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Abstract
Background  The PHERGain study (NCT03161353) is assessing early metabolic responses to neoadjuvant treatment with 
trastuzumab-pertuzumab and chemotherapy de-escalation using a [18Fluorine]fluorodeoxyglucose-positron emission tomog-
raphy ([18F]FDG-PET) and a pathological complete response-adapted strategy in HER2-positive (HER2+) early breast cancer 
(EBC). Herein, we present RESPONSE, a PHERGain substudy, where clinicopathological and molecular predictors of [18F]
FDG-PET disease detection were evaluated.
Methods  A total of 500 patients with HER2 + EBC screened in the PHERGain trial with a tumor size > 1.5 cm by mag-
netic resonance imaging (MRI) were included in the RESPONSE substudy. PET[−] criteria entailed the absence of  ≥ 1 
breast lesion with maximum standardized uptake value (SUVmax) ≥ 1.5 × SUVmean liver + 2 standard deviation. Among 
75 PET[−] patients screened, 21 with SUVmax levels < 2.5 were randomly selected and matched with 21 PET[+] patients 
with SUVmax levels ≥ 2.5 based on patient characteristics associated with [18F]FDG-PET status. The association between 
baseline SUVmax and [18F]FDG-PET status ([−] or [+]) with clinicopathological characteristics was assessed. In addition, 
evaluation of stromal tumor-infiltrating lymphocytes (sTILs) and gene expression analysis using PAM50 and Vantage 3D™ 
Cancer Metabolism Panel were specifically compared in a matched cohort of excluded and enrolled patients based on the 
[18F]FDG-PET eligibility criteria.
Results  Median SUVmax at baseline was 7.2 (range, 1–39.3). Among all analyzed patients, a higher SUVmax was associ-
ated with a higher tumor stage, larger tumor size, lymph node involvement, hormone receptor-negative status, higher HER2 
protein expression, increased Ki67 proliferation index, and higher histological grade (p < 0.05). [18F]FDG-PET [−] criteria 
patients had smaller tumor size (p = 0.014) along with the absence of lymph node involvement and lower histological grade 
than [18F]FDG-PET [+] patients (p < 0.01). Although no difference in the levels of sTILs was found among 42 matched [18F]
FDG-PET [−]/[+] criteria patients (p = 0.73), [18F]FDG-PET [−] criteria patients showed a decreased risk of recurrence 
(ROR) and a lower proportion of PAM50 HER2-enriched subtype than [18F]FDG-PET[+] patients (p < 0.05). Differences 
in the expression of genes involved in cancer metabolism were observed between [18F]FDG-PET [−] and [18F]FDG-PET[+] 
criteria patients.
Conclusions  These results highlight the clinical, biological, and metabolic heterogeneity of HER2+ breast cancer, which 
may facilitate the selection of HER2+ EBC patients likely to benefit from [18F]FDG-PET imaging as a tool to guide therapy.
Trial registration  Clinicaltrials.gov; NCT03161353; registration date: May 15, 2017.
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Introduction

Human epidermal growth factor receptor 2-positive 
(HER2+) breast cancer (BC) is a clinically and biologi-
cally heterogeneous disease [1] characterized by the 
amplification of the ERBB2/HER2 gene and/or overex-
pression of its related kinase receptor protein [2]. This 
tumor subtype comprises around 15–20% of all BCs and 
has been associated with a high risk of recurrence and 
poor outcomes [3, 4].

HER2-targeted agents have radically improved the prog-
nosis of HER2+ early BC (EBC) offering the possibility to 
de-escalate standard chemotherapy in selected subgroups 
[5]. The neoadjuvant setting provides the best scenario for 
treatment de-escalation considering that patients achieving 
a pathological complete response (pCR) have favorable 
long-term outcomes in terms of disease-free survival and 
overall survival [6].

Several studies have investigated predictive factors of 
pCR to neoadjuvant treatment. Imaging tools that could 
guide the response to preoperative therapy are of great 
interest, mainly the potential utility of [18Fluorine]fluoro-
deoxyglucose ([18F]FDG)-positron emission tomography 
(PET). The association between early treatment response 
on ([18F]FDG-PET) and clinical outcomes has been evalu-
ated in patients with HER2+ BC in metastatic and neo-
adjuvant settings [4, 7–11]. These studies demonstrated 
that early metabolic evaluation using [18F]FDG-PET might 
identify HER2+ tumors with high anti-HER2 sensitivity 
and an increased likelihood of achieving a pCR on neoad-
juvant HER2 blockade [10–12].

PHERGain (NCT03161353) is an international, rand-
omized, open-label, phase II trial that aims to assess the 
efficacy of a chemotherapy-free strategy based on a dual 
HER2 blockade with trastuzumab-pertuzumab (+ endo-
crine therapy for hormone receptor [HR]-positive tumors) 
as neoadjuvant and adjuvant therapy in HER2+ EBC 
patients through an [18F]FDG-PET and pCR-adapted strat-
egy [5]. It is assessing whether [18F]FDG-PET along with 
the pathological response could identify tumors with high 
anti-HER2 sensitivity to avoid standard chemotherapy 
in subsequent cycles (neoadjuvant and adjuvant setting) 
in patients with an early [18F]FDG-PET response that 
achieved a pCR with exclusive dual HER2 blockade with 
trastuzumab-pertuzumab. For this purpose, breast lesions 
must be SUVmax ≥ 1.5 × SUVmean liver + 2 SD, an inclu-
sion criterion that was not met in a significant number of 
patients (screening failure).

The clinical, pathological, and molecular characteris-
tics of these screening failures need to be investigated in 
order to guide more adequate patient selection. Numerous 
studies have reported an association between tumor [18F]

FDG uptake in [18F]FDG-PET and both molecular sub-
types of BC, as well as clinicopathological characteristics 
[11, 13–22].

To investigate this, we designed the RESPONSE, a sub-
study of the PHERGain trial, in which we aimed to obtain 
information regarding the clinicopathological and molecular 
characteristics of tumors that can impact on the [18F]FDG-
PET evaluation of HER2+ tumors, and, therefore, on its abil-
ity of prediction (diagnosis/response). Here, we report the 
results of this subanalysis, which included all patients with 
HER2+ EBC screened in the PHERGain trial.

Material and methods

See the full version of the “Material and methods” section as 
supplementary material (references [5, 23–25]).

Our substudy included patients from the PHERGain trial 
(NCT03161353) [5] that had previously been untreated, 
HER2+ , stage I-IIIA, invasive and operable BC, with ≥ 1 
[18F]FDG-PET target breast lesions ≥ 1.5 cm by MRI or 
ultrasound at baseline. PET[+] criteria patients were those 
with SUVmax levels ≥ 2.5 based on the formula for breast 
lesions (SUVmax ≥ 1.5 × SUVmean liver + 2 standard devia-
tion [SD]), and their matched PET[−] counterparts had 
SUVmax levels ≥ 2.5. A visual comparison of two typical 
patients of each cohort is shown in Supplementary Fig. 1.

The objectives of this substudy were as follows: (1) to 
evaluate the association between SUVmax and PET[+] and 
PET[−] criteria at baseline with the clinicopathological fea-
tures in all screened patients with a tumor size > 1.5 cm by 
MRI (n = 500) and (2) to analyze differences in sTILs and 
gene expression using PAM50 (intrinsic subtyping and ROR 
scores) and Vantage 3D™ Cancer Metabolism Panel in a 
matched cohort of 21 PET[−] and 21 PET[+] patients.

This study was performed in accordance with guide-
lines of the International Conference on Harmonization and 
ethical principles outlined in the Declaration of Helsinki. 
Written informed consent was required before enrolment, 
and all participants agreed to study-specific procedures. 
Approvals from the following regulatory authorities and 
ethics committees were obtained: Comité Ético de la Inves-
tigación con Medicamentos del Hospital Arnau de Vilanova 
(Spain), Comité de Protection des Personnes EST-III Hôpital 
de Brabois (France), Ethikkommission der Medizinischen 
Fakultät Heidelberg (Germany), The Ethics Committee of 
the Institut Jules Bordet (Belgium), CEIC—Comissão de 
Etica para a Investigação Clinica, Parque Saude Lisboa 
(Portugal), Fulham Research Ethics Committee Charing 
Cross Hospital (United Kingdom), and Comitato Etico ASL 
Brindisi, Comitato Etico della provincia Monza Brianza, 
Comitato Etico Istituto Europeo di Oncologia e Centro Car-
diologico Monzino, Comitato Etico Val Padana, Comitato 
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Etico di Area Vasta Emilia Centro, and Comitato Etico 
dell’Area Vasta Emilia Nord (Italy).

Statistical analysis

In all screened patients of PHERGain trial with a tumor 
size > 1.5 cm by MRI, unadjusted and adjusted analyses 
were performed to assess the relationship between SUV-
max at baseline and [18F]FDG-PET status ([−] or [+]) with 
clinicopathological characteristics (age, tumor stage, tumor 
size, nodal status, HR status, HER2 immunohistochemistry 
status, carcinoma type, tumor grade, and Ki67 proliferation 
index).

Subsequently, we randomly selected 21 PET [−] cri-
teria patients with SUVmax levels < 2.5 among 75 PET 
[−] criteria patients screened. We matched them with 21 
patients with SUVmax levels ≥ 2.5 (PET[+] patients) based 
on patient characteristics previously associated with [18F]
FDG-PET status (tumor size, nodal involvement, and histo-
logical grade). PET[−] and PET[+] patients had the same 
tumor stage, nodal status, and histological grade in the 
matched analysis. PAM50 intrinsic subtyping, ROR scores, 
and cancer metabolism gene expression were compared 
according to [18F]FDG-PET status in the matched cohorts.

For all statistical analyses, p-value < 0.05 was considered 
statistically significant. Multiple testing issues with gene 
expression were controlled with a false discovery rate using 
a threshold of q-value < 5%. Results from overall correlative 
analyses should be considered descriptive because of the 
small number of samples and unadjusted sequential testing.

Results

Patients

All patients screened in the PHERGain trial with a tumor 
size > 1.5 cm by MRI were included in the RESPONSE 
substudy, resulting in a total of 500 patients. Extensive bio-
marker analysis (sTILs, ROR scores and molecular subtyp-
ing by PAM50, and cancer metabolism gene expression) was 
specifically performed in a matched cohort of 21 PET [−] 
and 21 PET [+] criteria patients. Figure 1 shows the patient 
disposition.

Among patients in this substudy, the median age was 52 
years (range, 20–83), 42.2% (211/500) had node-positive 
disease, 68.2% (341/500) had HR-positive tumors, and 
75.2% (376/500) had HER2 3+ tumors by immunohisto-
chemistry. Median SUVmax at baseline was 7.2 (range, 
1–39.3), and median tumor size by MRI was 33 mm (range, 
15.3–157) (Table 1).

Correlation between SUVmax at baseline 
and clinicopathological characteristics in all 
patients

SUVmax at baseline was higher in tumors with stage IIIA 
(p < 0.01), a diameter ≥ 2 cm (p < 0.01), lymph node involve-
ment (p < 0.01), HR-negative status (p = 0.032), higher 
HER2 protein expression (p < 0.01), increased Ki67 prolif-
eration index (p = 0.01), higher histological grade (p < 0.01), 
and ductal carcinoma type (p = 0.013) (Fig. 2).

Association between [18F]FDG‑PET status 
and clinicopathological characteristics in all 
patients

Median SUVmax at baseline was 2.7 (range, 1.0–4.41) and 
8.0 (range, 2.1–39.3) in PET[−] criteria (screening failures 
due to the lack of ≥ 1 breast lesion evaluable by [18F]FDG-
PET) and PET [+] criteria patients (included) (p < 0.01), 
respectively. Median tumor size by MRI was 32 mm (range, 
16–100) and 33 mm (range, 15.3–157) in PET [−] and PET 
[+] criteria patients (p = 0.231), respectively (Table 1).

In an unadjusted analysis, PET [−] criteria  patients 
showed more early-stage tumors (p < 0.001), decreased 
tumor size (p = 0.014), absence of lymph node involvement 
(p < 0.01), more non-ductal histology (p = 0.013), and lower 
histological grade (p < 0.01) (Table 1).

Fig. 1   Patient disposition
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Using an adjusted analysis, we selected patient’s char-
acteristics more likely to predict [18F]FDG-PET status to 
match PET [−] and PET[+] criteria patients. PET [−] cri-
teria patients had a lower tumor stage (odds ratio (OR) 3.0, 
95% CI 1.1–4.1; p = 0.014), smaller tumor size (OR 2.2, 
95% CI 1.1–4.1; p = 0.014), absence of nodal involvement 
(OR 4.2, 95% CI 2.2–8.7; p < 0.01), and lower histologi-
cal grade (OR 0.32, 95% CI 0.16–0.6; p < 0.01) (Table 1).

sTILs, PAM50 intrinsic subtyping and ROR scores, 
and cancer metabolism gene expression according 
to [18F]FDG‑PET status in matched cohorts

After matching for tumor size, lymph node involvement, 
and histological grade, differences in sTILs and gene 
expression by PAM50 (intrinsic subtyping and ROR 
scores) and Vantage 3D™ Cancer Metabolism Panel were 

Table 1   Clinicopathological characteristics (analysis of the entire population and by [18F]FDG-PET status)

Percentages may not total 100% due to rounding
G grade, HER human epidermal growth factor receptor, HR hormone receptor, IHC immunohistochemistry, MRI magnetic resonance imaging, 
SUVmax maximum standardized uptake value

Characteristics All patients (N = 500) PET [−] criteria 
(N = 72)

PET[+] criteria 
(N = 428)

Unadjusted OR (95% CI), 
p-value

Adjusted OR (95% CI), 
p-value

Age in years, median 
(range)

52 (20–83) 52 (36–83) 51 (20–82) 1 (0.99–1.04), p = 0.134 1 (0.99–1.04), p = 0.170

Tumor size by MRI in 
millimeters, median 
(range)

33 (15.3–157) 32 (16–100) 33 (15.3–157) 0.99 (0.98–1), p = 0.231 1 (0.99–1.01) p = 0.982

Tumor stage; n (%) 5.2 (2.9–9.0) 3.0 (1.6–5.5)
  I 75 (15.0) 28 (38.9) 47 (11.0) p < 0.001 p = 0.014
  II 355 (71.0) 40 (55.6) 315 (73.6)  -  -
  IIIA 70 (14.0) 4 (5.6) 66 (15.4)  -  -

Tumor size (T); n (%) 2.2 (1.1–4.1) 2.0 (1.0–3.9)
  T1 65 (13.0) 16 (22.2) 49 (11.4) p = 0.014 p = 0.036
  T2 353 (70.6) 46 (63.9) 307 (71.7) - -
  T3 82 (16.4) 10 (13.9) 72 (16.8) - -

SUVmax at baseline, 
median (range)

7.2 (1–39.3) 2.7 (1–4.41) 8.0 (2.1–39.3) 0.18 (0.11–0.26), p < 0.01 0.17 (0.1–0.25), p < 0.01

Nodal status (N); n (%) 4.9 (2.6–10) 4.2 (2.2–8.7)
  N0 289 (57.8) 61 (84.7) 228 (53.3) p < 0.01 p < 0.01
  N1 211 (42.2) 11 (15.3) 200 (46.7) - -

HR status; n (%) 1.2 (0.7–2) 0.8 (0.5–1.6)
   [ −] 159 (31.8) 21 (29.2) 138 (32.2) p = 0.604 p = 0.651
   [ +] 341 (68.2) 51 (70.8) 290 (67.8) - -

HER2 IHC status; n (%) 0.7 (0.4–1.1) 0.87 (0.5–1.6)
  2 +  124 (24.8) 23 (31.9) 101 (23.6) p = 0.131 p = 0.641
  3 +  376 (75.2) 49 (68.1) 327 (76.4) - -

Ductal carcinoma, n (%) 0.46 (0.26–0.82) 0.57 (0.31–1.1)
  No 89 (17.8) 21 (29.2) 68 (15.9) p < 0.01 p = 0.069
  Yes 411 (82.2) 51 (70.8) 360 (84.1) - -

Tumor grade; n (%) p < 0.01 p < 0.01
  G1-2 208 (41.6) 40 (55.6) 168 (39.3) - -
  G3 199 (39.8) 13 (18.1) 186 (43.5) 0.29 (0.15–0.55) 0.34 (0.17–0.65)
  Gx 93 (18.6) 19 (26.4) 74 (17.3) 1.08 (0.58–1.97) 1.17 (0.60–2.21)

Ki67 proliferation index; 
n (%)

0.69 (0.38–1.3) 0.89 (0.47–1.8)

  ≤ 20 81 (16.2) 15 (20.8) 66 (15.4) p = 0.251 p = 0.739
  > 20 419 (83.8) 57 (79.2) 362 (84.6) - -
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analyzed in a cohort of 21 PET[−] and 21 PET[+] crite-
ria patients (Table 2 and Fig. 1).

No differences in the level of sTILs was found among 
matched PET [−] and [+] criteria patients with a median 
score of 10% and 15% in PET [−] and PET[+] crite-
ria  patients (p = 0.73), respectively (Fig.  3). The per-
centages of patients in the different levels of sTILs were 
the same regardless of the [18F]FDG-PET status ([−] 
or [+]): 66.7% (14/21) of the patients had low sTILs 
(sTILs < 30%), 28.6% (6/21) intermediate sTILs (sTILs 
30–75%), and 4.8% (1/21) high sTILs (sTILs ≥ 75%).

PET [−] criteria patients had slightly lower ROR-S 
scores than PET[+] criteria  patients (median, 63.9 
(range 11.3–75.7) vs. 64.2 (range, 39.7–78)) and a lower 
proportion of HER2-enriched subtype (66.7% (14/21 
PET [−] criteria) vs. 81.0% (17/21 PET[+] criteria) by 
PAM50 (p < 0.05). No significant differences for ROR-P 

scores were observed according to [18F]FDG-PET status 
(p = 0.63) (Fig. 3).

Genes involved in glucose metabolism (DLAT, IDH2, 
LDHA, PGK1, PGLS, and TPI1), hypoxia signaling 
(HIF1A), and carbon metabolism (SLC7A5 and SLC16A3) 
were under-expressed in PET [−] criteria patients, whereas 
genes involved in the mTOR pathway (AKT2) and growth 
factor receptor (FLT3) were overexpressed compared to 
PET[+] patients (false discovery rate q < 0.05) (Fig. 4).

Discussion

The PHERGain trial [5] only included patients whose breast 
tumors were ≥ 1.5 cm in diameter (MRI or ultrasound) in 
order to reduce screening failures due to the absence of 
evaluable breast lesions by [18F]FDG-PET. However, 

Fig. 2   Association between SUVmax at baseline and clinicopathological characteristics
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despite this inclusion criterion and the aggressive behavior 
of HER2+ tumors, around 15% of the patients were excluded 
as a result of the lack of  ≥ 1 breast lesions evaluable by 
[18F]-FDG-PET [26].

[18F]FDG-PET response after two cycles of treatment was 
critical for treatment decision-making in patients included 
in the group of the PHERGain trial not receiving chemo-
therapy [5]. The adaptive design of this trial, therefore, made 
it necessary to select patients with breast lesions identified 
by [18F]FDG-PET, defined as SUVmax ≥ 1.5 × SUVmean 
liver + 2 SD. This strict requirement is the main factor 

responsible for this significant rate of screening failures. For 
this reason, a better understanding of clinical and molecular 
determinants of [18F]FDG-PET disease detection could help 
to better select patients for studies that use [18F]FDG-PET 
as assessment method.

The median SUVmax at baseline in our entire analyzed 
population was 7.2 (range 1–39.3), which is similar to previ-
ous studies including patients with HER2+ tumors [19, 27]. 
Additionally, our findings are in line with previous studies 
in patients with EBC that have demonstrated a relationship 
between SUVmax and several classical clinicopathological 

Table 2   Clinicopathological 
and biological characteristics 
for matched samples by [18F]
FDG-PET status

Percentages may not total 100% due to rounding
G grade, HER human epidermal growth factor receptor, HR hormone receptor, IHC immunohistochemis-
try, ROR risk of recurrence, SUVmax maximum standardized uptake value

Characteristics PET [−] criteria (N = 21) PET [+] criteria (N = 21) p-value

Age in years, median (range) 54 (40–65) 53 (30–77) 0.865
Tumor size (T); n (%)

  T1 9 (42.9) 9 (42.9) 1
  T2 11 (52.4) 11 (52.4)  -
  T3 1 (4.8) 1 (4.8)  -

SUVmax at baseline, median (range) 2.1 (1–2.5) 9.2 (5.6–21.7)  < 0.001
Nodal status (N); n (%)

  N0 15 (71.4) 15 (71.4) 1
  N1 6 (28.6) 6 (28.6)  -

Tumor grade, n (%)
  G1 1 (4.8) 1 (4.8) 1
  G2 14 (66.7) 14 (66.7)  -
  G3 5 (23.8) 5 (23.8)  -
  Gx 1 (4.8) 1 (4.8)  -

Ductal carcinoma, n (%)
  No 2 (9.5) 2 (9.5) 1
  Yes 19 (90.5) 19 (90.5)  -

HR status; n (%)
   [ −] 8 (38.1) 13 (61.9) 0.182
   [ +] 13 (61.9) 8 (38.1)  -

HER2 IHC status; n (%)
  2 +  7 (33.3) 4 (19)  0.45
  3 +  14 (66.7) 17 (81)  -

ROR (subtype only); n (%)
  Low 5 (23.8) 1 (4.8) 0.289
  Medium 3 (14.3) 3 (14.3)  -
  High 13 (61.9) 17 (81)  -

ROR (subtype + proliferation); n (%)
  Low 4 (19) 2 (9.5) 1
  Medium 5 (23.8) 7 (33.3)  -
  High 12 (57.1) 12 (57.1)  -

Ki67 proliferation index; n (%)
  ≤ 20 13 (61.9) 14 (66.7) 1
  > 20 8 (38.1) 7 (33.3)  -
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characteristics such as clinical stage [14], HR status [15, 
16], Ki67 proliferation index [11, 17], tumor size [18], and 
histological grade [19–21] regardless of BC subtype. Nev-
ertheless, our results are of particular interest because they 
were specifically generated in patients with HER2+ tumors.

One of the main objectives of this substudy was the 
analysis of the differences in sTILs and gene expression 
by PAM50 (intrinsic subtyping and ROR scores) and Van-
tage 3D™ Cancer Metabolism Panel in a matched cohort 
of excluded and enrolled patients in the PHERGain trial 

based on the [18F]FDG-PET inclusion criteria. TILs are pre-
dictive biomarkers of response to neoadjuvant therapy in 
patients with HER2+ tumors [28, 29]. Interestingly, we did 
not find differences in the levels of sTILs among matched 
PET [−]/[ +] criteria patients.

Compared with PET[+] criteria patients, PET [−] crite-
ria patients had lower ROR scores, a prognostic factor that 
has been considered superior to other classical clinicopatho-
logical characteristics [30]. Lower ROR scores are associ-
ated with a reduced risk of BC relapse in patients with HR+/

Fig. 3   Stromal tumor-infil-
trating lymphocytes, HER2-
enriched subtype, and risk of 
recurrence scores according to 
[18F]FDG-PET status (− / +)

Fig. 4   Box plot of cancer metabolism gene expression according to [18F]FDG-PET status (− / +)
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HER2- EBC [30]. However, the prognostic role of ROR 
scores in HER2+ tumors remains undetermined.

Our results also showed a higher proportion of PAM50 
HER2-enriched tumors and higher levels of HER2-protein 
expression by immunohistochemistry in PET[+] crite-
ria patients. HER2-enriched subtype and HER2 3+ tumors 
by immunohistochemistry appeared to be associated with 
higher pCR rates following anti-HER2-based regimes. These 
findings are consistent with the capacity of [18F]FDG-PET to 
predict a pCR to neoadjuvant treatment with HER2-targeted 
therapies [31].

Regarding the gene under-expression we observed in 
PET[−] criteria patients, with low [18F]FDG avidity, the 
lower expression of HIF1A was in concordance with the 
higher SUVmax detected in patients with BC with high HIF-
1A expression [32]. On the other hand, the reduction of glu-
cose metabolism, suggested by the lower expression of genes 
involved in glucose metabolism, could be justified with the 
fact that tumor cells can switch their metabolic pathway 
from glucose to other nutrients such as glutamine [33, 34].

Our substudy has five main limitations worth noting. 
First, its exploratory nature; the results reported here should 
be interpreted with caution and considered hypotheses-
generating. Second, there was a small sample size in the 
matched cohorts of PET [−] and PET[+] criteria patients (21 
patients each); analyses with a larger sample size would have 
provided more consistent results. Third, we have tested many 
variables in a small population and the use of a false dis-
covery rate only partially addresses this limitation. Fourth, 
matching could decrease external validity because the con-
trols become more similar to the cases than expected in the 
target population. Fifth, due to the high partial volume effect 
of [18F]FDG-PET, the SUV of tumor lesions < 2 cm may be 
artificially reduced.

Conclusions

Our findings highlight the clinical, biological, and metabolic 
heterogeneity of HER2+ breast cancer, which may facilitate 
to select HER2+ EBC patients likely to benefit from [18F]
FDG-PET imaging as a tool to guide therapy.
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