tive studies to evaluate patient phenotypes and overall cystic 
burden.
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