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Introduction

Brain functional and physiological plasticity is essential to 
combat dynamic environmental challenges, for survival and 
the wellbeing. This includes the potential seasonal patterns 
of dopamine signaling. For instance, in vivo imaging data 
in both healthy subjects [1] and patients [2] show increase 
of striatal dopamine synthesis in fall and winter. Dopamine 
transporter binding in the left caudate is lowered during 
dark seasons [3]. Also, preclinical studies suggest that lon-
ger photoperiod stimulates nucleus accumbens dopamine 
release in female mice [4]. Dopamine signaling plays an 
important role in seasonal breeding of animals [5] and, via 
interaction with the melatonin signaling, it affects circa-
dian rhythms [6, 7]. Further, dopamine regulates emotion, 
reward, and learning that demonstrate seasonal patterns, 
with learning ability, attention and positive emotions all at 
low levels during winter months [8–10]. Human feeding 
behavior, where the brain dopamine signaling also plays a 
crucial role [11], similarly demonstrates seasonal patterns 
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Abstract
Purpose Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhyth-
mic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capac-
ity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of 
the dopamine receptor signaling remains to be characterized.
Methods Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 
females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was 
used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex.
Results Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect 
was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of day-
length was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability.
Conclusions Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motiva-
tional processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, 
the effect of seasonality should be considered.
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with increased caloric intake of fats in fall or winter [12]. 
Detailed knowledge on how dopamine signaling adapts to 
seasonal rhythms is not only essential for understanding 
normal molecular brain plasticity, but also crucial in under-
standing psychiatric conditions with seasonally varying 
onset and severity, such as the seasonal affective disorders.

Brain dopamine signaling is primarily relayed through 
the D1 family and D2 family receptors (D2Rs), where the 
D2Rs are found with both post- and pre-synaptic expres-
sion. This indicates an additional role of D2Rs in receptor-
mediated feedback control in dopamine signaling. D2Rs are 
involved in both presynaptic dopamine release [13] and in 
regulation of dopamine synthesis [14]. For instance, D2R 
agonist inhibits tyrosine hydroxylase (TH) function, where 
TH action on L-DOPA is a rate-limiting step for dopamine 
synthesis [15]. Also, cAMP is known to induce expression 
of TH, and D2Rs inhibit the cAMP signaling [16]. Further, 
D2Rs may exhibit complementary interaction with dopa-
mine transporter, so that D2Rs enhance the velocity of 
dopamine synaptic reuptake [17, 18]. Therefore, rhythmic 
D2R functions potentially direct all steps of dopamine sig-
naling including its presynaptic synthesis and release, and 
extracellular clearance. Yet, potential seasonal patterns of 
D2R signaling remains to be characterized.

Here we analyzed a large historical dataset of healthy 
subjects’ brain PET scans (n = 291) measuring D2Rs (i.e., 
primarily the D2/3 receptors) with antagonist radioligand 
[11C]raclopride. We focused on the striatal and thalamic 
regions where this receptor is highly expressed and can be 
reliably measured with the used radioligand [19, 20]. Day-
length was used as a regressor to predict the regional D2R 
availability, and data were analyzed separately for left and 
right hemispheres. Prior findings show that dark seasons are 
associated with enhanced dopamine synthetic ability [1, 2] 
and also reduced amount of dopamine transporters [3]. This 
may indicate reduced amount of extracellular dopamine, 
despite of increased synthesis, and enhanced presynaptic 
control of dopamine release. Therefore, considering the 
autoreceptor role of D2Rs in a feedback control, we hypoth-
esized short daylength to be associated with increased 

striatal D2R availability, Fig. 1. A preprint version of the 
manuscript was originally reposited to bioRxiv.

Methods

Data

The data were 291 baseline [11C]raclopride scans from 
healthy control subjects (224 males and 67 females; age 
19–81 years) collected at Turku PET Centre between 2004 
and 2018. Distribution of local daylength at the time of the 
scan and age are illustrated in Fig. 2. For each subject, day-
length was calculated as the daytime plus civil twilight on 
the day when the PET image was acquired, based on geo-
graphic location of the Turku PET Center (Turku, Finland; 
latitude = 60.4518; longitude = 22.2666), as previously [21].

PET data acquisition and image processing

Antagonist radioligand [11C]raclopride binds to D2Rs, 
allowing reliable quantification of striatal and thalamic D2R 
availability [22]. Detailed information regarding technical 
properties of scanners and tracer injection information is 
found in supplementary Table S1 & S2. We included the 
following regions of interest (ROIs) as delineated based on 
the AAL atlas [23]: nucleus accumbens, caudate nucleus 
(caudate), putamen and thalamus, which were separately 
analyzed for left and right hemispheres.

Preprocessing was done using the Magia toolbox [24]. 
Tracer binding was quantified using the outcome measure 
binding potential (BPND), which is the ratio of specific bind-
ing to non-displaceable binding in tissue [25]. BPND was 
estimated using a simplified reference tissue model (SRTM) 
[26] with cerebellar gray matter as the reference region. 
Acquisition length was harmonized by including first 
52 min from each scan [20], independently of scan duration.

Statistical analysis

Data were analyzed using linear mixed effects regression 
with the R statistical software (version 4.3.0) and the lme4 

Fig. 2 Sex-specific distributions of age (A) and local daylength at the 
time of scanning (B). Dotted line shows the age cutoff (40 years) for 
the primary sample

 

Fig. 1 The autoreceptor model of D2/D3 receptor (D2R) availabil-
ity considering increased dopamine (DA) synthetic capability and 
reduced dopamine transporter availability (DAT) during dark seasons
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package. Because ageing influences D2R availability [27–
29], primary analysis was based on subjects younger than 
40 years old (primary analysis, n = 227). Findings based on 
the whole sample (n = 291) are presented in the supplemen-
tary data.

D2R BPND was modelled separately for each region of 
interest using fixed factors including daylength at scanning, 
age and sex; scanner types were used as the random inter-
cept. D2R BPND were log-transformed, while daylength and 
age were standardized in the statistical models. Because 
BMI is only weakly associated with BPND [29] and a large 
portion of the subjects lacked BMI data, it was excluded 
from the statistical models.

Voxel-level analysis

The data were analyzed at the voxel level using SPM12 
(Wellcome Trust Center for Imaging, London, UK, http://
www.fil.ion.ucl.ac.uk/spm). The normalized BPND images 
were entered into general linear models, where they were 
predicted with daylength. Age, sex and scanner types were 
entered into the models as nuisance covariates. Because 
[11C]raclopride binds selectively only in striatum and thala-
mus, the analysis was restricted to the high-binding sites 
by creating a single mask covering these regions (caudate, 
putamen, nucleus accumbens and thalamus). Statistical 
threshold was set at p < 0.05, FDR-corrected at cluster level.

Results

Regional analysis in the primary sample

The primary sample (n = 227) included 195 males and 
32 females. The mean age was 25.6 y (SD = 4.87 y, 
range = 18.82–39.47 y) and average daylength exposure was 
13.61 h (SD = 4.26 h, range = 7.7–23.25 h). More detailed 
information of the primary sample is found in supplemen-
tary Table S3.

Data revealed that daylength was linearly and nega-
tively associated with regional D2R availability (BPND) in 
most regions (Table 1; Fig. 3& Fig. 4). Age was negatively 

associated with D2R BPND, and male subjects had lower 
D2R BPND (Fig. 3) than females. Information of the full 
sample and the corresponding findings are found in supple-
mentary Table S4 & S5.

We compared the effect size (i.e., 95% CI) between day-
length, age and sex, Fig. 3. In the primary sample, every 
4.26 h (i.e., one standard deviation) increase of daylength 
was associated with a mean 2.8% drop of D2R BPND in the 
left caudate. In the same region, every 4.87 y (i.e., one stan-
dard deviation) increase of age was associated with a mean 
3.3% drop of D2R BPND. Corresponding results based on 
the full sample are found in Supplementary Figure S1.

Voxel-level analysis in the primary sample

We next run a complementary voxel-level analysis for the 
high-binding regions (striatum and thalamus). Similar as in 
the ROI analysis, daylength was found to be a significant 
predictor for striatal D2R BPND, Fig. 5.

Effect of daylength in the whole sample

Considering the impact of ageing on dopamine signaling 
[27–29], there is always a tradeoff between sample size and 
the allowed maximum age. In addition to a primary sample 

Hemisphere Region Beta 95% CI t p
Left Caudate -0.028 -0.042, -0.014 -3.86 0.00015***
Right Caudate -0.018 -0.032, -0.0033 -2.41 0.017*
Left Putamen -0.013 -0.025, -0.001 -2.11 0.036*
Right Putamen -0.012 -0.024, -0.000006 -1.95 0.053*
Left NACC -0.019 -0.036, -0.0024 -2.23 0.027*
Right NACC -0.016 -0.033, 0.0015 -1.78 0.077
Left Thalamus -0.016 -0.039, 0.0056 -1.46 0.15
Right Thalamus -0.0065 -0.028, 0.015 -0.60 0.55

Table 1 Effect of daylength 
on regional D2R BPND in the 
brain (uncorrected for multiple 
comparison)

 

Fig. 3 Effect sizes (i.e., point estimate and the 95% confidence 
interval) of daylength, age and sex (male) on D2R BPND in differ-
ent brain regions. L = Left, R = Right, Cau = Caudate, Put = Putamen, 
nacc = Nucleus accumbens, Tha = Thalamus
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the effect of daylength of D2R BPND retained across dif-
ferent groups, especially in the left caudate (Fig. 6 and 
Supplementary Figure S2). This accords with previous find-
ings that highlight the importance of the left caudate region, 
regarding both seasonal variation of dopamine transporter 
signaling [3] and dopamine-relevant etiology in seasonal 
affective disorders [30].

Discussion

Our main finding was that daylength modulated in vivo 
brain D2R availability in healthy humans. Specifically, 
striatal D2R availability was elevated in autumn-winter 
time when the days are short and lowered during the spring-
summer time when the days are long. This finding is based 
on, to our knowledge, the largest database of healthy human 

analysis, we also investigated how the effect of daylength 
survived a stepwise minimization of sample in accord to the 
allowed maximum age.

We analysed the effect of daylength in different groups 
where the whole sample was divided into 7 groups in accord 
to the allowed maximum age, Table 2. Results showed that 

Table 2 Daylength and age across groups defined by maximum age. Information of the primary sample are highlighted in bold
Groups Number of subjects

(female)
Age (y) Daylength
mean SD mean SD min max

All 291(67) 31.65 13.43 13.84 4.43 7.70 23.28
< 60 y 279(61) 30.07 11.19 13.73 4.40 7.70 23.28
< 50 y 252(43) 27.38 7.92 13.66 4.35 7.70 23.25
< 40 y 227(32) 25.26 4.87 13.61 4.26 7.70 23.25
< 35 y 213(27) 24.45 3.79 13.53 4.20 7.70 23.25
< 30 y 188(23) 23.41 2.6 13.44 4.17 7.70 23.25
< 25 y 135(10) 22.07 1.57 13.14 4.10 7.70 23.25

Fig. 5 Daylength was as significant predictor for D2R BPND in the stri-
atum. Data are thresholded at P < 0.05 with false discovery rate (FDR) 
cluster-level correction

 

Fig. 4 Association between regional D2R BPND and daylength in each ROI, separately for males and females. Red and blue lines show Least 
Squares regression lines, and their 95% confidence intervals are shaded
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during dark season, signifying that this increase most prob-
ably indicates enhanced presynaptic control of dopamine 
release. D2Rs are known as autoreceptors that modulate 
the presynaptic synthesis of dopamine [14–16], and the 
increased D2R signaling is to encounter the increased dopa-
mine synthetic capability. This is also supported by findings 
that the dopamine transporter binding in the left caudate is 
lower during dark seasons [3], as D2Rs may not only restrict 
dopamine release but also enhance transporter functions 
[17, 18]. Besides, the increased availability of D2Rs may 
further be mirrored by increased melatonin release during 
dark seasons, since melatonin is known to inhibit presynap-
tic dopamine release [39, 40].

However, one study using single photon emission com-
puted tomography with [123I]iodo-benzamide to measure 
dopamine D2/D3 receptor availability, shows that shorter 
rather than longer sunlight exposure is associated with 
reduced amounts of striatal receptors [41]. This study used 
data from low latitude regions where variation of daylength 
across seasons is small (i.e., around 4 h between longest and 
shortest days in local region), and the subjects are divided 
into two groups where unbalanced sex and smoker effects 
may also complicate the interpretation of the finding. Fur-
ther, reference tissue modeling of PET data in the study used 
the frontal lobe as a reference region and this may also com-
promise their conclusions.

The striatum is a key node for reward responses [42] and 
energy supply in the caudate may directly affect the feeling 
of satiation or hunger [43]. Given the role of striatal dopa-
mine signaling in feeding behavior, enhanced D2R signal-
ing in dark seasons may induce overeating [12]. Also, while 
this effect was observed in both hemispheres, larger effect 
in the left caudate may hint at a season-dependent lateral 
difference in the normal brain function, mirroring findings 
that patients with SADs show state-dependent lateral differ-
ences of EEG power and coherence during depressive epi-
sodes and following light-induced and summer remission 

D2R PET images. The pattern of seasonal change was the 
most consistent in the left caudate, aligning with previous 
studies showing that dark seasons are associated with low-
ered amount of dopamine transporter in the left caudate [3]. 
Also, patients with seasonal affective disorder (SAD) show 
lowered dopamine transporter binding in the left caudate 
[30], possibly indicating that dopamine signaling in the left 
caudate is linked with seasonal onsets of depression symp-
toms. The effect was also large: one standard deviation of 
daylength change (i.e., around 4 h) was associated with 
equal magnitude of D2R binding changes as 2–5 years of 
ageing in the left caudate. The effect of daylength on D2R 
was comparable in the datasets with only young and middle-
aged adults as well as in the data with full age range. This 
suggests that the impact of daylength is consistent across 
age cohorts. Altogether these data suggest that in future 
studies of D2R binding, especially in high-latitude regions, 
the effect of seasonality should be considered as it may con-
found the primary results.

Seasonality in the human brain physiology and par-
ticularly neurotransmission remains poorly characterized 
[31, 32]. There is evidence showing that dark seasons are 
associated with lowered postsynaptic serotonin receptor 
availability [33, 34] and probably increased serotonin trans-
porter binding [35, 36]. Clinical in vivo data also indicates 
a light-sensitive fluctuation in levels of cerebral monoamine 
oxidase A, an enzyme that degrades neurotransmitters 
including serotonin and dopamine [37]. Similarly, studies 
on neuropeptide signaling suggest that the endogenous opi-
oid signaling responds to seasonal rhythms [21, 38]. The 
present results on dopamine receptor signaling further high-
light the brain neurotransmission mechanism on seasonal 
patterns of cognitive and affective functions.

Previous studies of dopamine signaling using 18F-DOPA 
PET have found an increase in presynaptic synthesis of 
dopamine during autumn and winter [1, 2]. This comple-
ments our study showing increased D2R availability 

Fig. 6 Effect sizes for daylength, 
age and sex (male) on D2R BPND 
in the left and right caudate in 
different groups defined by maxi-
mum age. Plots of other ROIs 
are found in the supplementary 
Figure S2
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reward-related behaviors, elevated D2Rs may contribute to 
the elevated food seeking during dark seasons.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00259-
024-06715-9.
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