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Abstract

Esophageal, esophago-gastric, and gastric cancers are
major causes of cancer morbidity and cancer death. For
patients with potentially resectable disease, multi-
modality treatment is recommended as it provides the
best chance of survival. However, quality of life may be
adversely affected by therapy, and with a wide variation
in outcome despite multi-modality therapy, there is a
clear need to improve patient stratification. Radiomic
approaches provide an opportunity to improve tumor
phenotyping. In this review we assess the evidence to date
and discuss how these approaches could improve out-
come in esophageal, esophago-gastric, and gastric can-
cer.

Key words: Esophageal cancer—Esophagogastric
junction cancer—Radiomics—Computed
tomography—Magnetic resonance imaging—Positron
emission tomography

The need for better patient
stratification

Esophageal or esophago-gastric cancer (456,000 new
cases annually) and gastric cancer (952,000 new cases
annually) are leading causes of cancer deaths worldwide
[1]. Above 50% of presenting patients are diagnosed with
stage IV disease, precluding curative treatment. For pa-
tients with early stage disease, surgery, often combined
with neoadjuvant chemotherapy or chemoradiotherapy,
offers the best chance of cure [2-7].

As an example, data from the OEO2 and MAGIC
trials for esophageal and esophago-gastric cancer have
shown a 6% [3] and 13% [4] improvement in 5-year
overall-survival, respectively. Trimodality therapy for
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esophageal and esophago-gastric cancer combining
neoadjuvant chemo- and radiation-therapy in addition to
surgery may also be superior to neoadjuvant
chemotherapy alone in a selected patient population [8].
The CROSS trial [6] comparing neoadjuvant chemora-
diotherapy plus surgery with surgery alone in patients
with esophageal and esophago-gastric cancer showed a
superior overall-survival of 49 vs. 24 months, hazard
ratio 0.657, p = 0.003, and a pathological complete re-
sponse rate of 29%, for patients with multi-modality
treatment with no increase in surgical mortality (4% in
surgery and trimodality groups, respectively).

A recent systematic review and meta-analysis of
neoadjuvant chemotherapy in patients with gastric can-
cer has also found improved 3-year survival rates (rela-
tive risk 1.30; 95% CI 1.06-1.59, p < 0.01) [9]. Typical
management pathways are shown in Figs. 1 and 2 for
esophageal, esophago-gastric, and gastric cancer,
respectively. Nevertheless overall-survival remains poor
despite these improvements in patient care.

Recent genomic analyses have highlighted the genetic
heterogeneity present in esophageal, esophago-gastric
[10], and gastric cancer [11, 12] as an underlying cause for
the differences in outcome and heterogeneity of response
to therapy. Quality of life also remains poor for many
patients post-surgery, taking up to 3 years to return to
pre-therapy levels in patients undergoing esophageal
resection [13]. Better patient stratification remains a key
challenge for patients with upper gastrointestinal tract
cancers.

The imaging pathway at staging

For esophageal and esophago-gastric cancer, contrast-
enhanced computed tomography (CT) remains the most
commonly performed first step in staging due to the high
prevalence of metastatic disease at presentation [14—16].
For patients being considered for a curative pathway,
endoscopic ultrasound (EUS) and 18F-fluorodeoxyglu-
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Diagnosis: Endoscopy

Staging:
Computed tomography (CT), endoscopic ultrasound (EUS), 18F-
flurodeoxyglucose positron emission tomography (18F-FDG PET/CT)
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Typical pathways for the management of patients with newly diagnosed esophageal and esophago-gastric cancer.

Diagnosis: Endoscopy

Staging:
Computed tomography (CT), endoscopic ultrasound (EUS), 18F-
flurodeoxyglucose positron emission tomography (18F-FDG PET/CT)
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Fig. 2. Typical pathways for the management of patients with newly diagnosed gastric cancer.

cose positron emission tomography/CT (18F-FDG PET/
CT) are performed due to the high sensitivity and
specificity of EUS for local tumor and nodal staging; and
18F-FDG PET for distant metastases [17-19]. This aims
to reduce the futile surgery rate.

For gastric cancer, initial staging is again by contrast-
enhanced CT. If curative treatment is being considered,
the use of endoscopic ultrasound (EUS) is helpful in
determining the proximal and distal extent of the tumor,
whereas 18F-FDG PET/CT has been shown to improve
staging by detecting involved lymph nodes and meta-
static disease, although it can be less accurate in muci-
nous and diffuse tumors [20].

In esophageal cancer, PET has the potential to change
management in up to a third of patients [21, 22], and is
often incorporated into radiotherapy planning pathway

[23, 24]. The American College of Surgeons Oncology
Group reported sensitivity and specificity of 18F-FDG-
PET/CT scans to be 79% and 95%, respectively [18].

Magnetic resonance imaging (MRI) is currently not
recommended for the routine imaging of esophageal or
gastric cancer. However, with the recent advent of hybrid
PET/MRI systems in clinical practice, there has been
growing interest in MRI’s ability as an assessment tool.
MRI provides excellent soft-tissue contrast, and may
demonstrate the esophageal wall layers and adjacent
nodes. Physiological sequences (e.g., diffusion-weighted
MRI) may also be included as part of the protocol. An
initial staging 18F-FDG PET/MRI study with a
pathology gold standard has been promising for nodal
assessment with reported accuracy of 83% compared to
75% and 50% for EUS and CT, respectively [25].
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A role for radiomics?

Radiomic approaches are showing promise for patient
stratification. Radiomics exploit the data performed as
part of the clinical management pathway. In terms of
imaging, a number of parameters may be extracted and
combined including standard descriptors (e.g., size,
morphology, TNM (tumor, node, metastasis) stage);
qualitative, semi-quantitative, or quantitative physio-
logical parameters (e.g., contrast enhancement, diffusion
characteristics, tracer uptake); and additional agnostic
features which are otherwise ‘invisible’, with bioinfor-
matic approaches. Of these, texture-based features have
been investigated most commonly to date. Table |
highlights some features that have been investigated in
studies.

Radiomic signatures provide additional information
predictive of underlying tumor biology and behavior.
These signatures can be used alone or with other patient-
related data (e.g., pathological data; genomic data) to
improve tumor phenotyping, treatment response predic-
tion and prognosis. Radiomic signatures may be ob-
tained for all cross-sectional imaging modalities,
including CT, PET, and MRI. Figure 3 illustrates a
typical radiomics pipeline.Figure 4 demonstrates the
process of tumor segmentation for a 18F-FDG PET
image with a corresponding plot of standardized uptake
value for the tumor. Initial studies in esophageal, eso-
phago-gastric, and gastric cancer have shown promise
for patient care.

18F-FDG PET radiomics

Nine 18F-FDG PET studies have been performed in
esophageal and esophago-gastric cancer and are sum-
marized in Table 2. As yet no studies have been per-
formed for gastric cancer. Studies to date have focused
on the prediction of response or prognosis in comparison
to standard practice. Studies have found that various
first, second and high-order features have been contrib-
utory to the assessment of response, differentiating be-

Table 1. Overview of features used in radiomics
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Fig. 3. Schema demonstrating typical radiomics pipeline.

tween responders and non-responders (with greater
heterogeneity in non-responders), as well as being pre-
dictive of complete response. Performance has been
better than conventional parameters alone. Prognosti-
cation data remain conflicting.

In greater detail, five studies have investigated the
prediction of response to therapy alone (n = 2); prog-
nosis alone (n = 1) and the prediction of response to
therapy and prognosis (n = 2) from pre-therapy imag-
ing. One of the earliest studies by Tixier et al. showed in
41 patients that gray-level co-occurrence matrix (GLCM)
homogeneity, GLCM entropy, gray-level size-zone ma-
trix (GLSZM) size-zone variability and run length matrix
(RLM) intensity variability differentiated non-respon-

Feature-group

Parameter examples

First-order-histogram statistics
Second-order gray-level co-occurrence matrix
(GLCM) statistics

Mean, median, skewness, kurtosis, energy (uniformity), entropy
Entropy, homogeneity, energy (uniformity), contrast, autocorrelation, cluster shade, cluster
prominence, difference entropy, difference variance, dissimilarity, inverse difference moment,

maximum probability, sum average, sum entropy, sum variance

Second-order gray-level difference matrix
(GLDM) statistics

High-order neighborhood gray-tone difference
matrix (NGTDM) statistics

High-order gray-level run-length (GLRL or
RLM) statistics

High-order gray-level size zone matrix (GLSZM)
statistics

Fractal analysis

Mean, entropy, variance, contrast
Coarseness, contrast, busyness, complexity, texture strength

Short run emphasis, long run emphasis, gray-level nonuniformity, run-length nonuniformity,
intensity variability, run-length variability

Short-zone emphasis, long-zone emphasis, intensity nonuniformity, zone percentage, intensity
variability, size zone variability

Mean fractal dimension, standard deviation, lacunarity, Hurst component
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Fig. 4. Example of tumor segmentation for extraction of radiomic features from an axial PET image. In the right image the
corresponding standardized uptake values for the region-of-interest is displayed.

ders, partial-responders, and complete-responders with
sensitivities of 76%-92% [26]. Beukinga et al. showed in
97 patients that a clinical model including PET-derived
gray-level run length (GLRL) long run low gray level
emphasis and CT-derived run percentage had a higher
area under the receiver operator curve (AUROC) com-
pared to maximum standardized uptake value (SUV ,.5)
in predicting therapy response [27].

In a study of 52 patients with squamous cancers,
Nakajo et al. found that 18F-FDG PET/CT GLSZM
intensity variability, and GLSZM size-zone variability,
as well as standard volumetric parameters, such as me-
tabolic tumor volume (MTV) and total lesion glycolysis
(TLG), were predictors of tumor response but not of
progression free or overall-survival [28]. Non-responders
showed significantly higher intensity variability and size-
zone variability. Similarly, in a study of 65 patients Paul
et al. found that a model incorporating GLCM homo-
geneity was a predictor of response (with an AUROC
value of 0.823) but not of survival [29]. However, in a
larger study with 403 patients, Foley et al. found that
total lesion glycolysis, histogram energy and kurtosis
were independently associated with overall-survival [30].

Four studies have assessed pre- and post-therapy
18F-FDG PET imaging. An initial study by Tan et al.
found in 20 patients that 2 SUV .., parameters,
SUV ean decline and SUV .., skewness, and 3 texture
features GLCM inertia, GLCM correlation, and GLCM
cluster prominence, were significant predictors of com-
plete response with an AUROC of 0.76 [31]. In 217 pa-
tients with adenocarcinoma, Van Rossum et al.
developed a prediction model which included change in

run length matrix (RLM) run percentage, change in
GLCM entropy, and post—chemoradiation roundness,
and increased the corrected c-index (concordance-index,
comparable to AUROC) from 0.67 to 0.77, compared to
the clinical model alone [32]. Yip et al. found that a
change in run length and size-zone matrix differentiated
responders from non-responders [33]. More recently,
Beukinga et al. found that clinical T-staging combined
with post-chemoradiotherapy '*F-FDG PET orderliness
provided high discriminatory accuracy in predicting
pathologic complete response compared to clinical vari-
ables or SUVmax alone [34].

CT radiomics

Nine studies have investigated the ability of CT-derived
heterogeneity parameters for classification, prediction of
response and overall-survival in patients with esophageal
or gastric cancer. Three studies have been performed for
esophageal cancer in terms of prediction of response or
prognosis (Table 3). These have found that greater
heterogeneity is present in non-responders and those
with poorer outcome.

The largest study in 49 patients found that histogram
skewness, histogram kurtosis, GLSZM long-zone
emphasis, and 2 Gabor transformed parameters MSA-54
and MSE-54, discriminated non-responders from
responders using an artificial neural network-derived
prediction model [35]. The two remaining studies have
assessed prognostication. Ganeshan et al. found that
lower histogram uniformity (with Gaussian filtration)
from unenhanced CT images before start of treatment
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was an independent predictor for poorer overall-survival
[36].Yip et al. analyzed contrast-enhanced images of 36
patients before and after treatment and found a signifi-
cant decrease in histogram entropy and increase in uni-
formity (with Gaussian filtration) between the two time
points. Higher post treatment entropy was associated
with poorer overall-survival [37].

For gastric cancer (Table 4), three studies have as-
sessed the potential of radiomic approaches for classifi-
cation. Studies have found that first and second-order
analysis in the contrast-enhanced images may help in
differentiation of lymphoma from gastrointestinal stro-
mal cancer [38] or adenocarcinoma [39]. Another study
in 107 patients found that arterial phase standard devi-
ation and entropy were correlated with poorer differen-
tiation [40]. For prognostication, Yoon et al. investigated
26 HER2 + gastric cancer patients before trastuzumab-
treatment. In their analysis, they found GLCM contrast,
variance, correlation and angular second moment (also
known as energy or uniformity) were associated with a
poorer survival [41]. In another study, Giganti et al.
showed in 56 patients, that first-order energy, entropy,
and skewness were significantly associated with a nega-
tive prognosis [42]. Giganti et al. also assessed pre
chemotherapy texture features derived from the late
arterial phase of 34 patients. They found entropy and
compactness were higher and uniformity lower in
responders [43]. No studies have assessed prognostica-
tion or response to therapy in gastric cancer.

MRI radiomics

To date there have been little data for MRI in this tumor
group as MRI is not performed routinely in the clinical
pathway. There have been some exploratory data of pre-
therapeutic ADC-maps of gastric cancer (Table 5). Liu
et al. found that first-order statistics skewness may differ
from node positive to node negative patients, and are
associated with pathological characteristics including
perineural and vascular invasion [44—47]. However, no
studies so far have investigated prognostication or re-
sponse assessment.

Discussion

To date 22 imaging studies have been published investi-
gating radiomic approaches in esophageal, esophago-
gastric, and gastric cancer, predominantly focused on
texture analysis. Preliminary data for esophageal and
esophago-gastric cancer suggest that there is potential for
radiomic approaches in improving patient stratification
for therapy. Eight 18F-FDG PET studies investigated
the feasibility of heterogeneity analysis for response
prediction (four studies with pre-therapy imaging only).
Among the most often reported significant feature was
GLCM entropy, reflecting the local randomness (irreg-
ularity) within the image, and where low GLCM entropy

B.-R. Sah et al.: Radiomics in esophageal and gastric cancer

represents a more homogeneous texture. The reported
accuracy for successful classification of therapy response
ranged from 0.7 to 1.0 (AUC).

Nearly all published studies incorporated “classical”
PET parameters e.g., SUV ., total lesion glycolysis and
metabolic tumor volume into predictive models. In gen-
eral radiomic parameters contributed to predictive
models and provided additional information to standard
parameters. Three CT studies of esophageal cancer have
also suggested that greater tumoral heterogeneity is
associated with poor response and outcome.

PET-studies investigating texture features as a prog-
nosticator were more mixed. Only two studies found
associations with overall-survival. The CT and MRI data
for gastric cancer were also varied. Two studies found
several features to be associated with survival time,
however, for some parameters, e.g., histogram entropy
and energy, it was surprising to find both parameters to
be associated in the same direction given what they
represent mathematically.

A challenge for interpretation of studies to date is the
use of retrospective datasets with different imaging
techniques across different scanners and/or institutions;
different methodologies for feature selection; the focus
on different feature sets; the lack of transparency in
methodology with the use of different in-house software;
as well as varying statistical and bioinformatics ap-
proaches for data analysis and interpretation. This has
been highlighted by researchers in the field [48].

Moving forward in the context of esophageal and
esophago-gastric cancer, it is important to improve our
data quality. Planned prospective studies incorporating
quality control is a step in the right direction to
improving data curation and ensuring prediction models
are fit for purpose and fulfill the promise of radiomics for
improving patient stratification.
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