Skip to main content

Advertisement

Log in

Effectiveness of [67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the imaging and therapeutic properties (theranostic) of 67Cu-labeled anti-human epidermal growth factor receptor II (HER2) monoclonal antibody trastuzumab against HER2-positive breast cancer (BC).

Methods

We conjugated trastuzumab with p-SCN-Bn-NOTA, 3p-C-NETA-NCS, or p-SCN-Bn-DOTA, and radiolabeled with [67Cu]CuCl2. Immunoconjugate internalization was evaluated in BT-474, JIMT-1 and MCF-7 BC cells. In vitro stability was studied in human serum (HS) and Phosphate Buffered Saline (PBS). Flow cytometry, radioligand binding and immunoreactive fraction assays were carried out. ImmunoSPECT imaging of [67Cu]Cu-NOTA-trastuzumab was done in mice bearing BT-474, JIMT-1 and MCF-7 xenografts. Pharmacokinetic was studied in healthy Balb/c mice while dosimetry was done in both healthy Balb/c and in athymic nude mice bearing JIMT-1 xenograft. The therapeutic effectiveness of [67Cu]Cu-NOTA-trastuzumab was evaluated in mice bearing BT-474 and JIMT-1 xenografts after a single intravenous (i.v.) injection of ~ 16.8 MBq.

Results

Pure immunoconjugates and radioimmunoconjugates (> 95%) were obtained. Internalization was HER2 density-dependent with highest internalization observed with NOTA-trastuzumab. After 5 days, in vitro stabilities were 97 ± 1.7%, 31 ± 6.2%, and 28 ± 4% in HS, and 79 ± 3.5%, 94 ± 1.2%, and 86 ± 2.3% in PBS for [67Cu]Cu-NOTA-trastuzumab, [67Cu]Cu-3p-C-NETA-trastuzumab and [67Cu]Cu-DOTA-trastuzumab, respectively. [67Cu]Cu-NOTA-trastuzumab was chosen for further evaluation. BT-474 flow cytometry showed low KD, 8.2 ± 0.2 nM for trastuzumab vs 26.5 ± 1.6 nM for NOTA-trastuzumab. There were 2.9 NOTA molecules per trastuzumab molecule. Radioligand binding assay showed a low KD of 2.1 ± 0.4 nM and immunoreactive fraction of 69.3 ± 0.9. Highest uptake of [67Cu]Cu-NOTA-trastuzumab was observed in JIMT-1 (33.9 ± 5.5% IA/g) and BT-474 (33.1 ± 10.6% IA/g) xenograft at 120 h post injection (p.i.). Effectiveness of the radioimmunoconjugate was also expressed as percent tumor growth inhibition (%TGI). [67Cu]Cu-NOTA-trastuzumab was more effective than trastuzumab against BT-474 xenografts (78% vs 54% TGI after 28 days), and JIMT-1 xenografts (90% vs 23% TGI after 19 days). Mean survival of [67Cu]Cu-NOTA-trastuzumab, trastuzumab and saline treated groups were > 90, 77 and 72 days for BT-474 xenografts, while that of JIMT-1 were 78, 24, and 20 days, respectively.

Conclusion

[67Cu]Cu-NOTA-trastuzumab is a promising theranostic agent against HER2-positive BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2022;10:451.

    Google Scholar 

  2. Latta EK, Tjan S, Parkes RK, O’Malley FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol. 2002;15:1318–25. https://doi.org/10.1097/01.mp.0000038462.62634.b1.

    Article  CAS  PubMed  Google Scholar 

  3. Woo S-K, Jang SJ, Seo M-J, Park JH, Kim BS, Kim EJ, et al. Development of 64Cu-NOTA-Trastuzumab for HER2 targeting: A radiopharmaceutical with improved pharmacokinetics for human studies. J Nucl Med. 2019;60:26–33. https://doi.org/10.2967/jnumed.118.210294.

    Article  CAS  PubMed  Google Scholar 

  4. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discovery. 2023;22:101–26. https://doi.org/10.1038/s41573-022-00579-0.

    Article  CAS  PubMed  Google Scholar 

  5. Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, et al. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging. 2021;48:1371–89. https://doi.org/10.1007/s00259-020-05094-1.

    Article  CAS  PubMed  Google Scholar 

  6. Gote V, Nookala AR, Bolla PK, Pal D. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci. 2021;22:4673. https://doi.org/10.3390/ijms22094673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choong GM, Cullen GD, O’Sullivan CC. Evolving standards of care and new challenges in the management of HER2-positive breast cancer. CA A Cancer J Clin. 2020;70:355–74. https://doi.org/10.3322/caac.21634.

    Article  Google Scholar 

  8. Menon SR, Mitra A, Chakraborty A, Tawate M, Sahu S, Rakshit S, et al. Clinical dose preparation of [177Lu]Lu-DOTA-Pertuzumab using medium specific activity [177Lu]LuCl3 for radioimmunotherapy of breast and epithelial ovarian cancers, with HER2 receptor overexpression. Cancer Biother Radiopharm. 2022;37:384–402. https://doi.org/10.1089/cbr.2021.0230.

    Article  CAS  PubMed  Google Scholar 

  9. Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in oncology: Overview of the last decade clinical trials. Cancers. 2021;13:5570. https://doi.org/10.3390/cancers13215570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human α radioimmunotherapy with <sup>212</sup>Pb-TCMC-trastuzumab. J Nucl Med. 2014;55:1636–42. https://doi.org/10.2967/jnumed.114.143842.

    Article  CAS  PubMed  Google Scholar 

  11. Bhusari P, Vatsa R, Singh G, Parmar M, Bal A, Dhawan DK, et al. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer. 2017;140:938–47. https://doi.org/10.1002/ijc.30500.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Xu T, Vorobyeva A, Loftenius A, Bodenko V, Orlova A, et al. Radionuclide Therapy of HER2-Expressing Xenografts Using [(177)Lu]Lu-ABY-027 Affibody Molecule Alone and in Combination with Trastuzumab. Cancers (Basel). 2023;15. https://doi.org/10.3390/cancers15092409.

  13. Orlova A, Jonsson A, Rosik D, Lundqvist H, Lindborg M, Abrahmsen L, et al. Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2-targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med. 2013;54:961–8. https://doi.org/10.2967/jnumed.112.110700.

    Article  CAS  PubMed  Google Scholar 

  14. Kvassheim M, Revheim MR, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys. 2022;9:52. https://doi.org/10.1186/s40658-022-00481-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abbas N, Bruland OS, Brevik EM, Dahle J. Preclinical evaluation of 227Th-labeled and 177Lu-labeled trastuzumab in mice with HER-2-positive ovarian cancer xenografts. Nucl Med Commun. 2012;33:838–47. https://doi.org/10.1097/MNM.0b013e328354df7c.

    Article  CAS  PubMed  Google Scholar 

  16. Abbas N, Heyerdahl H, Bruland OS, Borrebaek J, Nesland J, Dahle J. Experimental alpha-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res. 2011;1:18. https://doi.org/10.1186/2191-219X-1-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abou DS, Longtine M, Fears A, Benabdallah N, Unnerstall R, Johnston H, et al. Evaluation of Candidate Theranostics for 227Th/89Zr Paired Radioimmunotherapy of Lymphoma. J Nucl Med. 2023;64:1062–8. https://doi.org/10.2967/jnumed.122.264979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol. 2022;19:534–50. https://doi.org/10.1038/s41571-022-00652-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vahidfar N, Aghanejad A, Ahmadzadehfar H, Farzanehfar S, Eppard E. Theranostic advances in breast cancer in nuclear medicine. Int J Mol Sci. 2021;22:4597. https://doi.org/10.3390/ijms22094597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82. https://doi.org/10.1007/s002590050034.

    Article  CAS  PubMed  Google Scholar 

  21. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58:61S-S66. https://doi.org/10.2967/jnumed.116.186783.

    Article  CAS  PubMed  Google Scholar 

  22. Mou L, Martini P, Pupillo G, Cieszykowska I, Cutler CS, Mikolajczak R. (67)Cu production capabilities: A mini review. Molecules. 2022;27. https://doi.org/10.3390/molecules27051501.

  23. Lee JY, Chae JH, Hur MG, Yang SD, Kong YB, Lee J, et al. Theragnostic (64)Cu/(67)Cu radioisotopes production with RFT-30 cyclotron. Front Med (Lausanne). 2022;9:889640. https://doi.org/10.3389/fmed.2022.889640.

    Article  PubMed  Google Scholar 

  24. Hao G, Mastren T, Silvers W, Hassan G, Oz OK, Sun X. Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Sci Rep. 2021;11:3622. https://doi.org/10.1038/s41598-021-82812-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cullinane C, Jeffery CM, Roselt PD, van Dam EM, Jackson S, Kuan K, et al. Peptide receptor radionuclide therapy with (67)Cu-CuSarTATE Is highly efficacious against a somatostatin-positive neuroendocrine tumor model. J Nucl Med. 2020;61:1800–5. https://doi.org/10.2967/jnumed.120.243543.

    Article  CAS  PubMed  Google Scholar 

  26. Simon M, Jorgensen JT, Khare HA, Christensen C, Nielsen CH, Kjaer A. Combination of [(177)Lu]Lu-DOTA-TATE targeted radionuclide therapy and photothermal therapy as a promising approach for cancer treatment: In vivo studies in a human xenograft mouse model. Pharmaceutics. 2022;14. https://doi.org/10.3390/pharmaceutics14061284.

  27. Loft M, Carlsen EA, Johnbeck CB, Johannesen HH, Binderup T, Pfeifer A, et al. (64)Cu-DOTATATE PET in patients with neuroendocrine neoplasms: prospective, head-to-head comparison of imaging at 1 hour and 3 hours after injection. J Nucl Med. 2021;62:73–80. https://doi.org/10.2967/jnumed.120.244509.

    Article  PubMed  Google Scholar 

  28. Liang Y, Besch-Williford C, Hyder SM. PRIMA-1 inhibits growth of breast cancer cells by re-activating mutant p53 protein. Int J Oncol. 2009;35:1015–23. https://doi.org/10.3892/ijo_00000416.

    Article  CAS  PubMed  Google Scholar 

  29. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54. https://doi.org/10.1007/bf00300234.

    Article  CAS  PubMed  Google Scholar 

  30. Hartimath SV, Alizadeh E, Solomon VR, Chekol R, Bernhard W, Hill W, et al. Preclinical evaluation of 111In-Labeled PEGylated maytansine nimotuzumab drug conjugates in EGFR-positive cancer models. J Nucl Med. 2019;60:1103–10. https://doi.org/10.2967/jnumed.118.220095.

    Article  CAS  PubMed  Google Scholar 

  31. Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M. Conjugation of antibodies with bifunctional chelating agents: Isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal Biochem. 1984;142:68–78. https://doi.org/10.1016/0003-2697(84)90517-7.

    Article  CAS  PubMed  Google Scholar 

  32. Ketchemen JP, Babeker H, Tikum AF, Nambisan AK, Njotu FN, Nwangele E, et al. Biparatopic anti-HER2 drug radioconjugates as breast cancer theranostics. Br J Cancer. 2023. https://doi.org/10.1038/s41416-023-02272-4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tikum AF, Nambisan AK, Ketchemen JP, Babeker H, Khan MN, Torlakovic EE, et al. Simultaneous imaging and therapy using Epitope-Specific Anti-Epidermal Growth Factor Receptor (EGFR) antibody conjugates. Pharmaceutics. 2022;14:1917. https://doi.org/10.3390/pharmaceutics14091917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the immunoreactive function of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77–89. https://doi.org/10.1016/0022-1759(84)90435-6.

    Article  CAS  PubMed  Google Scholar 

  35. Babeker H, Ketchemen JP, Annan Sudarsan A, Andrahennadi S, Tikum AF, Nambisan AK, et al. Engineering of a fully human anti-MUC-16 antibody and evaluation as a PET imaging agent. Pharmaceutics. 2022;14:2824. https://doi.org/10.3390/pharmaceutics14122824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirschner AS, Ice RD, Beierwaltes WH. Radiation-dosimetry of I-131-19-Iodocholesterol - pitfalls of using tissue concentration data - reply. J Nucl Med. 1975;16:248–9.

    CAS  Google Scholar 

  37. Laforest R, Lapi SE, Oyama R, Bose R, Tabchy A, Marquez-Nostra BV, et al. [Zr-89]Trastuzumab: evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer. Mol Imag Biol. 2016;18:952–9. https://doi.org/10.1007/s11307-016-0951-z.

    Article  CAS  Google Scholar 

  38. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant Trastuzumab in HER2-Positive Breast Cancer. N Engl J Med. 2011;365:1273–83. https://doi.org/10.1056/nejmoa0910383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shrikant VD, Sally JD, Claude FM, Michael JM, Gregory PA, Min KM, et al. Copper-67-labeled monoclonal antibody Lym-1, a potential radiopharmaceutical for cancer therapy: labeling and biodistribution in RAJI tumored mice. J Nucl Med. 1988;29:217.

    Google Scholar 

  40. Stokke C, Kvassheim M, Blakkisrud J. Radionuclides for targeted therapy: physical properties. Molecules. 2022;27:5429. https://doi.org/10.3390/molecules27175429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahenkorah S, Murce E, Cawthorne C, Ketchemen JP, Deroose CM, Cardinaels T, et al. 3p-C-NETA: A versatile and effective chelator for development of Al<sup>18</sup>F-labeled and therapeutic radiopharmaceuticals. Theranostics. 2022;12:5971–85. https://doi.org/10.7150/thno.75336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou Y, Marks JD. Discovery of internalizing antibodies to tumor antigens from phage libraries. Methods Enzymol. 2012;502:43–66. https://doi.org/10.1016/b978-0-12-416039-2.00003-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65:473–82.

    Article  CAS  PubMed  Google Scholar 

  44. Guleria M, Das T, Amirdhanayagam J, Sarma HD, Dash A. Comparative evaluation of using NOTA and DOTA derivatives as bifunctional chelating agents in the preparation of (68)Ga-labeled porphyrin: impact on pharmacokinetics and tumor uptake in a mouse model. Cancer Biother Radiopharm. 2018;33:8–16. https://doi.org/10.1089/cbr.2017.2337.

    Article  CAS  PubMed  Google Scholar 

  45. Roosenburg S, Laverman P, Joosten L, Cooper MS, Kolenc-Peitl PK, Foster JM, et al. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with <sup>64</sup>Cu, <sup>68</sup>Ga, and <sup>111</sup>In. Mol Pharm. 2014;11:3930–7. https://doi.org/10.1021/mp500283k.

    Article  CAS  PubMed  Google Scholar 

  46. Lam K, Chan C, Reilly RM. Development and preclinical studies of 64Cu-NOTA-pertuzumab F(ab’)2 for imaging changes in tumor HER2 expression associated with response to trastuzumab by PET/CT. mAbs. 2017;9:154–64. https://doi.org/10.1080/19420862.2016.1255389.

    Article  CAS  PubMed  Google Scholar 

  47. D’Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4:708–20. https://doi.org/10.7150/thno.8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kameswaran M, Pandey U, Gamre N, Sarma HD, Dash A. Preparation of (177)Lu-Trastuzumab injection for treatment of breast cancer. Appl Radiat Isot. 2019;148:184–90. https://doi.org/10.1016/j.apradiso.2019.04.002.

    Article  CAS  PubMed  Google Scholar 

  49. Guleria M, Sharma R, Amirdhanayagam J, Sarma HD, Rangarajan V, Dash A, et al. Formulation and clinical translation of [(177)Lu]Lu-trastuzumab for radioimmunotheranostics of metastatic breast cancer. RSC Med Chem. 2021;12:263–77. https://doi.org/10.1039/d0md00319k.

    Article  CAS  PubMed  Google Scholar 

  50. Henning JW, Brezden-Masley C, Gelmon K, Chia S, Shapera S, McInnis M, et al. Managing the risk of lung toxicity with trastuzumab deruxtecan (T-DXd): A canadian perspective. Curr Oncol. 2023;30:8019–38. https://doi.org/10.3390/curroncol30090582.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Merrick MJ, Rotsch DA, Tiwari A, Nolen J, Brossard T, Song J, et al. Imaging and dosimetric characteristics of 67 Cu. Phys Med Biol. 2021;66: 035002. https://doi.org/10.1088/1361-6560/abca52.

    Article  CAS  PubMed  Google Scholar 

  52. Rasaneh S, Rajabi H, Akhlaghpoor S, Sheybani S. Radioimmunotherapy of mice bearing breast tumors with [177]Lu-labeled trastuzumab. Turk J Med Sci. 2012;42(7):1292–8. https://doi.org/10.3906/sag-1105-29.

Download references

Funding

This work was funded by Canadian Institute for Health Research (CIHR) Project Grants (Grant numbers 437660 and 408132) to Humphrey Fonge.

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, execution, and data analysis were performed by Jessica Pougoue Ketchemen, Fabrice Ngoh Njotu, Hanan Babeker, Stephen Ahenkorah, Anjong Florence Tikum, Emmanuel Nwangele, Nikita Henning, Frederik Cleeren, and Humphrey Fonge. Writing of the original draft preparation, and review were done by Jessica Pougoue Ketchemen and Humphrey Fonge. All the authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Humphrey Fonge.

Ethics declarations

Ethics statement

All animal experiments were approved, supervised, and maintained following the guidelines of the University of Saskatchewan Animal Care Committee (UACC). Ethical approval reference 20220021.

Competing interest

The authors have declared that no competing conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3112 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pougoue Ketchemen, J., Njotu, F.N., Babeker, H. et al. Effectiveness of [67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer. Eur J Nucl Med Mol Imaging 51, 2070–2084 (2024). https://doi.org/10.1007/s00259-024-06648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-024-06648-3

Keywords

Navigation