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Abstract
Purpose Functional positron emission tomography (fPET) with  [18F]FDG allows quantification of stimulation-induced 
changes in glucose metabolism independent of neurovascular coupling. However, the gold standard for quantification requires 
invasive arterial blood sampling, limiting its widespread use. Here, we introduce a novel fPET method without the need for 
an input function.
Methods We validated the approach using two datasets (DS). For DS1, 52 volunteers (23.2 ± 3.3 years, 24 females) performed 
Tetris® during a  [18F]FDG fPET scan (bolus + constant infusion). For DS2, 18 participants (24.2 ± 4.3 years, 8 females) 
performed an eyes-open/finger tapping task (constant infusion). Task-specific changes in metabolism were assessed with 
the general linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the Patlak plot as 
reference. We then estimated simplified outcome parameters, including GLM beta values and percent signal change (%SC), 
and compared them, region and whole-brain-wise.
Results We observed higher agreement with the reference for DS1 than DS2. Both DS resulted in strong correlations between 
regional task-specific beta estimates and CMRGlu (r = 0.763…0.912). %SC of beta values exhibited strong agreement with 
%SC of CMRGlu (r = 0.909…0.999). Average activation maps showed a high spatial similarity between CMRGlu and beta 
estimates (Dice = 0.870…0.979) as well as %SC (Dice = 0.932…0.997), respectively.
Conclusion The non-invasive method reliably estimates task-specific changes in glucose metabolism without blood sampling. 
This streamlines fPET, albeit with the trade-off of being unable to quantify baseline metabolism. The simplification enhances 
its applicability in research and clinical settings.

Keywords Brain metabolism · Functional PET (fPET) · Quantification · Percent signal change · Cerebral metabolic rate of 
glucose (CMRGlu)

Introduction

Functional positron emission tomography (fPET) using the 
radiolabeled glucose analogue 2-[18F]-fluorodeoxyglucose 
 ([18F]FDG) holds significant promise for investigating the 
dynamics of brain metabolism [1]. Using constant infusion 
of the radiotracer, fPET enables the assessment of changes  
in metabolic demands in response to external stimulation, 
such as cognitive tasks [2–4] within a single PET scan.  
Furthermore, these dynamics are independent from cerebral 
blood flow and neurovascular coupling [2] and the neuronal 
activation based on glucose metabolism can be absolutely 
quantified [3]. Moreover, the widespread availability of  [18F] 
FDG and the compatibility with standard PET scanners make 
fPET an easily accessible tool for functional neuroimaging. 
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However, a major drawback limiting its widespread use  
is the need for arterial blood samples during the scan to 
determine the cerebral metabolic rate of glucose (CMRGlu).

The gold standard for absolute quantification in PET 
imaging relies on the arterial input function (AIF). 
However, arterial cannulation has inherent disadvantages. 
These include the need for skilled physicians, increased 
experimental complexity as well as patient discomfort or 
pain and in rare cases potential complications [5]. These 
limitations raise the question of whether task-specific 
changes in glucose metabolism using fPET can be obtained 
without arterial blood sampling.

Several alternatives to obtain an AIF have been proposed 
for fPET. Venous samples [2, 3, 6] have been shown to 
yield sufficiently accurate quantification if the radiotracer is 
administered only via constant infusion [3]. However, such 
a protocol results in low signal-to-noise ratio (SNR), which, 
among others, affects accuracy in movement correction and 
quantification of task effects. The use of an initial bolus 
resolves these issues [7]. However, by adding a bolus, 
venous samples may not be adequate anymore due to a delay 
in the equilibration between blood pools and the subsequent 
underestimation of the area under the curve. The use of 
population-based input functions [8] is another option that 
avoids blood sampling. However, the assumption of equal 
pharmacokinetics across participants makes the approach 
susceptible to individual variation [9]. Image-derived 
input functions (IDIFs) represent another option [10], but 
robust extraction from large blood pools may be limited to 
large field of view PET scanners. In sum, the mentioned 
alternatives to AIF offer easier applicability at the expense 
of accuracy, but may not fully eliminate the need for blood 
sampling.

To resolve this issue, we evaluate the feasibility of 
quantifying task-induced metabolic demands using  [18F]
FDG fPET without any blood sampling. We hypothesize 
that the input function can be omitted when task-specific 
activation is the primary outcome of interest. This is because 
the general linear model (GLM) readily separates task 
effects from baseline metabolism, thus yielding task-specific 
estimates for activation. By eliminating the requirement for 
blood sampling, we aim to simplify both acquisition and 
processing thus increasing the accessibility of fPET.

Materials and methods

Mathematical rationale

Our proposition that the GLM may be adequate for 
evaluating task-specific changes in glucose metabolism 
is grounded in the following mathematical rationale. For 
irreversibly binding radiotracers such as  [18F]FDG, the ratio 

of tracer concentration in tissue  CT to that in plasma  CP at 
a certain time point t can be characterized using the Patlak 
plot [11]:

The net influx constant Ki is the estimated outcome 
parameter, which is determined as the slope of the Patlak 
plot when it approaches linearity after t* [11]. The absolute 
amount of CMRGlu is then determined by:

LC refers to the lumped constant and  GluP represents 
the concentration of glucose in plasma. Rearrangement of 
Eq. (1) yields

Assuming that intercept * CP <  < CT, the relation reduces 
to

This assumption is particularly true for a small bolus and 
after linearity of the Patlak plot has already been reached. 
The parameter in Eq.  (4) is identical to the previously 
described “fractional uptake of  [18F]FDG normalized by 
plasma activity” [12]. This normalization stems from the 
inherent mathematical assumptions made while deriving 
the relation. Furthermore, in the relationship between task 
effects and baseline metabolism, the integral of the plasma 
concentration also cancels out. This implies that the ratio 
between the tissue concentrations is directly proportional 
to the relative changes in Ki (and thus relative changes in 
CMRGlu, see Eq. (2))

In this equation, β represents the output of the GLM 
when the respective regressors are used for modeling.  
Consequently, the ratio of the GLM’s output modeling task 
and baseline effects should also vary proportionally to the 
relative changes in CMRGlu. Since the multiplication of  
a beta value with its corresponding regressor represents a 
time course, we estimated its slope for the computation of 
percent signal changes (%SC, see “Surrogate parameters”). 
This approach was chosen because different regressors were 
used for task and baseline in the GLM, which implies that 
simple beta values cannot be directly compared.

(1)
CT (t)

CP(t)
= Ki

∫ t

0
CP(�)d�

CP(t)
+ intercept

(2)CMRGlu = Ki
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∗ 100
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In vivo datasets

In order to test the hypothesis, we analyzed two separate 
datasets with different designs (Supplementary Fig. 1), 
tasks, and activated regions of interest (ROIs). For both 
datasets, similar methods of preprocessing and statistical 
analysis were applied. A schematic overview of the proce-
dure is given in Fig. 1 and further details are provided in the 
experimental design and tasks section of the supplement.

The first dataset (DS1) includes simultaneous fPET/
fMRI examinations in 52 healthy participants performing 
a challenging visuo-spatial motor coordination task in two 
levels of difficulty (modified version of Tetris®). After 
an initial baseline of eight minutes, each task level was 
performed two times and six minutes each, followed by five 

minutes of rest (Supplementary Fig. 1). Detailed descriptions 
of the design, acquisition and analysis are provided in our 
previous work [13], below and in the supplement.

The second dataset (DS2) comprises data of 18 healthy 
participants. The fPET/fMRI scan started with a baseline 
of 10 min. Afterwards, participants either tapped their right 
thumb to their other fingers (10–20 min and 60–70 min) 
or opened their eyes (35–45 min and 85–95 min). Details 
can be found in our previous work [14], below and in the 
supplement.

Participants

DS1 includes 52 healthy participants (23.2 ± 3.3 years, 24 
females, all right-handed), who were partly also included 

Fig. 1  Schematic workflow of 
the preprocessing and analysis 
routine. After data acquisition 
and preprocessing, data were 
entered into a general linear 
model to separate task effects 
from baseline metabolism. Four 
different outcome parameters 
were then calculated: (i) the 
plain β-maps obtained from the 
general linear model and (ii) % 
signal change relative to base-
line. Absolute quantification 
with the arterial input function 
and the Patlak plot yielded (iii) 
maps of cerebral rate of glucose 
metabolism (CMRGlu) and (iv) 
% signal change thereof
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in previous work [13, 15–17]. DS2 comprises 18 healthy 
participants’ data (24.2 ± 4.3 years, 8 females, all right-
handed), of which 15 had previously contributed to another 
study [3]. See supplement for details.

PET data acquisition and processing

All fPET measurements were performed on the same fully 
integrated PET/MR system (Siemens mMR Biograph, 
Erlangen, Germany). Administration of  [18F]FDG was done 
according to a bolus plus constant infusion protocol for 
DS1 and with constant infusion only for DS2. This enables 
the assessment of the performance of both administration 
protocols. Data pre-processing of both studies’ fPET data 
was done with SPM12 and included motion correction, 
spatial normalization to MNI-space and smoothing. For 
both datasets manual arterial blood samples were collected 
to construct the AIF. See supplement for details.

Quantification of CMRGlu

In order to analyze task activation within the two datasets, 
a general linear model (GLM) was applied. Both models 
included one regressor for baseline, one for movement 
artifacts and two regressors associated with task activation. 
For DS1, these regressors referred to the two levels of task 
difficulty. For DS2, they represented the separate tasks of 
eyes-open and right finger-tapping (see supplement).

For the calculation of the respective influx constants 
 (Ki), the relevant Patlak plots were constructed and their 
respective slopes were identified as in Eq. (1). The start of 
the linear fit for the Patlak plot was set to approximately a 
third of the total scan time for both datasets, t* = 15 min for 
DS1 and t* = 30 min for DS2. The absolute quantification 
of CMRGlu was conducted in accordance with Eq. (2) and a 
value for the LC of 0.89, in both cases [18, 19]. The amount 
of CMRGlu was quantified in units of µmol/100 g/min.

Surrogate parameters

Our primary goal was to obtain a metric that enables the 
identification of task-specific changes in glucose metabolism 
without invasive blood sampling. Thus, we compared four 
different parameters of interest: (i) the absolutely quantified 
values for CMRGlu (see Eq. (2)), used as the gold standard, 
(ii) the plain beta values calculated by the GLM, and 
(iii–iv) the percent signal change (%SC) of both quantities 
in relation to the baseline condition (see Eq. (5)). Thereby, 
we established a relationship between the beta values and 
CMRGlu as well as %SC of betas with %SC of CMRGlu. 
The %SC of CMRGlu was calculated as the ratio of task 
effects to baseline metabolism multiplied by 100. The %SC 
for the beta values cannot be directly retrieved from the 

GLM output since the betas are associated with different 
regressors. Consequently, the slopes of the time activity 
curves were estimated (in kBq/frame), represented by 
beta*regressor separately for task and baseline metabolism 
(see Eq. (5)). For the extraction of the slope of the baseline 
TAC, a linear fitting procedure was performed. The fit was 
applied for a similar time interval as for the Patlak plots. 
Specifically, for DS1 the linear fit started from minute 16 
after the beginning of the radiotracer application until the 
end of the PET scan. For DS2, the interval began later due 
to the absence of an initial bolus, specifically from 30 min 
after the beginning until the end. Since the task regressors 
were modeled as ramp functions with a slope of 1 kBq/
frame, the beta values for the tasks are already equivalent 
to the slope we aimed to extract. Hence, %SC of betas was 
then calculated as the ratio of the task and baseline slopes 
multiplied by 100.

Furthermore, two different baseline metrics (BL, BL2) 
were considered. Notably, for BL and BL2, no %SC data 
could be calculated, as the percent signal change inherently 
refers to the baseline condition itself. BL simply represents 
the beta value of the baseline condition as calculated by 
the GLM. BL2 was determined by calculating the slope of 
the curve given by multiplying the baseline regressor with 
the corresponding baseline beta values, i.e., a linear fit to 
the baseline beta * baseline regressor. We opted for the 
second baseline metric because this calculation also enters 
the determination of %SC of the beta values, allowing for a 
direct comparison. Furthermore, BL2 takes the individual 
variation in the baseline regressor into account and is 
therefore comparable across participants. It is worth noting 
that BL is also identical to standardized uptake value ratios 
(SUVR) with reference to global tracer uptake. That is, 
regional tracer uptake is represented by regional baseline 
beta * baseline regressor [3] and since the baseline regressor 
represents the global tracer uptake, this cancels out when 
computing the ratio.

Statistical analysis

The ROI analysis focused on the respective regions of 
significant activation (all p < 0.05 FWE corrected) for each 
dataset as obtained by group-level statistical analysis in our 
previous work. More precisely, for DS1, the regions selected 
for further investigation were the frontal eye field (FEF), the 
intraparietal sulcus (IPS), and the secondary occipital cortex 
(Occ). These were identified to be active in our previous 
work across three different functional approaches (fPET, 
BOLD, ASL) [16]. For DS2, the relevant ROIs were the 
primary occipital cortex (V1) as well as the primary motor 
cortex (M1), since these displayed significant task activation 
in our previous study [14]. Outcome parameters were then 
extracted for these ROIs and linear regression analysis was 
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then performed for each pair of parameters using MATLAB 
R2018b.

For the voxel-wise analysis, group-level statistics were 
computed in SPM12 and a one-sample t-test was performed 
for each of the four parameters. Activation maps were 
extracted (all p < 0.05 FWE corrected cluster level following 
p < 0.001 uncorrected voxel level) and activation patterns 
across different approaches were compared using the Dice 
coefficient. For DS1, we extracted respective activation 
maps for the hard task difficulty and for DS2 for both open 
eyes and right finger-tapping tasks.

Results

Region of interest analysis

For DS1, we observed strong associations between GLM 
beta values and gold standard CMRGlu values for task-
specific estimates of activation in the FEF, IPS and Occ 
(r = 0.833…0.912, Table  1). Crucially, near perfect 

correlations were discovered when comparing %SC of beta 
values with %SC of CMRGlu (all r ≥ 0.998). Moreover, 
the slopes were close to unity (1.00…1.02) and intercepts 
were near zero (− 0.27…0.13) for the parameters of 
%SC. Separate analyses for females and males did 
not change any of these observations (Supplementary 
Table  1, Supplementary Fig.  2). DS2 showed similar 
results for task-related changes in glucose metabolism 
(eyes open and finger-tapping tasks, activating V1 and 
M1, respectively), albeit with slightly lower performance 
compared to DS1. Specifically, the correlation coefficients 
were higher for %SC (r = 0.909… 0.970) than beta values 
(r = 0.763…0.833). The slopes for %SC were close to 
one (1.03…1.15), but intercepts were slightly higher 
(1.63…4.73).

In contrast, the baseline condition (BL) displayed a 
highly variable degree of association with CMRGlu, 
with r = 0.359…0.720 for DS1 and r =  − 0.137…0.018 
for DS2. Although BL2 resulted in more stable 
agreement, correlations with CMRGlu were still low 
(r = 0.337…0.504).

Table 1  Agreement between different quantification methods. The 
table displays the results of correlation and regression analyses con-
ducted for both datasets. Comparisons were performed for two dif-
ferent levels, either relating the general linear model beta values to 
the respective cerebral metabolic rate of glucose (CMRGlu, left) or 
the percent signal change (%SC) of both quantities with each other 
(right). The first dataset (DS1) comprised three regions of inter-
est (ROI): the frontal eye field (FEF), intraparietal sulcus (IPS), and 
occipital cortex (Occ) [16]. For these regions, two separate levels 

of task difficulty (easy, hard) were regarded. For the second dataset 
(DS2), the primary visual (V1), and motor cortices (M1) were evalu-
ated during the eyes-open condition and right-finger-tapping task, 
respectively [14]. For all datasets, two approaches for the computa-
tion of baseline metabolism (BL and BL2) were calculated. For each 
comparison, Pearson’s correlation coefficient, slope and intercept 
were calculated. For the baseline conditions, the %SC analyses were 
not performed, as this parameter always refers to the baseline condi-
tion itself

Condition ROI Beta vs. CMRGlu %SC of Beta vs. %SC of CMRGlu

R Slope Intercept R Slope Intercept

BL FEF 0.483 0.005 1.107
IPS 0.720 0.008 0.992
Occ 0.359 0.005 1.041
V1 0.018 0.000 1.137
M1  − 0.137  − 0.001 1.043

BL2 FEF 0.466 0.005 0.137
IPS 0.504 0.005 0.131
Occ 0.433 0.004 0.142
V1 0.398 0.002 0.140
M1 0.337 0.002 0.131

Tetris Easy FEF 0.904 0.009 0.006 0.999 0.997 0.134
IPS 0.857 0.008 0.007 0.998 1.001 0.053
Occ 0.912 0.010 0.001 0.999 1.004 0.011

Tetris Hard FEF 0.849 0.009 0.007 0.998 1.001 0.094
IPS 0.833 0.008 0.008 0.998 1.003 0.028
Occ 0.843 0.010 0.001 0.998 1.022 -0.273

Eye V1 0.833 0.007 0.008 0.970 1.150 1.633
Finger M1 0.763 0.005 0.016 0.909 1.029 4.728
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Voxel‑wise activation maps

In addition to the ROI analysis, we conducted an unbiased 
whole-brain analysis to explore whether the different 
approaches yield similar activation patterns (all p < 0.05 
FWE corrected cluster level following p < 0.001 uncorrected 
voxel level).

As in our previous work [13, 16], task-related changes in 
CMRGlu were observed mainly in the FEF, IPS and Occ for 
DS1 (Fig. 2A). Interestingly, this was also true for all of the 
other parameters, namely maps representing beta values as 
well as %SC of beta and %SC of CMRGlu (Fig. 2B–D). For 
the easy and hard levels of difficulty, the dice coefficients 
of the beta maps and their respective CMRGlu counterparts 
amounted to 0.972 and 0.979, indicating high similarity. In 
accordance with the ROI results, comparing the %SC maps 
yielded even higher dice coefficients of 0.997 (for both con-
ditions) between the parameters. Visual comparison of the 
outcome parameters at the individual level highlights the 
similarity within a subject as well as differences between 
subjects (see discussion and Supplementary Fig. 3).

For DS2, task-induced changes in CMRGlu occurred 
within V1 and M1 for the eyes open and finger-tapping tasks, 
respectively [14] (Fig. 2E). Again, the activation patterns for 
each of the two tasks were remarkably similar across all 

parameters (Fig. 2F–H). The dice coefficients of the beta and 
CMRGlu maps for the eyes open and finger-tapping tasks 
amounted to 0.885 and 0.870, respectively. The %SC data 
yielded the coefficients 0.943 and 0.932.

Discussion

In this work, we evaluated the feasibility of non-invasively 
quantifying task-induced changes in glucose metabolism 
with  [18F]FDG fPET, i.e., without any blood sampling. We 
integrated theoretical concepts from the Patlak plot with 
output parameters of the GLM. Moreover, we compared 
this with CMRGlu quantified with the gold standard 
arterial input function in various tasks. Our findings 
reveal similar activation patterns across all parameters and 
strong agreement between the relative changes of glucose 
metabolism (%SC CMRGlu) and task-specific beta values 
obtained from the GLM (%SC betas).

Our proposed fPET technique differs from previous 
approaches in one important aspect, namely its independ-
ence from an input function in general, be it arterial, venous, 
image-derived, or population-based. The strong correlation 
between %SC of task beta estimates and %SC of CMR-
Glu (i.e., r > 0.998, slope ~ 1, intercept ~ 0, Table 1, Fig. 3) 

Fig. 2  Group-level maps of the datasets, displaying activation within 
the respective regions of interest (ROI). The figure displays the acti-
vation patterns for both of the regarded datasets, considering task 
“hard” for the Tetris®-dataset (DS1, A–D), and both tasks within the 
second dataset (DS2, E–H). The maps were p < 0.05 FWE corrected 
at cluster level following p < 0.001 uncorrected voxel level. Group-
level maps were calculated for the beta parameters (B, F), resulting 
from the general linear model (GLM), and the cerebral metabolic 

rate of glucose (CMRGlu, A, E) as well as for both quantities’ rate 
of percent signal change (%SC, C, D, G, H). For each of the group-
level maps, two layers were selected to represent the activation within 
the respective dataset. For DS1 (A–D), the figure displays layers 
extracted at z = 6 mm (right) and z = 50 mm (left). For DS2 (E–H), 
the regarded layers are z = 3  mm (right) and z = 63  mm (left). The 
color bars represent t-values of the group-level analysis
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and the congruence of activation patterns across different 
parameters (Fig. 2) validates the non-invasive approach 
as a robust alternative for performing fPET. This suggests 
that the underlying theoretical framework is consistent with 
the experimental data. Moreover, our approach appears to 
be suitable for tasks of different complexity, such as the 
demanding Tetris® paradigm and the simpler visual and fin-
ger tapping tasks. The slightly reduced performance in DS2 
likely reflects lower SNR due to the constant infusion of the 
radiotracer, without the initial bolus. This may also explain 
the non-zero intercept in the regression lines of the infusion 
protocol. Nevertheless, the use of %SC is advantageous for 

participants as it eliminates the need for arterial cannula-
tion and simplifies experimental procedures. This may be 
particularly valuable in clinical settings, where resources 
are often limited and procedural complexity should be min-
imized. Consequently, the adoption of %SC enhances the 
applicability of fPET in clinical environments and opens 
up new possibilities for diagnostic procedures beyond static 
PET imaging in patient cohorts [20].

However, it is important to acknowledge certain limi-
tations of the simplified fPET approach (Table 2). The 
obtained metabolic changes are relative to a baseline con-
dition when using %SC of betas as outcome parameter. 

Fig. 3  Agreement between 
outcome parameters. Results 
of the regression analysis to 
assess whether beta values 
(obtained from the general 
linear model) are correlated 
with the cerebral metabolic rate 
of glucose (CMRGlu) across all 
participants. This was done for 
beta and CMRGlu values (A, 
C), as well as for their percent 
signal change (%SC) values (B, 
D). The figure compares these 
sets of analysis for task “hard”, 
for the Tetris®-dataset (DS1, 
A, B), and eye opening as well 
as right finger-tapping for the 
second dataset (DS2, C, D). For 
DS1, the frontal eye field (FEF), 
the intraparietal sulcus (IPS) 
and the secondary occipital 
cortex (Occ) were considered 
as regions of interest [16]. DS2 
displayed activation in the pri-
mary visual cortex (V1) for eye 
opening and the primary motor 
cortex (M1) for finger-tapping 
[14]

Table 2  Visual representation of the three outcome parameters and 
their main features. The table displays several key features of the 
main outcome parameters, as obtained by  [18F]FDG fPET and analy-
sis with the general linear model (GLM). The parameters include the 
beta maps as output of the GLM, the percent signal change (%SC) of 

beta estimates (see Eq. (5)) and the gold standard cerebral metabolic 
rate of glucose (CMRGlu). The general availability of a feature for a 
certain outcome parameter is marked by a tick, advantages are indi-
cated by a plus sign and disadvantages by a minus sign

Feature Beta estimate %SC of beta CMRGlu

Identification of overall task activation ✓ ✓ ✓
Identification of individual effects ✓ ✓
Applicable for tasks of different complexity ✓ ✓ ✓
Absolute quantification  + 
Quantification of baseline metabolism  + 
Influence of baseline definition -
Input function required -
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Moreover, absolute quantification is not possible, neither 
for task nor baseline effects. Therefore, the technique is only 
suitable when the precise identification of baseline metabo-
lism and absolute quantification are of no interest. On the 
other hand, the baseline definition itself becomes critical as 
different baselines (e.g., eyes closed, eyes open, crosshair 
fixation, etc.) will result in a different %SC. This reflects a 
similar situation encountered in fMRI, where the contrast of 
interest (compared to baseline or a control task) determines 
increases or decreases in activation [21, 22]. Furthermore, 
there is a monotonic increase of the signal over time due to 
the inherent property of  [18F]FDG to remain mostly trapped 
in the cell. Therefore, not only the definition but also the tim-
ing of the baseline acquisition becomes relevant. To ensure 
robust modeling, it is recommended to acquire baseline peri-
ods in the beginning and end of the scan as well as between 
tasks [7].

Regarding the use of plain beta estimates (without 
additional computation of %SC), it is important to note 
that the agreement with CMRGlu across individuals was 
generally lower for task effects, and poor for baseline 
metabolism (Fig.  3, Table 1). Despite this, group-level 
activations still exhibited high similarity (Fig. 2), suggesting 
that this outcome parameter may only be used to identify 
overall activation patterns. However, %SC only requires 
minimal computational effort and is thus preferable, 
particularly if individual values are to be related to other 
metrics of behavior or disease progression. Interestingly, a 
previous study has reported task-induced signal changes of 
approximately 2% [4], in contrast to 20–30% observed in 
this work (Fig. 3B, D). However, their %SC was calculated 
only as a ratio of plain betas and using the same ratio for 
our data would result in changes in a similar range of 
approximately 3% (DS1). This discrepancy (and presumably 
also the lower agreement with CMRGlu) arises from the fact 
that beta values alone can be compared across participants 
only if the underlying regressors are identical. For this 
reason, we computed %SC from the slope of the product of 
beta*regressor (see Eq. (5)).

The match between different outcome parameters at the 
individual level (Supplementary Fig. 3) is evident from the 
fact that these represent scaled versions of the plain beta 
estimates (i.e., scaled by the AIF or baseline metabolism, 
Fig. 1). Though, this scaling is different between subjects, 
eventually leading to a decreased agreement (Fig.  3). 
Together, this implies that for individual evaluation any 
outcome parameter can be used as long as this is done within 
a subject. However, when comparisons are drawn between 
subjects, CMRGlu and %SC are more reliable parameters 
than plain beta estimates.

Although the use of fPET %SC as a proxy of neuronal 
activation may at first glance appear similar to BOLD fMRI, 
several essential differences should be kept in mind. The 

BOLD signal is a composite signal derived not only from 
neuronal oxygen consumption but also from variations 
in cerebral blood flow and volume [23], while glucose 
metabolism is a more direct measure of synaptic activity [24, 
25]. Furthermore, fPET is independent of cerebral blood 
flow, as demonstrated by hypercapnia experiments [2]. Thus, 
BOLD fMRI and  [18F]FDG fPET capture complementary 
aspects of neuronal activation, as demonstrated by task-
evoked dissociations between the two parameters in the 
default mode network [8, 17, 26]. Another significant 
distinction lies in the test-retest variability of the methods. 
Previous work has indicated higher reliability for fPET 
than for fMRI [15, 27]. This variability implies that robust 
fMRI disease markers are difficult to establish [28], which 
contributes to the rare use in clinical routine. In contrast, 
fPET seems to be a promising approach to compare intra-
individual changes over time or group comparisons between 
imaging sites. Moreover, the technique might be relevant to 
assess changes in neuronal activation as induced by more 
potent stimulations, such as pharmacological interventions 
and brain stimulations. For the latter, fPET may hold 
additional promise since the magnetic field of the MRI limits 
its compatibility with various electrical devices.

Conventional  [18F]FDG brain scans are commonly 
applied for differential diagnosis in cognitive impairment, 
dementia, movement disorders, presurgical assessment 
of epilepsy, encephalitis, and neuro-oncology [20]. 
Unlike current  [18F]FDG scans, which mostly utilize the 
standardized uptake value (SUV), non-invasive fPET 
offers additional stimulation-specific information with a 
semi-quantitative clinically comparable measure (%SC), 
while still allowing for the calculation of baseline SUV. 
An additional benefit lies in the standardized application 
protocol for fPET. Currently, the time between tracer 
application and the actual scan as well as the missing control 
over the behavioral state (e.g., eyes open/closed, etc.) is a 
source of variability that limits comparability between 
scans. Furthermore, the assessment of stimulation-induced 
metabolism in clinical routine would allow characterization 
of specific alterations of brain function, i.e., working 
memory in dementia, audiometry for cochlear implants, 
speech, and motor tasks for preoperative mapping in epilepsy 
and diagnosis of movement disorders, respectively. Although 
absolute quantification with arterial blood sampling will 
continue to be of importance for certain questions, non-
invasive fPET may be the preferable alternative in several 
clinical and research settings, as arterial cannulation will 
not be tolerated in all patient groups (e.g., children, elderly 
[8], etc.) and not all research settings have the resources to 
perform arterial sampling.

A specific limitation of the current study lies in the 
relatively smaller sample size of DS2 (n = 18 vs. n = 52). 
While the retrospective nature of the analysis restricts the 
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possibility of equalizing the sample, the inability to compare 
with other studies arises from the unique aspect of our 
validation involving arterial blood sampling, a methodology 
not employed in other datasets. Nonetheless, we would like 
to note that the overall size of both datasets exceeds the 
typical range for other methodological validations in the 
field [2, 3, 6].

Although we showed that sex does not affect the 
agreement between the different outcome parameters, 
the limited age range of the participants in this study 
(18–35  years) does not allow the investigation of age 
effects. Nevertheless, the mathematical approximation 
above indicates that such variables should theoretically not 
compromise the agreement.

Conclusions

Our results suggest that plain beta estimates from the GLM 
may only be suitable when the overall group-averaged 
activation pattern is to be identified. However, computing 
%SC of beta values only requires minimal additional effort 
and represents a valid parameter to study task activation 
with fPET. Our data further indicates that the introduced 
approach is generalizable across cognitive domains and load. 
Still, differences between tasks may occur, which should be 
considered when defining the baseline condition or using 
control tasks for comparison. Finally, if absolute CMRGlu 
and baseline metabolism are of interest, full quantification is 
required. In sum, assessing task-specific changes in glucose 
metabolism with %SC is a simple and robust approach that 
eliminates the need for potentially painful and resource-
intensive arterial blood sampling, thereby increasing the 
accessibility of the technique. The removal of barriers 
could facilitate the integration of fPET into clinical settings, 
where arterial blood sampling has traditionally been a major 
limitation.
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