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Abstract
Background and objective Treatment planning through the diagnostic dimension of theranostics provides insights into pre-
dicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. How-
ever, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking 
intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intel-
ligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET.
Methods 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retro-
spectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging 
were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-
organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correla-
tion. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; 
(2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity 
plots were applied to investigate the predicted absorbed dose map.
Results Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing 
in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ phar-
macokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise 
normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose 
guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). 
The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical 
optimal results of the organ-dose approach.
Conclusion Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosim-
etry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map.
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Introduction

Radiopharmaceuticals therapy (RPT) is a contemporary 
approach to radiation oncology, which aims to deliver the 
maximally destructive radiation dose via cancer-targeting 
radiopharmaceutical [1]. In the last decades, advances in 
molecular biology and pharmacology have furnished a wide 
range of radioactive substances targeting receptors in cancer 
cell [2]. Compared to traditional external beam radiotherapy 
(EBRT), RPT delivers radiation dose more extensively to 
the intended target tissues and has consequently already 
proven itself to be effective for the treatment of several 
metastatic or unresectable cancers through systematic and 
rationalized administration of the radiopharmaceutical [3].

However, concerns have been raised about the risk of 
inadequate balance between therapeutic dose and side 
effects in RPT. The European Council Directive (2013/59 
Euratom) mandates that RPT treatments should be planned 
according to the optimal radiation dose tailored for indi-
vidual patients, as has long been the case for EBRT [4]. 
The essential requirement of RPT treatment planning is to 
estimate the absorbed dose in advance of therapy [5]. The 
recent European Association of Nuclear Medicine (EANM) 
procedure guidelines for [177Lu]Lu-PSMA re-emphasized 
the value of dosimetry and iterated that exposures of target 
volumes are to be individually planned and verified.

Theranostics is a unique technology wherein the evalu-
ation of therapeutic agent distribution before treatment 
informs the treatment protocol [6]. In the context of PSMA 
RPT, this involves the pre-therapy positron emission tomog-
raphy (PET) imaging (e.g. [68Ga]Ga-PSMA) to determine 
eligibility for [177Lu]Lu-PSMA treatment [7]. Furthermore, 
post-therapy SPECT/CT serves to estimate tracer distribu-
tion and enable dosimetry, facilitating the determination of 
radiation dose for specific entities such as an organ, tumor, 
or even a single voxel [8].

Numerous studies have embraced the concept of ther-
anostics to predict dosimetry in RPT. One extensively 
explored approach involves physiologically based pharma-
cokinetic (PBPK) models, which elucidate the fundamental 
principles underlying the uptake process of pharmaceuti-
cals, including radio-labeled ligands for PET imaging and 
RPT [9]. For example, individualized PBPK model parame-
ters can be derived by pre-therapy PET/CT activity concen-
trations, planar scintigraphy, and tumor volumes, allowing 
for the individualization of [177Lu]Lu-PSMA-I&T ther-
apy [10]. Artificial intelligence (AI) in medicine has bur-
geoned over the past decade, with machine learning (ML) 
particularly holding promise for pre-therapy prediction of 
dosimetry [11]. Nonetheless, both PBPK-based predictions 
and our previously developed ML approach are limited to 
organ-level estimations and do not account for intra-organ 

heterogeneity, which is crucial for assessing organ toxicity 
during treatment planning. In the context of RPT, localized 
areas of high absorbed dose within an organ serve as indi-
cators of organ toxicity, rather than the overall organ dose 
[12]. Therefore, accurately predicting intra-organ hetero-
geneity before initiating therapy is essential for balancing 
treatment benefits and risks, as well as optimizing therapeu-
tic outcomes.

To address this issue, voxel-level dosimetry has been 
proposed for patient-specific dose assessment in tumors and 
organs-at-risk (OAR), aiming to determine the absorbed 
dose for each image voxel [13, 14]. Convolutional neu-
ral networks (CNNs), a form of deep learning (DL), have 
emerged as a powerful tool for image synthesis [15] and can 
be leveraged to predict voxel-wise absorbed dose map from 
pre-therapy PET imaging.

This study pursues two main objectives: (1) To investi-
gate the voxel-wise correlation between pre-therapy PET 
and the therapy dosimetry, thereby characterizing the intra-
organ heterogeneity; (2) To explore the feasibility of pre-
dicting voxel-wise dosimetry before therapy. We propose 
two strategies for prediction: (1) Organ-dose guided direct 
projection; (2) Introducing a novel CNN-based framework 
named 3D RPT DoseGAN to voxel-wise predict dosimetry. 
Both strategies are designed to bridge the gap between the 
distributions of pre-therapy PET imaging and post-therapy 
dose maps. The overarching aim of this work is to enhance 
treatment planning for RPT by facilitating accurate predic-
tions of voxel-wise dosimetry.

Materials and methods

Data acquisition

Retrospectively, 23 metastatic castration-resistant prostate 
cancer (mCRPC) patients treated with [177Lu]Lu-PSMA 
I&T RPT were included in our study. Only those cycles 
with [68Ga]Ga-PSMA-11 PET/CT directly before the treat-
ment and at least 3 post-therapeutic SPECT/CT dosimetry 
imaging and planar scintigraphy were selected. Totally, 48 
cycles of [177Lu]Lu-PSMA I&T were considered for this 
proof-of-concept study (22 first, 12 s, 6 third, and 8 fourth 
or further cycles). After application of approximately 7.4 
GBq (7.3 ± 0.3 GBq) [177Lu]Lu-PSMA I&T, SPECT/CT 
dosimetry imaging was performed at least between 30 and 
150 min, 24 h, and 6–8 days. The institutional review board 
of the Technische Universitiät München approved this 
study, and all subjects signed a written informed consent 
form. More detailed information of patient cohorts can be 
found in Table 1.
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Data preparation

We rigorously calibrated the SPECT images using the 
well-established approach by Halty [16], incorporating 
the whole-body planar image and leveraging the Hermes 
Hybrid Dosimetry 4.0 tool for assistance. Subsequently, the 
Hermes Hybrid Voxel dosimetry tool was utilized to gen-
erate absorbed dose maps based on the sequential SPECT 
dosimetry imaging. We utilized PMOD (version 4.1) for 
rigid registration between the CT from the pre-therapy 
PET/CT and the CT from the first time-point SPECT/CT, 
which served as the reference for registration during dose 
map generation, ensuring proper alignment of the PET and 
dose map. The image size for all the pre-therapy PET/CT, 
SPECT/CT, and dose map was standardized to 128 × 128 for 
each slice.

Investigation of voxel-wise correlation between pre-
therapy PET and absorbed dose map

Previous research has demonstrated a correlation between 
pre-therapeutic standardized uptake value (SUV) and 
absorbed dose at the organ level [17]. However, it is crucial 
to investigate this correlation at the voxel level to establish 
a foundation for accurate voxel-wise prediction. Therefore, 
we conducted a feasibility study to examine the correla-
tion between pre-therapy PET imaging and dose map. Our 
investigation encompassed both voxel values and heteroge-
neity, which were quantified using radiomics features [18], 
including Gray-Level Run-length Matrix (GLRLM) and 
Gray-Level Co-occurrence Matrix (GLCM). The correla-
tion was assessed using the Pearson correlation coefficient. 
All P-values were two-sided, and P < 0.025 was considered 
statistically significant.

Simulation to interpret the relation between pre-
therapy PET and therapy dosimetry

A simplified two-tissue compartment modeling [19] were 
employed to enhance our understanding of the correla-
tion between pre-therapy PET and post-therapy dose map 
(Fig. 1). The model incorporated two distinct sub-tissues and 

hypothesized corresponding kinetic parameters was used. 
Within each sub-tissue, a variation by gradually changing 
the parameters towards the center was introduced. For each 
voxel, the parameters were drawn from a normal distribu-
tion, using mean and standard deviation values derived from 
actual patient data.

Kinetic parameters kpij  and ktij  were considered, where 
kp  and kt  signify the pharmacokinetics of the PET tracer 
and therapy compound respectively. The indices i = [1 − 5] 
represent the kinetic parameters [k1, k2, k3, k4, V b] and 
j = [1, 2] represent the two sub-tissues. We hypothesized 
two potential pharmacokinetic relationships between the 
PET imaging tracer and therapy compound:

1) Homogenous pharmacokinetics: Consistent proportional-
ity exists between the PET imaging tracer and therapy 

compound across both sub-tissues.
kpi1

kti1
=

kpi2

kti2

2) Heterogenous pharmacokinetics: No proportional-
ity is present between the PET imaging tracer and therapy 

compound across the sub-tissues.
kpi1

kti1
�= kpi2

kti2

For each hypothesis, we applied two-tissue compartment 
modeling to compute the SUV value at a single time point 
and the total absorbed dose using the S value of 2.2e-04 
mGy/MBq/s for the left kidney cortex [20], derived from 
ICRP 110 reference phantoms [21]. We assumed the PET 
imaging tracer as [68Ga]Ga-PSMA-11 and the therapy com-
pound as [177Lu]Lu-PSMA I&T. Based on these simula-
tions, we examined the correlation between PET SUV and 
dose map using a heat scatter plot.

Pre-therapy prediction of absorbed dose map

Approach 1: organ-dose guided direct projection

We applied the same scheme as our previous developed 
organ-dose guided pre-therapy prediction for dosimetry 

Pre-therapy PET Tracer [68Ga]Ga-PSMA-11
Pre-therapy PET Dose (MBq) 118.4 ± 25.1
Therapeutic Radiopharmaceutical [177Lu]Lu-PSMA I&T
Therapeutic Dose (GBq) 7.3 ± 0.3
Number of Patients 23
Total Number of Cycles 48
Average Age (Year) 69 ± 7
Average Weight [37] 78.7 ± 9.9
3 Time Points of Post-therapy SPECT/CT 30–150 min, 24 h, 6–8d

Table 1 Demographic informa-
tion of patients’ data

 

1 3



European Journal of Nuclear Medicine and Molecular Imaging

of network architecture and training procedures can be 
found in Supplementary materials (Figure S1).

Evaluation

Evaluation based on physical metrics

To evaluate the prediction uncertainty of our 3D RPT 
DoseGAN, we measured the voxel-wise deviation between 
the predicted dose maps and the ground-truth maps. We 
employed Normalized Root Mean Squared Error (NRMSE) 
and Structural Similarity Index Measurement [23] as our 
evaluation metrics. To compare our predictions with 3D 
RPT DoseGAN to the organ-dose guided method, we manu-
ally segmented the OAR, and calculated the NRMSE and 
SSIM within OAR. Additionally, we measured the deviation 
of the mean absorbed organ dose using the mean absolute 

with ML-based methods [11]. This approach was developed 
using SUV features from PET imaging as input, with the 
corresponding dosimetry of the targeted organ as the ground 
truth. The PET imaging was rescaled based on the predicted 
organ dose to generate the dose map (Fig. 2).

Approach 2: deep learning-based voxel-wise prediction

Due to limited training samples, we adopted a patch-
based approach by extracting 3D image patches of size 
32 × 32 × 32 from each image, instead of using the entire 
3D image directly, to ensure robustness and reliability of 
the results. The objective of our model is to predict a dose 
map, from a pre-therapy PET image. Our proposed 3D RPT 
DoseGAN comprises two interconnected networks (Fig. 2), 
namely the generator network and discriminator network, 
which were initially introduced in [22]. Detailed description 

Fig. 1 Simulation illustrating the correlation between pre-therapy 
PET and dose map, underpinned by a two-tissue compartment model. 
This model imagines a simplified scenario involving two ideal sub-
tissues, with a predetermined pharmacokinetic relationship between 
the PET imaging tracer and the therapeutic compound. This pharma-

cokinetic relationship can be either homogenous (maintaining constant 
proportionality) or heterogeneous (without consistent proportional-
ity). Noticeably, a correlation between PET uptake and the accumu-
lated dose becomes apparent solely in scenarios with homogenous 
pharmacokinetics
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Results

Voxel-wise correlation between pre-therapy PET 
and absorbed dose map

Moderate correlations were identified between pre-ther-
apy PET and dose map. Figure 3 shows an exemplary 
scatter heatmap demonstrating the significant correlation 
between PET and dose map (P < 0.025). The mean correla-
tion coefficients (r) of voxel values within each OAR were 
0.77 ± 0.14 (mean ± std.) for the kidney, 0.50 ± 0.23 for the 
liver, and 0.58 ± 0.26 for the spleen. Additionally, Figure S2 

percentage error (MAPE). The ground-truth dose maps 
were considered as the reference.

Evaluation with dose volume Histogram

Dose volume histograms (DVHs) are commonly used in 
external-beam radiation therapy to summarize and char-
acterize dose distributions [24]. Accurate DVHs can help 
physicians improve the quality of a treatment plan [25]. 
Therefore, we also evaluated the accuracy of the DVHs gen-
erated from the predicted dose map using the coefficient of 
determination (R2) [26].

Fig. 3 Voxel-wise correlation between PET and absorbed dose map

 

Fig. 2 An illustration of our theranostics workflow
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The identity plot of an exemplary subject (Fig. 5) demon-
strated voxel-wise similarity between the ground-truth dose 
map and the dose map predicted by 3D RPT DoseGAN. The 
slopes of the identity lines for kidney, liver, and spleen were 
1.1, 0.6, and 1.3, respectively, indicating superior perfor-
mance compared to the organ-dose guided approach. Even 
after rescaling based on the mean dose, the theoretical opti-
mal results still exhibited smaller slopes. Statistically, the 
3D RPT DoseGAN outperformed the theoretical optimal 
results of the organ-dose guided approach across all organs 
in terms of both the slope of the fitting lines and the correla-
tion coefficient (Figure S5), with the mean improvement of 
slope 24.3% for kidney, 199.2% for liver and 137.1% for 
spleen.

Evaluation based on physical metrics

Our 3D RPT DoseGAN achieved a voxel-wise NRMSE 
of 1.7 ± 0.4% and SSIM of 0.94 ± 0.03 compared to the 
ground-truth dose map, the cross-validation results of the 
DoseGAN are illustrated in Figure S6. At the organ level, 
as illustrated in Figure S7, the 3D RPT DoseGAN outper-
formed the organ-dose guided method across all organs at 
various physical metrics. In particular, for the kidney, our 
3D RPT DoseGAN achieved an NRMSE of 0.8 ± 0.1% and 
an MAPE of 10.8 ± 8.4% compared to the ground-truth dose 
map, whereas the organ-dose guided approach attained an 
NRMSE of 1.7 ± 0.3% and an MAPE of 17.6 ± 16.1%.

demonstrated significant positive correlations of heteroge-
neity between pre-therapy PET and dose map (P < 0.025). 
The GLRLM had a mean correlation coefficient of 0.71, and 
the GLCM had a mean correlation coefficient of 0.68.

Interpretation of the correlation between pre-
therapy PET and absorbed dose map

The results of two-tissue compartment model simulation 
(Figure S3) indicated a significant positive correlation 
(r = 0.99) between PET SUV and dose map solely in scenar-
ios with homogenous pharmacokinetics. However, in cases 
where the pharmacokinetics differ, two correlation clusters 
(r = 0.96) were observed, and a greater variety of kinetic 
parameters resulted in a weaker correlation (r = 0.40).

Evaluation

Visual comparison of two pre-therapy prediction 
approaches

As confirmed by an exemplary visual reading in Fig. 4, our 
proposed approach demonstrated good agreement with the 
ground truth, exhibiting a similar dose distribution profile 
in organs at risk such as the liver and kidneys, while show-
ing slight overestimation of dose in the spleen. Furthermore, 
upon reviewing the entire test dataset, our board-certified 
nuclear medicine physicians confirmed the image quality of 
our proposed approach for potential clinical use.

Fig. 4 Pre-therapy PET images, absorbed dose map generated by Hermes Voxel-dosimetry tool (Ground Truth), and dose map predicted by organ-
dose guided method and our proposed 3D RPT DoseGAN are presented
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were 0.74 for the liver and 0.50 for the spleen, respectively. 
All R2 results of 3D RPT DoseGAN significantly outper-
formed the organ-dose guided approach (P < 0.025).

Discussions

This study aimed to characterize the intra-organ heterogeneity 
in pre-therapy PET and post-therapy dosimetry, and assess the 
feasibility of voxel-wise dosimetry prediction. Although prior 
research has demonstrated a correlation between pre-therapeutic 

Evaluation with dose volume histogram

Figure 6 shows the ground-truth and predicted DVH curves 
for each OAR as a plan evaluation example using the organ-
dose guided approach and 3D RPT DoseGAN. The R2 
values of the DVH revealed the better prediction accuracy 
of 3D RPT DoseGAN. Among all test cases, the kidney 
showed a strong linear correlation between predicted and 
ground-truth DVH data points, with mean R2 values of 0.92, 
indicating that the predicted DVH curve nearly overlapped 
the achieved DVH curve. The mean R2 values achieved 

Fig. 5 Identity plots of an exemplary subject depicting the correlation between ground-truth and predicted absorbed dose map
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instance, as shown in Fig. 3, poorer correlations were observed 
in the liver, possibly due to a larger variety of pharmacokinet-
ics in the sub-tissues. Additionally, although preliminary retro-
spective analyses indicate that dosimetry imaging could predict 
prostate-specific antigen (PSA) response [28], the prognostic 
imaging biomarker related to overall survival (OS) has not 
been fully evaluated [29]. Therefore, the voxel-wise predicted 
dose map can better assist the development of such biomarkers.

Our study developed a model with only 48 paired ther-
anostic companions, a sample size that may be suboptimal 
for robust deep learning development. Despite applying aug-
mentation techniques such as patching, the total number of 
cycles, which is 48, is still insufficient for the development of 
image synthesis tasks for DL. Additionally, patch-based inputs 
are highly correlated, which limits the information available 
for training. Although we attempted to reduce data correlation 
through random shuffling, a larger dataset would greatly ben-
efit the model in terms of robustness and accuracy. Moreover, 
the quality of the current dataset has diminished the advantages 
of voxel-wise dosimetry, as the spatial resolution and field of 
view of the dosimetry SPECT/CT are limited. We are currently 
collecting data from our own center using PET with improved 
sensitivity and resolution (Siemens Vision Quadra) and two 
different tracers (68Ga and 18F labeled PSMA). Additionally, 
dosimetry SPECT/CT data with a larger field of view, cover-
ing beyond the abdominal region, are being collected. This will 
enable the prediction of doses for more organs at risk, such as 
the salivary glands. Furthermore, with the availability of pre-
therapy dynamic PET data, models can be developed to predict 
series of SPECT. Alternatively, with post-therapy PET data, 
reinforcement learning techniques can be applied to optimize 
the developed models.

SUV and absorbed dose at the organ level [17], this correlation 
has not been explored at the voxel level. Given the spatially 
heterogeneous distribution of radiopharmaceuticals, result-
ing in uneven energy deposition, accurate characterization is 
essential in treatment planning. Our investigation unveiled a 
moderate correlation between the distribution of pre-therapy 
PET and dose map. Simulation results (Fig. 1&S3) indicated 
a significant positive correlation (r = 0.99) between PET SUV 
and absorbed dose, assuming proportional kinetic parameters 
for [177Lu]Lu-PSMA I&T and [68Ga]Ga-PSMA-11. The sub-
optimal correlation likely arises from differing kinetics in sub-
tissues within each organ, as demonstrated by two correlation 
clusters (r = 0.40) representing varying kinetic parameters of 
these sub-tissues.

The organ-dose guided direct projection requires solely the 
contours of targeted organs from pre-therapy PET imaging and 
the corresponding SUV features extracted from them. These 
processes can now be accurately performed using automated 
tools [27]. rendering this approach practical in real-world 
applications. Nevertheless, this method falls short in captur-
ing the dose distribution owing to intra-organ heterogeneity. 
In contrast, our proposed 3D RPT DoseGAN demonstrates 
superior prediction accuracy and effectively unveils this het-
erogeneity. This improvement can be attributed to the implicit 
extraction of tissue-specific kinetics by deep neural networks 
from pre-therapeutic PET, enabling the estimation of kinetics 
for therapeutic dosimetry. By bridging the gap in intra-organ 
theranostic heterogeneity, our 3D RPT DoseGAN plays a 
crucial role in determining the radiobiological effect of the 
treatment. However, it is essential to validate this hypothesis 
through further pre-clinical studies on a microscopic scale that 
may not be discernible with clinical imaging techniques. For 

Fig. 6 Dose volume histogram (DVH) were plotted to characterize dose distributions of predicted absorbed dose map of organ at risk
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implementation of dosimetry-guided treatment planning for 
RPT, leading to improved therapeutic efficacy, reduced adverse 
events, and ultimately better patient outcomes.
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