Skip to main content

Advertisement

Log in

Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases

  • Technical
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases.

Methods

In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal–Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models.

Results

The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85–87%), 71% (95%CI 69–72%) and 86% (95% CI 85–87%), respectively.

Conclusion

A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

CRLM:

Colorectal liver metastases

CEA:

Carcinoembryonic antigen

LM:

Liver metastases

ML:

Machine learning

RF:

Random forest

CI:

Confidence interval

References

  1. Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 22:191

    Article  Google Scholar 

  2. Weiss L, Grundmann E, Torhorst J, et al (1986) Haematogenous metastastic patterns in colonic carcinoma: An analysis of 1541 necropsies. J Pathol 150:195–203

    Article  CAS  Google Scholar 

  3. Manfredi S, Lepage C, Hatem C, et al (2006) Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 244:254–259

    Article  Google Scholar 

  4. Landreau P, Drouillard A, Launoy G, et al (2015) Incidence and survival in late liver metastases of colorectal cancer. J Gastroenterol Hepatol 30:82–85

    Article  Google Scholar 

  5. Locker GY, Hamilton S, Harris J, et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24:5313–5327

    Article  CAS  Google Scholar 

  6. Secco GB, Fardelli R, Gianquinto D, et al (1997) Factors influencing incidence and extension of metachronous liver metastases of colorectal adenocarcinoma. A multivariate analysis. Hepatogastroenterology 44:1057–1062

    CAS  PubMed  Google Scholar 

  7. Chuang S-C, Su Y-C, Lu C-Y, et al (2011) Risk factors for the development of metachronous liver metastasis in colorectal cancer patients after curative resection. World J Surg 35:424–429

    Article  Google Scholar 

  8. Rao S-X, Lambregts DM, Schnerr RS, et al (2014) Whole-liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver? United European Gastroenterol J 2:530–538

    Article  Google Scholar 

  9. Beckers RCJ, Lambregts DMJ, Schnerr RS, et al (2017) Whole liver CT texture analysis to predict the development of colorectal liver metastases—A multicentre study. Eur J Radiol 92:64–71

    Article  Google Scholar 

  10. Lee SJ, Zea R, Kim DH, et al (2018) CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer. Eur Radiol 28:1520–1528

    Article  Google Scholar 

  11. Beckers RCJ, Beets-Tan RGH, Schnerr RS, et al (2017) Whole-volume vs. segmental CT texture analysis of the liver to assess metachronous colorectal liver metastases. Abdom Radiol (NY) 42:2639–2645

    Article  CAS  Google Scholar 

  12. Ganeshan B, Miles KA, Young RCD, Chatwin CR (2009) Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol 70:101–110

    Article  Google Scholar 

  13. Lambin P, Rios-Velazquez E, Leijenaar R, et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  Google Scholar 

  14. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  Google Scholar 

  15. Lu W, Chen W (2016) Positron emission tomography/computerized tomography for tumor response assessment-a review of clinical practices and radiomics studies. Transl Cancer Res 5:364–370

    Article  CAS  Google Scholar 

  16. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:563–577

    Article  Google Scholar 

  17. Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: The promise of radiomics. Phys Med 38:122–139

    Article  Google Scholar 

  18. Beckers R, Lambregts D, Schnerr R, et al (2017) Whole liver CT texture analysis to predict the development of colorectal liver metastases − a multicentre study. European Journal of Cancer 72:S49

    Article  Google Scholar 

  19. Oncoline. https://www.oncoline.nl/. Accessed 25 Jan 2019

  20. Philips - Nederland. In: Philips. https://www.philips.nl/. Accessed 15 Oct 2018

  21. van Griethuysen J. J. M. Fedorov A. Parmar C. Hosny A. Aucoin N. Narayan V. Beets-Tan R. G. H. Fillon-Robin J. C. Pieper S. Aerts HJWL (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77(21), e104–e107

  22. Welcome to Python.org. In: Python.org. https://www.python.org. Accessed 15 Oct 2018

  23. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324

    Article  Google Scholar 

  24. Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  Google Scholar 

  25. Bergstra J, Yamins D, Cox DD (2013) Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference. Citeseer, pp 13–20

  26. Strawderman WE (1989) Statistical Analysis with Missing Data (Roderick J. A. Little and Donald B. Rubin). SIAM Review 31:348–349

    Article  Google Scholar 

  27. Ganeshan B, Miles KA (2013) Quantifying tumour heterogeneity with CT. Cancer Imaging 13:140–149

    Article  Google Scholar 

  28. Cozzi L, Dinapoli N, Fogliata A, et al (2017) Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer 17:829

    Article  Google Scholar 

  29. Blanc-Durand P, Van Der Gucht A, Jreige M, et al (2018) Signature of survival: a F-FDG PET based whole-liver radiomic analysis predicts survival after Y-TARE for hepatocellular carcinoma. Oncotarget 9:4549–4558

    Article  Google Scholar 

  30. Kim J, Choi SJ, Lee S-H, et al (2018) Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol 211:1026–1034

    Article  Google Scholar 

  31. Hui TCH, Chuah TK, Low HM, Tan CH (2018) Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: a radiomics study. Clin Radiol. https://doi.org/10.1016/j.crad.2018.07.109

    Article  PubMed  Google Scholar 

  32. Zhou Y, He L, Huang Y, et al (2017) CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY) 42:1695–1704

    Article  Google Scholar 

  33. Akai H, Yasaka K, Kunimatsu A, et al (2018) Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging 99:643–651

    Article  CAS  Google Scholar 

  34. Li Y, Eresen A, Shangguan J, et al (2019) Establishment of a new non-invasive imaging prediction model for liver metastasis in colon cancer. Am J Cancer Res 9:2482–2492

    PubMed  PubMed Central  Google Scholar 

  35. Li M, Li X, Guo Y, et al (2020) Development and assessment of an individualized nomogram to predict colorectal cancer liver metastases. Quant Imaging Med Surg 10:397–414

    Article  Google Scholar 

  36. Liang M, Cai Z, Zhang H, et al (2019) Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis. Acad Radiol 26:1495–1504

    Article  Google Scholar 

  37. Kumar V, Gu Y, Basu S, et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248

    Article  Google Scholar 

  38. Parmar C, Grossmann P, Bussink J, et al (2015) Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep 5:13087

    Article  CAS  Google Scholar 

  39. Zhang B, He X, Ouyang F, et al (2017) Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 403:21–27

    Article  CAS  Google Scholar 

  40. Hawkins S, Wang H, Liu Y, et al (2016) Predicting Malignant Nodules from Screening CT Scans. J Thorac Oncol 11:2120–2128

    Article  Google Scholar 

  41. Ma J, Wang Q, Ren Y, et al (2016) Automatic lung nodule classification with radiomics approach. In: Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovations

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Maas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, M., Trebeschi, S., Simões, R. et al. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdom Radiol 46, 249–256 (2021). https://doi.org/10.1007/s00261-020-02624-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02624-1

Keywords

Navigation