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Abstract
Purpose  To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis 
of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO).
Methods  Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 
2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the 
corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest 
(VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression 
algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained 
to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly 
evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy.
Results  In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen 
out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All 
five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support 
vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 
0.800), showing the best performance.
Conclusions  Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-
enhanced quantitative features and machine learning.

Keywords  Renal cell carcinoma · Oncocytoma · Radiomics · Computed tomography · Machine learning · Differential 
diagnosis

Introduction

The incidence of renal cell carcinoma is increasing world-
wide [1]. Chromophobe cell carcinoma (chRCC) of the kid-
ney is second only to clear cell carcinoma of the kidney and 
papillary cell carcinoma of the kidney [1–3]. Renal onco-
cytoma (RO) is a benign renal tumor, accounting for about 
3–7% of all renal tumors [4, 5]. Medical imaging plays an 
important role in the clinical management of renal tumors, 
such as detection of renal tumors, prediction of benign and 
malignant tumors, grading, and surgical treatment [6, 7]. 
Studies have shown that chRCC and RO not only overlap 
in morphological and immunological manifestations, but 
also have similar imaging manifestations [8, 9]. Although 
some researchers believe that a central scar is the charac-
teristic of RO, its proportion is only about 33% [4, 6], but 
there are also a few cases of chRCC with a central scar [8]. 
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Therefore, it is obviously impossible to distinguish the two 
pathological types by the presence or absence of a central 
scar. Some reports suggest that there are some differences 
in the enhancement degree of CT between the two [9]. The 
enhancement in chRCC is slightly higher than that in RO, 
but the difference in the CT value is small and is greatly 
influenced by subjective factors. There are also studies 
showing that many MR findings for chRCC and RO are quite 
similar, such as a central scar, segmental enhancement inver-
sion, and enhancement characteristics of each phase, none 
of which can accurately identify the two [10].

At present, the differential diagnosis of benign and malig-
nant renal tumors still depends on pathology. Percutaneous 
renal biopsy is the main preoperative examination. However, 
solid tumors show spatial and temporal inconsistencies in 
genetic and molecular pathways, microenvironment, tis-
sues, and organs, limiting the accuracy and representative-
ness of biopsy results. With the innovation and development 
of medical imaging technologies, images can include the 
characteristics of tissue anatomy and physiological function. 
The advantages of non-invasive, comprehensive, and quan-
titative observation of imaging technology overcomes the 
shortcomings of biopsies, and can efficiently detect tumor 
heterogeneity [11, 12]. In 2012, Lambin et al. [11] proposed 
the concept of radiomics for the first time based on the het-
erogeneity of solid tumors. By extracting features from high-
throughput image data, more reliable feature information 
can be extracted compared with that obtained from visual 
observation. Differential diagnosis between chRCC and RO 
is difficult by conventional diagnostic methods, and the use 
of radiomics for their differential diagnosis is rare. Accurate 
preoperative differentiation between chRCC and RO can aid 
better management of patients and help develop follow-up 
strategies. Additionally, it can mitigate the requirement and 
risk of radical nephrectomy in patients with RO. Therefore, 
in this study, we used a radiomics-based approach to analyze 
chRCC and RO and investigated the possibility of a higher 
preoperative diagnostic accuracy.

Materials and methods

Patients

A retrospective analysis of 44 cases of chRCC and 17 cases 
of RO was performed. The cases were confirmed patho-
logically in our hospital between 2008 and 2018, and the 
patients had undergone preoperative enhanced CT scan. 
There were 31 men and 13 women aged 22–79 years (aver-
age age 50.8 years) in the chRCC group and 9 men and 8 
women aged 35–79 years (average age 54.9 years) in the RO 
group. Except for 8 cases without clinical data, most of the 
patients showed clinical signs that were non-specific (27/53) 

and then waist pain on the corresponding side or hematuria 
(20/53), and so on.

CT examination

Most of the patients underwent multi-phase enhanced CT 
scanning, including a plain scan and phase scanning of the 
corticomedullary (CMP), nephrographic (NP), and excre-
tory (EP) phases. In five of the 61 cases, the patients did 
not undergo EP scanning. Images for the 61 patients were 
captured using MDCT (LightSpeed VCT, GE Healthcare, 
Japan; SOMATOM Definition Flash, Siemens Healthcare, 
Germany) systems. The scanning ranged from the top of 
the diaphragm to the level of the iliac wing. The scanning 
parameters were tube voltage, 120 kV and scanning thick-
ness, 5–8 mm. After the abdominal plain scan, a contrast 
agent was injected using a high-pressure syringe around the 
vein. The injection flow rate was 3 ml/s, and three-phase 
enhanced scanning was performed at 30–200 s.

Tumor segmentation

The original digital imaging and communications in medi-
cine image were imported into a post-processing platform 
(Big Data Intelligent Analysis Cloud Platform, Huiying 
Medical Technology Co., Ltd., Beijing). A radiologist manu-
ally delineated the region of interest (ROI) along the edge 
of the lesion, layer by layer, on each phase of the contrast-
enhanced CT image. The volume of interest (VOI) of the 
lesion was automatically generated by the computer. Another 
senior radiologist examined the outline results. The criteria 
for delineation were as follows. CT axial images, except for 
the two planes where the lesion just appeared and was about 
to disappear, were evaluated. The ROI was used to deline-
ate the boundary of all planes of the renal mass, including 
necrosis, cystic degeneration, and hemorrhage; however, 
it did not include the normal renal tissue or perirenal fat. 
Before extracting the VOI from the ROI, the window width 
and window position was adjusted to achieve the best con-
trast between the mass and the surrounding normal renal 
parenchyma. The window width and window positions were 
about 350 and 50 Hounsfield units (HU), respectively. Fig-
ure 1 shows the flow chart of the radiomics method.

Feature extraction and selection

After delineating the VOI of each lesion, high-throughput 
data features based on feature classes and filter classes were 
automatically extracted from the aforementioned Radcloud 
platform. The features can be classified into three catego-
ries as follows: I. The characteristics of the intensity statis-
tics, such as peak value, mean value, and variance, which 
are used to quantitatively describe the distribution of voxel 
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intensity in CT images; II. Shape features, such as volume, 
surface area, and spherical value, which reflect the three-
dimensional characteristics of the shape and size of the out-
lined area; and III. texture features, including the gray-level 
co-occurrence matrix, gray-level run length matrix, and 
gray-level size zone matrix, which can quantify the hetero-
geneity of the selected region. Additionally, Laplace–Gauss 
filtering, exponential, logarithmic, square, square root, and 
wavelet filters can be used to calculate the image intensity 
and texture features. Wavelet filters used included wavelet-
LHL, wavelet-LHH, wavelet-HLL, wavelet-LLH, wavelet-
HLH, wavelet-HHHH, wavelet-HHL, and wavelet-LLL.

First, all radiomic features were standardized using the 
StandardScaler function by Min–Max Scaling, and each set 
of feature values was mapped to the range of [0,1]. Then, 
a fivefold cross-validation was performed based on stand-
ardized features, and the optimal λ parameter was obtained 
from the minimum of the average mean square error by 1000 
iterations. Finally, the least absolute shrinkage and selec-
tion operator (LASSO) feature selection algorithm was 
used to select the relevant features based on the optimal λ 
parameters, and the coefficients were calculated for each 
feature; then, radiomic features with non-zero coefficients 
were obtained. The LASSO algorithm can be used to reduce 
the dimensions of features and select the most meaningful 
features effectively [13, 14]. Further, using the T test on the 
optimum features between chRCC and RO patients, a prob-
ability value (p value) is calculated.

Classifier training

Five classifiers, k-nearest neighbors (kNN), support vector 
machine (SVM), random forests (RF), logistic regression 

(LR), and multi-layer perception (MLP), were trained to 
construct the model by using fivefold cross-validation, 
which divided the data into five parts, training one part 
in turn, and estimating the accuracy of the algorithm by 
calculating the mean of the results of the five rounds of 
training. From these, the best model to distinguish chRCC 
from RO was selected. Finally, the performance of the fea-
ture classifier was validated and evaluated. The evaluation 
indicators included area under the curve (AUC), sensitiv-
ity, specificity and accuracy, accuracy, recall, and F1-score 
using the receiver operating characteristic curve (ROC).

Results

Feature selection of radiomics

A total of 1029 image features were extracted from each 
phase of enhanced images of each patient. The optimal λ 
parameter for the CMP, NP, and EP images features and 
a combination of CMP and NP images features (Fig. 2) 
were obtained. The LASSO algorithm was used to reduce 
the dimensionality of the above high-dimensional features 
based on the optimal λ parameters, and the best features 
were screened. These features were mainly texture and 
intensity statistical features, while only one morphological 
feature was screened out in the EP images. The combina-
tion of CMP and NP resulted in eight screened features 
from 2058 features, including five texture features and 
three intensity statistics features. The selected features 
and the corresponding p values are shown in Table 1. A 
radiomics set was built using the optimum features.

Fig. 1   Basic flow chart showing the radiomics method devised for the differential diagnosis of renal chromophobe cell carcinoma and renal 
oncocytoma
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Fig. 2   LASSO model on CMP (A1/A2), NP (B1/B2), and EP (C1/
C2) images and a combination of CMP and NP (D1/D2) images. The 
optimal values of the LASSO tuning parameters were found (CMP: 
λ = 0.1 with Log(λ) = − 1; NP: λ = 0.1 with Log(λ) = − 1; EP: λ = 0.1 

with Log(λ) = − 1; CMP and NP: λ = 0.063 with Log(λ) = − 1.2). 
And features which were correspond to the optimal alpha value were 
extracted following coefficients on images
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Diagnostic performance of radiomics models

As shown in Table 2, AUC values under ROCs of multiple 
radiomics models obtained by a fivefold cross-validation 
method show that all models can obtain better diagnostic 
results, with AUC values greater than 0.850, and SVM 
being the best. The ROC curves of SVM at different 
enhancement stages are shown in Fig. 3. Four classifiers, 

kNN, SVM, LR, and MLP, used the combined features 
of CMP and NP to obtain the best discriminant diagno-
sis results for enhanced phase 3 (CMP, NP, and EP) and 
the combination of CMP and NP. Only the RF classifier 
obtained the best discriminant effect when analyzing fea-
tures in NP phase. Table 3 compares the results of the five 
classifiers. The evaluation indexes included AUC sensitiv-
ity, specificity, accuracy, precision, recall, and F1-score.

Table 1   Optimum features 
selected by the LASSO 
algorithm for enhancing high-
dimensional features of each 
phase

CMP corticomedullary phase, NP nephrographic phase, EP excretory phase
p value < 0.05 indicates a significant difference in the Optimum features between chRCC and RO patients

Radiomic group Radiomic feature Associated filter p value

CMP
 Texture features Imc2 Original < 0.0001
 Firstorder 90Percentile Square < 0.0001
 Firstorder RobustMeanAbsoluteDeviation Square < 0.0001
 Texture features GrayLevelNonUniformityNormalized Square 0.0131

NP
 Texture features Imc1 Logarithm 0.0006
 Firstorder 10Percentile Square 0.0003
 Texture features SmallAreaLowGrayLevelEmphasis Wavelet-HLH < 0.0001
 Firstorder Mean Wavelet-HLH 0.0036

EP
 Firstorder 10Percentile Original 0.0004
 Shape Flatness Original 0.0116
 Texture features Imc1 Logarithm 0.0088
 Firstorder 10Percentile Square 0.0004
 Firstorder Skewness Wavelet-HLL 0.0312
 Texture features ClusterShade Wavelet-HHH 0.0093

Combined CMP and NP
 Texture features Imc2 Original 0.0004
 Texture features Correlation Logarithm 0.0001
 Firstorder 90Percentile Square < 0.0001
 Firstorder RobustMeanAbsoluteDeviation Square < 0.0001
 Texture features Imc1 Logarithm 0.0006
 Texture features SmallAreaEmphasis Wavelet-LHH 0.0175
 Texture features SmallAreaLowGrayLevelEmphasis Wavelet-HLH < 0.0001
 Firstorder Mean Wavelet-HHH 0.0036

Table 2   Average AUC for 
multiple histological models 
after fivefold cross-validation

AUC​ area under the curve, CMP corticomedullary phase, NP nephrographic phase, EP excretory phase, 
kNN k-nearest neighbors, SVM support vector machine, RF random forests, LR logistic regression, MLP 
multi-layer perception

Radiomic models kNN SVM RF LR MLP

CMP 0.858 ± 0.180 0.907 ± 0.114 0.853 ± 0.146 0.915 ± 0.129 0.915 ± 0.129
NP 0.896 ± 0.097 0.950 ± 0.049 0.931 ± 0.082 0.942 ± 0.063 0.946 ± 0.081
EP 0.851 ± 0.130 0.930 ± 0.062 0.831 ± 0.087 0.831 ± 0.087 0.954 ± 0.046
Combined CMP and NP 0.925 ± 0.038 0.964 ± 0.054 0.910 ± 0.073 0.959 ± 0.065 0.959 ± 0.065
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Discussion

In 2004, the World Health Organization formally classi-
fied chRCC as a new pathological classification of renal 
tumors. The incidence of chRCC is second only to that of 
renal clear cell and renal papillary cell carcinomas [3]; 
moreover, it has potential for metastasis. RO is a benign 

tumor with good prognosis [5]. Presently, surgical treat-
ment, including partial and radical nephrectomy, is an 
effective method for treating local renal tumors. Radical 
nephrectomy can lead to an increased risk of chronic kid-
ney disease, and is associated with an increased risk of 
cardiovascular disease morbidity and mortality. Compared 
to radical nephrectomy, a partial nephrectomy can pre-
serve partial renal function, reduce overall mortality, and 

Fig. 3   Receiver operating characteristic (ROC) curve for the sup-
port vector machine (SVM) classifier for the differential diagnosis of 
enhanced phase 3 (corticomedullary [CMP], nephrographic [NP], and 

excretory [EP] phases of contrast enhancement) and combined fea-
tures of CMP and NP. AUC​ area under the curve

Table 3   Performance of the 
five feature classifiers for the 
differential diagnosis of chRCC 
and RO

chRCC​ renal chromophobe cell carcinoma, RO renal oncocytoma, kNN k-nearest neighbors, SVM support 
vector machine, RF random forests, LR logistic regression, MLP multi-layer perception

kNN SVM RF LR MLP

Sensitivity 0.952 0.999 0.929 0.881 0.929
Specificity 0.765 0.800 0.941 0.941 0.941
Accuracy 0.898 0.945 0.932 0.898 0.932
Precision [0.909–0.867] [0.930–1.0] [0.975–0.842] [0.974–0.762] [0.975–0.842]
Recall [0.952–0.765] [1.0–0.8] [0.929–0.941] [0.881–0.941] [0.929–0.941]
F-1 score [0.930–0.812] [0.964–0.889] [0.951–0.889] [0.925–0.842] [0.951–0.889]
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reduce the incidence of cardiovascular disease [2]. There-
fore, radical nephrectomy should be avoided when nephron 
retention is achievable. Percutaneous renal biopsy is the 
most commonly used preoperative examination method, 
and it has 97% accuracy rate for distinguishing malignant 
renal masses [15]. However, the diagnosis of chRCC and 
RO on percutaneous renal biopsy presents difficulties [16].

chRCC and RO have many overlapping imaging features 
[17]. Clinically, it is difficult to distinguish chRCC from 
RO only by visual imaging. Currently, controversies exist 
on the imaging manifestations of the two kinds of tumors. 
For example, Rosenkrantz [10] stated that MRI features 
including fat, hemorrhage, margin of the mass, perirenal 
fat infiltration, renal vein cancer thrombus, enhancement 
uniformity, vascular proliferation and central scar, and seg-
mental enhancement inversion cannot be used to distinguish 
between chRCC and RO. Wu et al. [9] reported that cases of 
RO present more instances of central scar, radial enhance-
ment, and segmental enhancement inversion than those 
observed for chRCC on contrast-enhanced CT. Kim et al. 
[18] asserted that differential diagnosis between different 
tumor types can be achieved by CT enhancement. Most cases 
of chRCC showed homogeneous enhancement, whereas 
most renal clear cell and papillary cell carcinomas showed 
heterogeneous enhancement. Additionally, RO is character-
ized by homogeneous enhancement of the solid mass. The 
enhancement of RO and chRCC at each stage is lower than 
that of the normal renal cortex; however, enhancements of 
RO are more prominent than those of chRCC [9]. Thus, in 
clinical practice, it is difficult to distinguish chRCC from RO 
only by visual imaging. Therefore, this study used radiomics 
to differentiate chRCC from RO.

Texture analysis refers to the process of extracting texture 
feature parameters through certain image processing tech-
nologies, so as to obtain quantitative or qualitative descrip-
tion of texture. This technique can be used to detect subtle 
differences that cannot be detected by the naked eye and is 
more objective for tumor discrimination. Because chRCC 
and RO are relatively rare compared to renal clear cell and 
renal papillary cell carcinoma, radiomic studies of renal 
tumors are focused on relatively common renal tumors. 
Studies on the most frequently occurring renal clear cell 
carcinoma have focused on different aspects such as pre-
operative diagnosis [19–22], tumor grade [23], prognostic 
evaluation [24], and molecular analysis of the cancer genes 
[25–27]. Yu et al. [20] extracted the texture features of four 
types of renal tumors, including renal clear cell carcinoma, 
renal papillary cell carcinoma, chRCC, and RO. The tumors 
were classified by an SVM classifier, and the histogram fea-
ture median demonstrated an AUC of 0.882 for differen-
tiating chRCC from RO. In this study, SVM was used to 
classify the features screened by CMP and NP. The AUC of 
differential diagnosis between chRCC and RO was found to 

be as high as 0.964, which is better than previously reported 
results. Zhang et al. [19] combined several texture features 
including SD, entropy, mean positive pixels, and kurtosis to 
differentiate renal clear cell carcinoma from non-transparent 
cell carcinoma. The value of the AUC was 0.94 ± 0.03 and 
the accuracy was 0.87 (sensitivity = 89%, specificity = 92%). 
Similar methods were used to differentiate between renal 
papillary cell carcinoma and chRCC, and the accuracy of 
differential diagnosis was 78%. Most of the subjects in the 
above study had renal malignant tumors, but no benign ROs 
were included in the comparison. Thus, this study has more 
clinical significance in terms of comparing chRCC with RO.

Considering the isodensity of tumor masses on plain 
CT scans, errors may easily occur while describing an 
ROI. Therefore, this study analyzed the contrast-enhanced 
images; however, we did not analyze the CT plain scan 
images. Some studies such as the one by Hodgdon et al. 
[21] only analyzed CT plain scan images of renal tumors. 
Using CT plain scan texture features and subjective visual 
features to differentiate and diagnose fat-deficient angiomy-
olipoma from other renal tumors, the accuracy of the clas-
sification methods based on texture features was found to 
be higher than that of radiologists’ subjective judgment of 
tumors or that observed with the use of an SVM classifier 
to identify renal tumors. The accuracy of differential diag-
nosis was about 83–91%. Schieda et al. [28] did not ana-
lyze the vascular characteristics of renal masses according 
to the nuclear grading system for chRCC; therefore, only 
CT plain scan images were used for radiomic analysis for 
clinical grading of the tumors. Importantly, to ensure the 
accuracy of the boundary delineation of the CT plain scans, 
it is still necessary to use the image of CT enhancement as 
a reference. Kocak et al. [23] analyzed the influence of dif-
ferent edge segmentation methods on feature selection and 
classification performance, including contour focusing and 
edge contraction by 2 mm. The results show that the latter 
method can extract more texture features; however, the for-
mer method has better reproducibility of features and better 
classification performance for the nuclear grading system-
based classification of renal clear cell carcinoma. In this 
study, manual ROI extraction was performed to segment the 
edge contour of each transverse mass. Recently, a variety 
of mathematical techniques have been used in radiomics to 
quantify image textures, including statistical, Fourier, and 
wavelet analysis, and have been applied to the study of a 
variety of tumors. Varghese et al. [22] used multi-phase CT 
fast Fourier transform index to analyze the CT-enhanced 
solid and fat-deficient renal masses. Good classification 
results were obtained when distinguishing benign from the 
malignant renal masses, differentiating RO from chRCC, and 
RO from lipid-poor angiomyolipoma (AUC > 0.7).

Bektas et al. [29] used different machine learning clas-
sifiers, such as SVM, MLP, RF, kNN, and naive Bayes, for 
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predicting Fuhrman nuclear grade of clear cell renal cell 
carcinomas (ccRCCs), and the best model was created 
using SVM (AUC = 0.851, accuracy = 0.913). Lee et al. 
[30] combined different feature selection methods and dif-
ferent feature classifiers, which included SVM, RF, kNN and 
LR, to distinguish benign fat-poor angiomyolipoma from 
malignant ccRCC. kNN and SVM classifiers with ReliefF 
feature selection achieved the best accuracy of 72.3 ± 4.6% 
and 72.1 ± 4.2%, respectively. The results of this study show 
that five classifiers have good diagnostic performance in fea-
ture classification methods (accuracy > 0.89, AUC > 0.90). 
One of the best models for the differential diagnosis between 
chRCC and RO was the use of SVM to classify the features 
screened by the combination of CMP and NP. The accu-
racy was found to be as high as 0.945, and the AUC was 
0.964 ± 0.054. We suggest the use of radiomics of enhanced 
CT images for differentiating between chRCC and RO.

This study has some limitations. First, this was a single-
center study and the sample size was small; notably, there 
were relatively fewer RO cases. A multi-center study of these 
rare cases must be undertaken under favorable conditions. 
Second, the CT equipment was not uniform and the scanning 
parameters were different, which may have influenced the 
repeatability of the results. Third, failure to analyze plain 
CT images may have led to the omission of internal masses. 
Considering the isodensity of tumor masses on plain CT 
scans, errors could have occurred when describing the ROIs 
for some characteristic information. To address this issue, 
only prominent enhancement phase images were analyzed.

In summary, we established a machine learning model 
that can distinguish chRCC from RO on enhanced CT 
images. These models are expected to help clinicians formu-
late better clinical diagnosis and devise improved treatment 
strategies. Our results indicate that radiomics can accelerate 
the development of personalized therapy.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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