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Abstract
Purpose  To evaluate the performance of trained technologists vis-à-vis radiologists for volumetric pancreas segmentation 
and to assess the impact of supplementary training on their performance.
Methods  In this IRB-approved study, 22 technologists were trained in pancreas segmentation on portal venous phase CT 
through radiologist-led interactive videoconferencing sessions based on an image-rich curriculum. Technologists segmented 
pancreas in 188 CTs using freehand tools on custom image-viewing software. Subsequent supplementary training included 
multimedia videos focused on common errors, which were followed by second batch of 159 segmentations. Two radiologists 
reviewed all cases and corrected inaccurate segmentations. Technologists’ segmentations were compared against radiologists’ 
segmentations using Dice-Sorenson coefficient (DSC), Jaccard coefficient (JC), and Bland–Altman analysis.
Results  Corrections were made in 71 (38%) cases from first batch [26 (37%) oversegmentations and 45 (63%) undersegmenta-
tions] and in 77 (48%) cases from second batch [12 (16%) oversegmentations and 65 (84%) undersegmentations]. DSC, JC, 
false positive (FP), and false negative (FN) [mean (SD)] in first versus second batches were 0.63 (0.15) versus 0.63 (0.16), 
0.48 (0.15) versus 0.48 (0.15), 0.29 (0.21) versus 0.21 (0.10), and 0.36 (0.20) versus 0.43 (0.19), respectively. Differences 
were not significant (p > 0.05). However, range of mean pancreatic volume difference reduced in the second batch [− 2.74 cc 
(min − 92.96 cc, max 87.47 cc) versus − 23.57 cc (min − 77.32, max 30.19)].
Conclusion  Trained technologists could perform volumetric pancreas segmentation with reasonable accuracy despite its 
complexity. Supplementary training further reduced range of volume difference in segmentations. Investment into training 
technologists could augment and accelerate development of body imaging datasets for AI applications.
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Introduction

The development of artificial intelligence (AI) models 
through supervised training of deep learning algorithms 
for medical imaging applications requires large training 
datasets with high-quality labels [1, 2]. Such datasets 
have been typically obtained through manual annota-
tions of images by expert radiologists or trained image 
analysts. However, the process of manual segmentation 
and labeling on cross-sectional imaging is labor-intensive 
and not scalable. Recruitment of experts for segmentation 
and labeling also makes the generation of such datasets an 
expensive investment. Therefore, there is a need for alter-
nate approaches to circumvent this bottleneck to accelerate 
the generation of labeled datasets for training and eventual 
clinical deployment of reliable AI models.

Technologists are one of the key stakeholders in the 
medical imaging workflow [3]. They often gain work-
ing knowledge of cross-sectional anatomy and skillsets 
for image processing as part of their training and clini-
cal assignments. In fact, some technologists also go on 
to become members of imaging core labs at many institu-
tions. These attributes suggest that technologists can be a 
potential group to generate labeled body imaging datasets 
for AI applications. An advantage of training technolo-
gists in image annotation tasks is that the data do not have 
to leave institutional security firewalls. Secondly, these 
trained technologists could be integrated into the data 
annotation pipelines of multiple other body imaging AI 
projects. However, to the best of our knowledge, the fea-
sibility of this approach has not been evaluated.

Our group is developing AI-powered workflow modules 
to address the unmet needs in patients with pancreatic dis-
eases. The pancreas is a solid retroperitoneal organ that 
can be hard to segment because of its small size, com-
plex anatomy, and variability in location, morphology, 
and attenuation [4]. Furthermore, the variable degrees of 
peripancreatic fat, contrast enhancement, and subadjacent 
iso-attenuating structures such as collapsed bowel can fur-
ther confound delineation of its exact boundaries [5–7]. 
These factors make manual segmentation of the pancreas 
a challenge and at least partly contribute to the underuti-
lization of pancreas morphometrics and radiomics in both 
endocrine and exocrine diseases despite promising results 
[8–11]. Therefore, there is a need for large volume seg-
mented datasets to develop and test production-scale AI 
models for automated pancreas segmentation.

During the coronavirus disease of 2019 (COVID-19) 
containment phase, similar to other institutions [12, 13], 
we faced a situation of reduced clinical imaging volumes 
and redundancy of staff such as technologists due to volun-
tary deferral of all elective clinical care by our institution. 

We decided to leverage this opportunity to assess whether 
the skillsets of technologists could be augmented through 
focused training to create a CT dataset of segmented nor-
mal pancreas for AI applications in body imaging. The 
purpose of this project was to evaluate the performance of 
technologists vis-à-vis radiologists for volumetric pancreas 
segmentation after initial training and to assess the impact 
of focused supplementary training on their performance.

Methods

Patient cohort

The project was conducted as a part of an Institutional 
Review Board (IRB)-approved and Health Information 
Portability and Accountability Act-compliant study. The 
requirement for informed patient consent had been waived 
by the IRB due to the retrospective study design. We ran-
domly selected 347 contrast-enhanced CT scans on the 
basis of a statement of a negative or unremarkable pancreas 
in the original radiologist’s report. This was subsequently 
verified during manual pancreas segmentation by two radi-
ologists (AP and GS with 7 and 3-years of post-residency 
experience, respectively). For each CT study, an axial portal 
venous phase series (≤ 3-mm slice thickness) was identified 
and confirmed with the use of information from the series 
name and DICOM header. All CT studies were de-identified 
by anonymization of Digital Imaging and Communication in 
Medicine (DICOM) tags utilizing Clinical Trial Processor 
[14]. These anonymized CT datasets were extracted and con-
verted into the Neuroimaging Informatics Technology Initia-
tive (NIfTI) format. These anonymized datasets were stored 
in an offline shared folder for radiologists’ review on a free 
and open-source software package for image analysis and 
scientific visualization [3D Slicer® (version 4.11.0)] [15].

Technologists’ training and segmentation

Between March and April 2020, 22 CT and MRI technolo-
gists volunteered to participate in this project. These tech-
nologists were not familiar with the 3D Slicer® software 
that was being used by radiologists. Therefore, we decided 
to train the technologists for pancreas segmentation on our 
enterprise custom image-viewing software (QREADS). This 
custom enterprise software is routinely used by the technolo-
gists to review images as part of their regular clinical work. 
However, they were not familiar with the image annotation 
tools that this software provides. To address this, a standard 
operating procedure (SOP) document and a 20-min training 
video that demonstrated steps for image display and review 
with the use of standard viewing tools (zoom, contrast, 
scroll, pan, etc.) and image annotation on a slice-by-slice 
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basis using freehand annotation tools were created. The SOP 
document contained details of the various steps involved 
such as image retrieval, data organization, links to access 
the training material, case assignment, data reporting, and 
quality control. To augment knowledge of the technologists, 
a curriculum document with infographics focused on pan-
creas segmentation (Fig. 1) was created by the radiologists 
over a period of 2 days. The topics covered in the curricu-
lum document included an overview of project goals and 
an image-rich multiplanar depiction of pancreatic anatomy 
on CT, common anatomic variations (e.g., variations in the 
location of the pancreas, lipomatosis, variable pancreatic 
parenchymal enhancement), and relevant CT artifacts (e.g., 
partial volume effect, motion artifacts, streak artifacts from 
embolization coils).

These training documents were reviewed with the tech-
nologists in four radiologists-led interactive virtual instruc-
tional sessions of 1-hour duration each. All these instruc-
tional sessions were recorded. A recording of the session 
along with screencast of the workflow and training module 

documents were shared with the technologists through a 
shared folder on the institutional intranet. Each participant 
technologist was required to document completion of the 
required training by signing off an online verification form. 
Finally, the technologists were also given institutional access 
to an interactive e-anatomy atlas (www.imaio​s.com) for 
additional but optional self-directed learning.

Following this training, an initial batch of 188 CT stud-
ies was randomly selected from the master dataset of 347 
studies and was retrieved on the enterprise software. The 
technologists performed volumetric pancreas segmentation 
on a slice-by-slice basis using freehand segmentation tools 
over a period of 14 workdays. Queries of the technologists 
during this initial segmentation process were answered by 
radiologists through emails. These segmentations were 
saved, exported offline, and converted to NIfTI format. Two 
radiologists (AP and GS) subsequently reviewed the volu-
metric CT datasets and the technologists’ segmentations on 
3D Slicer®. These two radiologists repeated those pancreatic 
segmentations that were either an undersegmentation (any 

Fig. 1   Images from training material:  Color-coded depiction of 
abdominal organs (a) on an axial CT image (pancreas: red;  liver: 
purple;  kidneys: light green;  stomach: yellow; small bowel: blue, 
and spleen: cyan). Depiction of pancreas outline in red with labeled 

subadjacent anatomical structures on axial (b) and coronal (c) CT 
images. Tracing of pancreas outline on enterprise custom image-
viewing software using freehand tools (d). The smaller red squares 
are artefactually generated by the software with any outline task

http://www.imaios.com
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part of pancreatic parenchyma left out) or an oversegmen-
tation (any part of subadjacent anatomy included) error. 
Repeat segmentation was done by the radiologists with the 
use of boundary-points based segmentation mode of the AI-
assisted segmentation module (NVIDIA) in 3D Slicer®. As 
part of this mode, radiologists placed input points at the 
perimeter of the pancreas on multiple planes (i.e., axial, 
coronal, and sagittal). The AI-assisted segmentation was 
then manually fine-tuned by the radiologists. Based on the 
radiologists’ repeat segmentations as the ground truth, the 
technologists’ segmentation errors were also quantified on 
a pixel-wise basis as either false positives (FP), i.e., the per-
centage of pixels segmented by technologists but not by radi-
ologists, a measure of oversegmentation, and false negatives 
(FN), i.e., the percentage of pixels not included by technolo-
gists but present in radiologists’ segmentations, a measure of 
undersegmentation (Fig. 2). Radiologists also subjectively 
noted the most common causes of segmentation errors.

Based on the assessment of segmentations performed in 
this batch, supplementary training material was created to 
highlight on common segmentation errors. This material 
included videos of representative samples of radiologists’ 
corrected segmentations overlaid on the technologists’ orig-
inal segmentations. These segmentations were differently 
color-coded to highlight the pancreatic region(s) that were 
commonly being left out or the extra-pancreatic anatomy 
that was often being included by the technologists (Fig. 2). 
Additional presentations depicting the subjacent anatomy 
using different color codes were also prepared to improve 
understanding of locoregional anatomy. These supplemen-
tary materials were reviewed through virtual video meetings 
and were also made available to the technologists through 
the common shared folder. Subsequent to this supplemen-
tary training, the technologists segmented the pancreas in 
the second batch of another 159 CT studies over a period of 
9 workdays. Additional queries were addressed via emails. 
Finally, the second batch of segmentations was reviewed 
and evaluated by the radiologists similar to the first batch.

Both batches of segmentations were performed by the 
technologists in the downtime during regular clinical duties. 
There was no provision of additional remuneration for par-
ticipation in this project.

Statistical analyses

Statistical analyses were performed with Python software 
(version 3.7.8; Python Software Foundation, Wilmington, 
Del) by using the Scikit-learn library (version 0.23.1) [16]. 
For the segmentations performed by technologists that were 
deemed inaccurate, the segmentations repeated by the radi-
ologists were the ground truth. The original technologists’ 
and revised radiologists’ segmentations were compared 
using similarity metrics such as Dice–Sorenson coefficient 
(DSC) and Jaccard coefficient (JC). Semantic uncertainty 
was assessed by FP and FN rates. To evaluate the impact 
of supplementary training, the proportion of cases that 
needed no revision, oversegmentation and undersegmenta-
tion errors were compared between the two batches of seg-
mentations using the Chi-square test for proportions. The 
DSC, JC, FP, and FN before and after supplementary train-
ing were compared using Kruskal–Wallis tests. Bland–Alt-
man analysis was performed to evaluate the mean pancre-
atic volume difference (technologists’ segmentation minus 
ground truth segmentation) versus the means of pancreatic 
volumes before and after supplementary training [17]. A p 
value < 0.05 was considered statistically significant.

Results

Of the initial batch of 188 segmentations, 117 (62%) were 
deemed accurate by radiologists and 71 (38%) had to be 
repeated due to segmentation errors. Undersegmentation 
accounted for the majority of the errors, 45/71 (63%), while 
the remainder[26/71 (37%)] were oversegmentation errors. 
Subjectively, the undersegmentation errors were commonly 

Fig. 2   Evaluation of technologists’ segmentation: Color-coded areas 
represent correct segmentation (blue), incorrect segmentation (red), 
and overlap between technologists’ and radiologists’ segmentation 
(purple). Example of accurate segmentation (a); exclusion of a por-

tion of pancreatic head resulted in undersegmentation error or false 
negative (b), and inclusion of duodenum within the segmentation 
resulted in an oversegmentation error or false positive (c)
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due to missing terminal portions of the head or tail of the 
pancreas and not including additional lobulations of pan-
creatic tissue separate from main pancreatic parenchyma. 
Oversegmentation errors were commonly due to the inclu-
sion of iso-attenuating adjacent duodenum, collapsed jeju-
num, or the stomach. The DSC was 0.63 ± 0.15 and JC 
was 0.48 ± 0.15 (mean ± SD). The FP rate was 0.29 ± 0.21 
and FN rate was 0.36 ± 0.20 (mean ± SD) (Table 1). From 
Bland–Altman analysis (Fig. 3a), mean pancreatic volume 
difference (technologists’ segmentation minus ground truth 
segmentation) was − 2.74 cc (minimum − 92.96 cc, maxi-
mum 87.47 cc).

Out of the 159 segmentations performed in the second 
batch after supplementary training, 82 (52%) were deemed 
accurate and 77 (48%) segmentations had to be repeated. 
Oversegmentations were seen in 12/77 (16%) cases while 
65/77 (84%) were undersegmentations. The causes of over-
segmentations and undersegmentations were similar to 
those in the first batch. The DSC was 0.63 ± 0.16 and JC 
was 0.48 ± 0.15 (mean ± SD). The FP rate was 0.21 ± 0.10 

and FN rate was 0.43 ± 0.19, (mean ± SD) (Table 1). From 
Bland–Altman analysis (Fig. 3b), mean pancreatic volume 
difference (technologists’ segmentation minus ground truth 
segmentation) was − 23.57 cc (minimum − 77.32 cc, maxi-
mum 30.19 cc).

There was no difference in the proportion of accurate seg-
mentations between the first and the second batch of tech-
nologists’ segmentations (62% in the first batch and 52% 
in the second batch, p = 0.06). The trend of decline in the 
proportion of accurate segmentations in the second batch 
was primarily due to a relative increase in the share of under-
segmentation errors (63% in the first batch and 84% in the 
second batch, p = 0.003). Conversely, there was a decrease 
in the share of oversegmentation errors (37% in the first 
batch and 16% in the second batch, p = 0.003). However, 
the range of mean pancreatic volume difference after supple-
mental training was lower than in the first batch (− 77.32 to 
30.19 cc compared to − 92.96 to 87.47 cc in the first batch). 
There was no difference in DSC (p = 0.61), JC (p = 0.61), FP 
(p = 0.07), and FN rates (p = 0.12) between the two batches 
(Fig. 4).

Discussion

The challenges involved in the curation and labeling of 
imaging datasets are widely regarded as key barriers for the 
development and production-scale deployment of reliable 
AI models in the clinical practice of body imaging. Expert 
labeling of these datasets is the ideal approach. However, 
this is often not practical due to the associated costs of time 
and resources [1]. To the best of our knowledge, training 

Table 1   Summary of technologists’ performance between the first 
batch (before supplementary training) and the second batch (after 
supplementary training) for the cases that needed revision

DSC Dice–Sorenson coefficient, JC Jaccard coefficient, FP false posi-
tive; FN − false negative

Performance metrics First batch Second batch p value

DSC (mean ± SD) 0.63 ± 0.15 0.63 ± 0.16 0.61
JC (mean ± SD) 0.48 ± 0.15 0.48 ± 0.15 0.61
FP (mean ± SD) 0.29 ± 0.21 0.21 ± 0.10 0.07
FN (mean ± SD 0.36 ± 0.20 0.43 ± 0.19 0.12

Fig. 3   Bland–Altman analyses for mean pancreatic volume difference 
between technologists’ and radiologists’ segmentations for cases that 
required correction before (a) and after supplementary training (b): 
mean pancreatic volume difference before supplementary training (a) 

was −  2.74  cc (minimum: −  92.96  cc, maximum: 87.47  cc). Mean 
pancreatic volume difference after supplementary training (b) was 
− 23.57 cc (minimum: − 77.32 cc, maximum: 30.19 cc). Dotted lines 
indicate limits of differences (mean ± 1.96 SD)
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technologists for creation of labeled medical imaging data-
sets have not been explored. In the literature, experiences 
with crowdsourcing medical imaging tasks to untrained per-
sons in the community-at-large have been described with 
variable success. Such tasks include annotations of airways, 
lung nodules, kidney and liver segmentations, and colon 
polyp classification on CT colonography images [18–21]. 
Most of these studies concentrate on tasks that require little 
expertise of the crowd, as the objects to identify either have 
well-defined geometry or can be easily separated from the 
background. A similar approach for pancreas segmentation 
has not been attempted, which is likely due to the complex 
morphology and geometry of the pancreas. Thus, there is 
an unmet need for alternate approaches to generate labeled 
datasets for body imaging AI applications. In this study, we 
explored the feasibility of training radiology technologists 
for the development of a CT dataset of volumetric pancreas 
segmentation for AI applications. Specifically, we evaluated 
their performance vis-à-vis radiologists after initial training 
and assessed the impact of supplementary training on their 
performance for volumetric pancreas segmentation.

Pancreas morphometrics and radiomics are emerging as 
biomarkers in both endocrine and exocrine disorders of the 
pancreas [22]. Accurate pancreas segmentation is essential 
for further investigation and validation of these biomark-
ers [8, 22]. A manual approach to pancreas segmentation 
is cumbersome, inaccurate, and not scalable. Therefore, 
validated methods for automated segmentation of pancreas 
in clinical practice are necessary. Automated pancreas seg-
mentation will also have potential applications in surgical 
and radiation therapy planning, and for early detection of 
pancreatic cancer [5]. Although technologists gain a working 
knowledge of key anatomical landmarks during their routine 
clinical assignments, the skills needed for fine segmentations 
of organs such as pancreas on cross-sectional imaging are 
not part of their portfolio. Therefore, in this project, we cre-
ated an image-rich training curriculum focused on multipla-
nar pancreatic anatomy on CT, which also included common 
anatomic variations and relevant CT artifacts. Secondly, we 
conducted instructional tutorials through multiple videocon-
ferencing sessions for the technologists. All of these sessions 
had been recorded so that future training could be delivered 

Fig. 4   Box and whisker plots of technologists’ performance during 
first (blue, labeled as Batch 1.0) and second batch of segmentations 
(orange, labeled as Batch 2.0) when compared against radiologist’ 

segmentations in terms of Dice-Sorenson coefficient (Dice) (a), Jac-
card coefficient (Jaccard) (b), false positive rate (c), and false nega-
tive rate (d)
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through as videos or online modules without direct partici-
pation by radiologists.

After the initial training, 62% of pancreatic segmenta-
tions by the technologists were deemed accurate when com-
pared against the ground truth segmentations by radiologists. 
Given the inherent complexity of pancreas segmentation, we 
believe this is an encouraging result that justifies the upfront 
investment of our time and resources in their training. Sec-
ondly, the majority of the errors were due to undersegmenta-
tion of pancreatic anatomy. A higher proportion of under-
segmentation errors suggests that the technologists generally 
adopted a cautious approach to the segmentation task, which 
often augurs well for beginners. The performance of technol-
ogists should also be viewed in the context of certain other 
factors. We did not categorize errors into minor and major 
classes. Any segmentation that was not deemed accurate was 
redone. Participation in this project was on a voluntary basis. 
All the segmentations had to be done during the course of a 
regular clinical assignment. Although the clinical volumes 
were low due to the COVID-19 containment phase, the tasks 
of segmentations were not entirely uninterrupted. We also 
did not structure additional compensation or time-off into 
this project. In the future, performance-based rewards and, 
possibly, gamification of segmentation tasks could augment 
motivation and performance, as has been observed by others 
[23–25]. It is also possible that some technologists may not 
need any subject matter training and could perform reason-
ably with just instructions on the use of segmentation soft-
ware and workflow. Secondly, since trainees such as medical 
students, residents and fellows are also often motivated to 
participate in medical imaging AI projects, a future pros-
pect is comparison of performance of untrained or trained 
technologists with that of those trainees, which we plan to 
undertake in the next phase.

Another important consideration is the software platform 
used for segmentation tasks. The ground truth pancreatic 
segmentations were done by radiologists with an AI-assisted 
segmentation module on 3D Slicer®. This software has to be 
downloaded on each computer for a given user and requires a 
certain amount of practice. On the other hand, the technolo-
gists used our enterprise custom image-viewing software 
for their segmentations. This was not a deliberate measure 
but rather a decision that had to be made in view of the 
accessibility and their familiarity with the enterprise image-
viewing software. This enterprise software is pre-installed 
on all computers in our institution. Since technologists rou-
tinely used this software for their clinical functions, they 
were well-versed with its basic functions (e.g., loading a 
study, selecting a particular series, etc.) though they were not 
aware of its segmentation capabilities. Therefore, our train-
ing curriculum and modules included stepwise instructions 
of the segmentation workflow. This segmentation workflow 
required the technologists to draw manual regions-of-interest 

around the pancreas on each slice. This workflow likely 
made the segmentations cumbersome, which could have 
also contributed to the observed errors. Our experience high-
lights the need for cloud-based image annotation platforms 
with an intuitive interface that can be seamlessly integrated 
into the routine imaging workflows.

After the supplementary training, there was a decrease 
in the range of mean pancreatic volume difference (mini-
mum − 92.96 cc, maximum 87.47 cc in first batch; minimum 
− 77.32 cc, maximum 30.19 cc in second batch). However, 
the proportion of accurate segmentations declined to 52%, 
though the difference against the first batch was not signifi-
cant. There was also no difference in the similarity metrics 
in the two batches. Interestingly, the trend towards a decline 
in segmentation accuracy was primarily due to an increase 
in the share of undersegmentation errors (63% in first batch 
and 84% in second batch, p = 0.003). Conversely, overseg-
mentation errors significantly reduced (37% in the first 
batch and 16% in the second batch, p = 0.003). The decline 
in oversegmentation suggests that supplementary training 
helped to better distinguish pancreatic anatomy from sub-
adjacent iso-attenuating structures. However, they likely 
overcompensated for errors by undersegmenting pancreas at 
its interface with other organs. Accurate delineation of pan-
creas margins in areas such as near the duodenal groove can 
be a challenge even for radiologists. Secondly, our training 
material and approach could have been inadequate. In the 
future, improved training modules, more frequent training 
sessions, assessments over a longer period, and, possibly, a 
more individualized training approach could result in incre-
mental performance improvement.

It may not be reasonable to expect that technologists’ 
segmentations or labels could be surrogates for that by radi-
ologists. Instead, trained technologists could increase the 
efficiency of image annotation projects by creating weak 
labels, which could be used for weakly supervised learn-
ing or could subsequently be improvised upon by radiolo-
gists [26]. Trained technologists could also augment pro-
ject pipelines through a review and revision of annotations 
initially performed by trained AI models. Finally, such a 
trained group of technologists can be redeployed towards 
the development of institutional body imaging datasets dur-
ing both routine instances of scanner downtimes and during 
extraordinary decline in clinical imaging volumes as was 
experienced by our institution during our voluntary COVID-
19 containment phase.

Our project had limitations. The number and composi-
tion of CT scans for this project were based on the ready 
availability of a curated dataset rather than on statistical con-
siderations. The duration of both initial and supplementary 
training was relatively short. We also evaluated results for 
all technologists as a group and could not assess the impact 
of training on individual performance. We were also unable 
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to capture the time taken per segmentation because these 
segmentations had been done during the course of the clini-
cal assignment rather than in controlled research settings.

In summary, trained technologists had a good perfor-
mance for volumetric pancreas segmentation on CT scans 
despite complexity of the segmentation task and justified our 
upfront investment in their training. Such trained technolo-
gists could provide a viable option for the development of 
labeled datasets for body imaging AI applications. Alter-
nately, they could augment efforts of body radiologists in 
such development endeavors. The logistics of their engage-
ment will be determined by a given institution’s preferences 
and dynamics of the workplace. There is a need for cloud-
based image annotation platforms, validated curriculums, 
and structured training modules to fully realize the potential 
of technologists for annotation tasks on body cross-sectional 
imaging. Investment into these resources could yield a 
trained workforce that could be gainfully redeployed during 
routine downtimes as well as during extraordinary circum-
stances such as COVID-19 containment phase.
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