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Abstract
Purpose The aim of this review is to give an overview of the current status of molecular image–guided surgery in gynaeco-
logical malignancies, from both clinical and technological points of view.
Methods A narrative approach was taken to describe the relevant literature, focusing on clinical applications of molecular 
image–guided surgery in gynaecology, preoperative imaging as surgical roadmap, and intraoperative devices.
Results The most common clinical application in gynaecology is sentinel node biopsy (SNB). Other promising approaches 
are receptor-target modalities and occult lesion localisation. Preoperative SPECT/CT and PET/CT permit a roadmap for 
adequate surgical planning. Intraoperative detection modalities span from 1D probes to 2D portable cameras and 3D free-
hand imaging.
Conclusion After successful application of radio-guided SNB and SPECT, innovation is leaning towards hybrid modali-
ties, such as hybrid tracer and fusion of imaging approaches including SPECT/CT and PET/CT. Robotic surgery, as well 
as augmented reality and virtual reality techniques, is leading to application of these innovative technologies to the clinical 
setting, guiding surgeons towards a precise, personalised, and minimally invasive approach.
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Introduction

In cancer surgery, the oncological outcome depends on 
the radical removal of the disease. At the same time, it is 
crucial to limit the burden of complications and morbid-
ity. Currently, it is possible to provide personalised and 
minimally invasive solutions for selected patients who 
will have a real benefit from surgery with reduced side 
effects, or can be spared from surgery when side effects 
outweigh the surgical benefit. In this setting, molecular 
image–guided surgery allows the detection of diseases 
through the molecular properties of employed agents 
or, in case of sentinel node (SN) mapping, through the 
physiological characteristics of the lymphatic system 
[1–3]. The success of image-guided surgery essentially 
depends on the choice of imaging agents and that of imag-
ing technologies. The most common agents are optical or 
radioisotope based [1, 2]. In gynaecological cancer, the 
reference clinical application is sentinel node biopsy 
(SNB), guided by visible dyes or radioactive (both γ- and 
β-emitter agents), fluorescent, magnetic, and most recently 
hybrid signal. This procedure permits the identification 
of the first draining node(s) from the primary tumour, 
thereby providing diagnostic information on nodal status 
and reducing the risk of post-operative morbidity in case 
of non-metastatic SN(s) [4, 5]. Preoperative target detec-
tion is a valid adjunct to surgical planning. Traditional 
lymphoscintigraphy has been implemented by SPECT/CT 
allowing accurate SN mapping, being particularly useful 
in complex anatomical areas [3, 6]. Similarly, intraopera-
tive detection of radiopharmaceuticals has evolved from 
uni- and bi-dimensional detection systems to innovative 
three-dimensional freehand imaging, providing intraop-
erative roadmaps [7]. Using indocyanine green (ICG), 
instead, signal can be detected by fluorescent cameras 
and near-infrared (NIR) fluorescent probes offering real-
time optical identification [8]. Finally, the recent imple-
mentation of tracers, devices and technologies enables to 

target and resect lesions using a minimally invasive robotic 
surgery. Also in this setting, molecular imaging permits 
a preoperative roadmap for adequate surgical planning. 
Moreover, molecular imaging can be directly visualised on 
the surgeon’s display for intraoperative target navigation 
detection and excision [1, 9]. This review aims to discuss 
the state-of-the-art of molecular image-guided surgery in 
gynaecological malignancies, from both clinical and tech-
nological points of view, with a focus on the most recent 
advances in nuclear medicine regarding new radiophar-
maceuticals and new imaging modalities in comparison 
to alternative approaches and a hint to future directions 
(Fig. 1).

Part 1: Molecular image–guided surgery: 
clinical applications in gynaecology

Sentinel node biopsy

SNB is a minimally invasive technique which allows the 
identification of the first node(s) draining the primary 
tumour. It aims to detect micrometastases, as well as mac-
rometastases not visualised on preoperative imaging, thus 
avoiding extensive nodal resections and reducing risk of 
post-operative morbidity [4, 5]. Depending on the selected 
tracer, it can be accompanied by preoperative imaging in 
what is commonly referred as SN mapping or lymphatic 
mapping, which allows an accurate preoperative surgical 
planning, based on which surgical procedure and resection 
are performed [3, 6].

Tracers and dyes

SNB can be guided by visible dyes or tracers that can emit 
radioactive, fluorescent, magnetic, and most recently hybrid 
signal.

Fig. 1  Clinical applications 
and modalities of image-guided 
surgery in gynaecological 
oncology
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Blue dyes

Visible blue dyes, as patent blue or methylene blue, were 
proposed in the 1990s, during the early years of SNB. 
These dyes are still standard of care in several institutions 
worldwide, even though the use of blue dyes alone has been 
decreasing since the beginning of the 2000s due their low 
detection rate when compared to radioactive tracers alone or 
the combined use of both (68.7% vs 97.7% in vulvar cancer; 
80.9% vs 92.3% in cervical cancer) [10, 11].

Radio‑guided

The most used radiopharmaceuticals for lymphatic mapping 
and SNB are 99mTechnetium (99mTc)-based agents, specifi-
cally radiolabelled colloids, owing to their physical char-
acteristics, low cost, and large availability as well as low 
radiation dose to the patient and the surgical staff [4, 7]. 
Among them,  [99mTc]Tc-sulphur colloids are routinely used 
in the USA, while  [99mTc]Tc-nanocolloidal albumins are 
most used in Europe and  [99mTc]Tc-antimony trisulphide in 
Canada and Australia. They differ in particle size, and the 
choice in clinical practice is mostly based on their avail-
ability and local licensure. Their pharmacological aspects 
and injection modalities are well described in the current 
EANM guidelines [4].  [99mTc]Tc-tilmanocept, a new gen-
eration radiotracer, selectively binds to mannose receptors 
expressed on the surface of nodal macrophages and dendritic 
cells [12]. This radiopharmaceutical shows a rapid clearance 
from the injection site and a rapid visualisation of tumour-
draining lymph nodes. Additionally, it has the advantage of 
prolonged retention in the SNs with decreased spill to sec-
ond echelon nodes. Its use is expanding in several countries 
worldwide [13]. Also, PET radiopharmaceuticals, which are 
traditionally employed for diagnostic imaging, may be useful 
for surgical guidance in selected cases [14, 15]. Interstitial 
 [18F]FDG injection into the uterine cervix has been proposed 
to preoperatively visualise SNs and detect tumour-positive 
lymph nodes, a method called positron lymphography (see 
section “PET/CT” in Part 2 of this paper) [14].

Fluorescent‑guided

In the last years, fluorescence-based guidance has been 
explored as a useful alternative to radio-guided SNB. These 
agents emit electromagnetic radiation in the energy range 
of the NIR light spectrum. These fluorophore agents are 
not visible to the human eye, but they are intraoperatively 
detected through a fluorescence detection system [16]. 
They allow signal detection using non-ionising radiation — 
thus not subject to the radiation safety rules — with the 
use of portable detection systems, such as fluorescence 
1D-probes, cameras, or even 3D freehand surface imaging 

[17]. However, their main disadvantage is represented by the 
limited depth of penetration of the light in human body, in 
particular in fatty tissue, which could reduce its intraopera-
tive sensitivity when lying behind other anatomic structures 
[18]. For the same reason, the use of fluorescence agents 
does not always allow preoperative imaging and planning. 
In the realm of fluorescence, ICG is the most used example 
of non-targeted fluorescent dye. It must be highlighted that 
the role of fluorescence in gynaecology is not limited to 
SNB. Indeed, it can also represent an aid for the surgeons 
to reduce intraoperative damage and morbidity allowing 
florescent guidance in dynamic processes, e.g., identifying 
ureters or pelvic nerves, helping to verify bowel perfusion 
after re-anastomosis, or vascular perfusion and the potential 
viability of a reconstruction flap [19–24]. This is made pos-
sible by using fluorescent tracers to mark other tissue than 
SNs, which can be easily intraoperatively identified, making 
oncologic pelvic surgery safer.

Hybrid signal

To overcome the limitations of ICG, the so-called “hybrid 
tracers” have been developed in the last decade, which com-
bine radioactive and fluorescent guidance in a single injec-
tion [25]. The main strength point of hybrid tracers is to 
obtain the preoperative imaging roadmap by radiopharma-
ceutical guidance and real-time intraoperative visualisation 
of SNs by fluorescent guidance, thus realising “the best of 
both worlds” [2, 26]. The first hybrid tracer was ICG-[99mTc]
Tc-nanocolloid, which is currently the most widely available 
and the most used for clinical applications [27–29]. Indeed, 
other tracers combining radioactive and fluorescent labels 
have been proposed (e.g.,  [99mTc]-labeled Cy7 tilmanocept 
in mice study [30]).

Magnetic guidance

On the side of magnetic particles, superparamagnetic iron 
oxides (SPIONs) were introduced for preoperative SNB 
mapping in the first years of 2000 and then applied for 
molecular image-guided surgery [31]. Magnetic tracers, 
such as SPIONs or lately magnetic nano-carbons, are rarely 
employed in gynaecology, mainly due to the limited avail-
ability of the tracer and detecting devices. Yet, the first stud-
ies reported their use in cervical, vulvar, and endometrial 
cancers evaluating preoperative SN mapping using magnetic 
tracers [32–34].

Clinical scenarios

Nodal involvement is an important prognostic factor in 
patients with vulvar, cervical, endometrial, and ovarian 
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cancer, being related to reduced survival and increased 
recurrence rate [35–38].

Vulvar cancer

In vulvar cancer, the major pathway of spread is to the 
inguinofemoral lymph nodes and then to the pelvic ones 
[39, 40]. According to current guidelines, SNB is recom-
mended for unifocal vulvar tumours (< 4 cm) with clinically 
negative lymph nodes (cN0), as well as for vulvar mela-
noma. The combination of radiotracer and visual dye (blue 
dye or ICG) is preferred due to the increased detection rate 
[41–43]. The pioneering clinical trials were represented by 
the GOG-173 and GROINSS-V study, which validated this 
procedure as an alternative to extended lymphadenectomy in 
selected cases using radiotracer and blue dye [44, 45]. The 
GROINSS-V study also demonstrated that the tumoural load 
in the SN was strongly associated with survival [46]. Most 
recently, long-term results of the GROINSS-V reported a 
5-year isolated groin recurrence rate of 2.5% for patients 
with negative SNB and of 8.0% for positive SNB [47]. More-
over, the GroSNaPET study by Garganese et al. reported 
SNB safety (none false negative) in cases currently excluded 
from the procedure, such as: patients with T > 4 cm or mul-
tifocal tumours; after complete primary lesion diagnostic 
excision; in case of contralateral nodal involvement or of 
local recurrences. These results also showed that a careful 
preoperative work-up by  [18F]FDG PET/CT is critical in the 
selection of cases with cN0 [48, 49]. Concerning fluores-
cent-guided SNB, the first clinical results showed feasibility 
with ICG [8]. Subsequent studies, including a recent sys-
tematic review, confirmed safety of this technique, with a 
SN detection rate ranging from 89.7 to 100% [50]. Clinical 
studies using the hybrid tracer ICG-[99mTc]Tc-nanocolloid 
underlined how the addition of fluorescence guidance could 
improve visualisation with respect to blue dyes in vulvar 
cancer [29, 51]. A multicentre randomised controlled trial 
could confirm these results as a significantly higher number 
of resected SNs were fluorescent- (92.5%) than blue-stained 
(65.3%) [52].

Cervical cancer

In cervical cancer, lymphatic drainage principally occurs to 
pelvic nodes (parametrial, internal/external iliac, and pre-
sacral) and subsequently to common iliac and para-aortic 
regions [53]. According to current guidelines, SNB may 
be considered in the early stages. Indeed, in these patients, 
pelvic lymphadenectomy may be considered as an overtreat-
ment, due to low incidence of positive nodes and high risk of 
surgical complications. ICG is the preferred tracer providing 
similar intraoperative bilateral detection rate than the combi-
nation of radiotracer and blue dye [54, 55]. The pioneering 

studies with radiotracer and blue dye showed high rates of 
SN detection (97.8%), high sensitivity (92%), and high nega-
tive predictive value (NPV, 98.2%) for detection of metasta-
ses, with bilateral detection rate of 76.5%. The usefulness of 
SNB for uncommon drainage patterns was also highlighted 
[56–58]. The SENTICOL-2 study, involving 206 early cer-
vical cancer patients, compared SNB with radiotracer and 
blue dye with respect to pelvic lymph node dissection. The 
SNB group displayed significantly lower lymphatic morbid-
ity (31.4% vs 51.5%) and lower post-operative neurological 
symptoms (7.8% vs 20.6%). Moreover, no significant differ-
ences in the 3-year recurrence-free survival were reported 
between the two groups [59]. Concerning fluorescent-guided 
SNB, the FILM trial involving 163 patients with stage I 
cervical or endometrial cancer, demonstrated a significant 
higher overall detection rate for ICG with respect to blue 
dye (98% for ICG vs 76% for blue dye) [60]. In the pilot 
study by Parades et al. using ICG-[99mTc]Tc-nanocolloid 
in 16 early-stage cervical cancer, the hybrid tracer allowed 
bilateral detection in all patients with higher detection rate 
than blue dye [27]. In the pilot study by Murakami et al., SN 
were labelled using SPIONs. In five of 15 patients, radio-
isotope labelling was also used, with similar results between 
the two modalities [32].

Endometrial cancer

For endometrial cancer, nodal dissemination occurs to 
internal, external, common iliac, presacral, and para-aortic 
lymph nodes, with metastases being uncommon in the para-
aortic region [61]. According to NCCN guidelines, SNB 
may be considered in apparent uterine-confined tumours 
without metastases at imaging nor extrauterine disease at 
exploration, including high risk histologies (serous carci-
noma, clear cell carcinoma, carcinosarcoma). According to 
ESGO/ESTRO/ESP joint guidelines, SNB can be considered 
in patients with low- and intermediate‐risk disease and can 
be omitted in patients without myometrial invasion. As for 
cervical cancer, ICG is the preferred tracer providing similar 
intraoperative bilateral detection rate than the combination 
of radiotracer and blue dye [38, 62]. In the SENTI-ENDO 
prospective trial, SNB was performed through radiotracer 
and blue dye in 125 patients, suggesting the utility of SNB 
in patients with low- and intermediate-risk endometrial 
malignancies, with sensitivity of 84% and a NPV of 97% 
per patient analysis [63]. The FILM trial confirmed that ICG 
was able to identify more SNs than blue dye also for uterine 
cancers [60]. The SENTOR study, involving 156 patients 
with intermediate and high-grade endometrial cancer, 
showed that even in high-risk cases, SN by ICG mapping 
instead of radical lymphadenectomy appears to be a valid 
option. They reported a bilateral detection rate of 77.6%, 
sensitivity of 96%, and a NPV of 99% [64]. In 52 patients 
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with intermediate and high-risk endometrial cancer, the use 
of the hybrid tracer ICG-[99mTc]Tc-nanocolloid showed 
sensitivity and NPV for metastases of 100%. Moreover, 
the increased detection rate of para-aortic SNs showed the 
potential to become a promising alternative also for uterine 
tumours [28].

Ovarian cancer

Ovarian cancer can disseminate along three main pathways: 
peritoneal, lymphatic, and hematogenous [65]. Concerning 
nodal involvement, para-aortic and pelvic lymph nodes are 
the most common sites of spread [66, 67]. In malignant ovar-
ian tumour, SNB is not routinely performed and recognised 
in clinical practice, but some authors have assessed its fea-
sibility. Injections are mainly performed and recommended 
in the ovarian ligaments, during laparoscopic or open sur-
gery [68, 69]. Feasibility studies with blue dye and  [99mTc]
Tc-nanocolloid assessed safety of the procedure, with SNs 
visualised in all cases, yet highlighting the need of further 
evidence to confirm the results (96% rate of successful pro-
cedure; detection rate of 100%) [70, 71]. In the SENTOV 
phase II clinical trial including 20 patients with early-stage 
ovarian cancer, SNB by ICG and  [99mTc]Tc-nanocolloid 
showed a detection rate of 93% for pelvic SNs and 100% 
for para-aortic SNs. No adverse events were intraopera-
tively reported, nor within 30 days, suggesting safety of the 
approach [72, 73]. The SELLY phase II prospective inter-
ventional trial is currently ongoing, evaluating performance, 
feasibility, and safety of SNB performed with ICG in early-
stage ovarian cancer patients [74].

Receptor‑targeted surgical applications

Among molecular imaging approaches, systemic adminis-
tered targeted tracers represent a promising modality. They 
are constituted by a radioactive or fluorescent probe and by 
a carrier, that can be a small molecule, an antibody or a 
peptide [18]. In this way, they represent a highly specific 
molecular marker of disease that can be exploited as targeted 
cancer biomarker [75]. Their application in gynaecology is 
mainly based on the expression of folate receptor-α (FR-
α) which is overexpressed in ovarian cancer, especially in 
high-grade serous histotypes [76], and in endometrial adeno-
carcinoma [77]. Among the first human studies, FR-α has 
been explored as a target for ovarian lesions through differ-
ent fluorescent tracers: folate-FITC [78], EC17 [79], and 
OTL38 [80]. Among the first human studies, folate-FITC 
was employed in a pilot study on ten patients with ovarian 
tumours. This tracer was demonstrated to detect malignant 
lesions with FR-α expression, displaying also small metas-
tases (< 1 mm). Conversely, malignant lesions without FR-α 
expression or benign tumours were not detectable [78], 

EC17 was assessed for intraoperative fluorescence imaging 
in 12 ovarian cancer patients. It resulted in a clear signal 
in malignant tissues, accomplishing resection of additional 
lesions not detected with inspection or palpation. However, 
several limitations were pointed out, as the low tissue pen-
etration and reduced detection below the surface. Moreo-
ver, 23% of lesions were identified as false positives. This 
drawback could be explained by the collagen-containing 
structures, that can emit autofluorescent signals [79]. Simi-
larly, OTL38, another FR-α binding agent, was assesses in 
12 patients with ovarian cancer. It allowed a clear fluorescent 
signal and detection of the lesions. A percentage of 29% 
of additional malignant lesions were identified, that were 
otherwise undetectable [80].

OTL38 also allowed the detection of endometrial cancer 
lesions together with nodal and omental metastases. None-
theless, false positives lymph nodes were reported, caused 
by FR-β expression by activated macrophages [81]. More 
recently, phase-II and phase-III trials have assessed OTL38 
in larger ovarian cancer cohorts, showing that this tracer 
could offer real-time detection of further lesions. These 
results show the potential of intraoperative fluorescence in 
these tumours, improving resection accuracy and reducing 
the burden of residual disease [82, 83]. However, no study so 
far has shown a survival benefit when utilising these tracers. 
Folate conjugates have been assessed also in combination 
with SPECT and PET tracers for nuclear medicine imag-
ing [84]. Among them, human studies have investigated the 
use of 111In-DTPA-folate in ovarian cancer patients [85], 
and 99mTc-EC20 in multiple solid tumours, such as ovar-
ian and endometrial cancer [86]. Concerning radiolabelled 
folates for PET imaging, to our knowledge, no human study 
results have yet been reported, but clinical trials are ongo-
ing (NCT05215496 and NCT03242993). Indeed, due to the 
promising potential of folate-based PET radiopharmaceu-
ticals, we expect the development of further studies in the 
foreseeable future. Finally, following a similar rationale as 
in the case of SNB, hybrid receptor-targets are under devel-
opment, such as 111In-farletuzumab-IRDye800CW that tar-
geted FRα successfully in mice with ovarian cancer [87].

Occult lesion localisation

Occult lesion localisation techniques use radiopharmaceu-
ticals (e.g.,  [99mTc]Tc-MAA or 125I) to mark tumours oth-
erwise not detectable in the operating room (Fig. 2). The 
most common are radio-guided occult lesion localisation 
(ROLL) and radio-guided seed localisation (RSL), which 
rely on the injection of a radiopharmaceutical in the target 
lesion to enable radio-guided excision. Yet, the use of radio-
activity as a tracer can be replaced by magnetic seeds or/and 
radio-frequency identification chip as used in breast cancer 
[88, 89]. Evaluations in gynaecologic malignancies have 
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been very limited. The ROLL procedure may hold potential 
for detection of peritoneal lesions. In a patient with uterine 
leiomyosarcoma,  [99mTc]Tc-MAA injection allowed radio-
guided excision of the peritoneal metastases, facilitated also 
by the anatomical SPECT/CT localisation [90]. Among the 
potential applications, RSL through 125I-seeds has been 
performed with success for non-palpable soft tissue masses 
[91]. Furthermore, a pilot study assessed feasibility of RSL 
for preoperative localisation of suspicious non-palpable 
lymph nodes, including one case with vulvar melanoma. 
They achieved a successful excision in all cases, suggest-
ing the feasibility of this approach also for gynaecological 
cancers [92].

Part 2: Preoperative imaging as surgical 
roadmap

Radioactive, magnetic, and hybrid tracers show a major 
advantage over pure fluorescent ones, as they enhance pre-
operative imaging. Most literature focuses on SPECT/CT 
and PET/CT; nevertheless, these results may possibly be 
extended to MRI when using magnetic tracers.

SPECT/CT

Preoperative SPECT/CT allows the detection of more SNs 
than 2D planar lymphoscintigraphy. Moreover, it gives an 
anatomical correlation and reduces the false positive find-
ings such as external contamination or by uptake in enlarged 
lymphatic vessels [39, 93–96]. In detail, it enables for bet-
ter contrast and spatial resolution, showing the morphologic 
features of the target in 3D relationship to anatomical struc-
tures and landmarks. This aspect may be advantageous in 
cases of complex lymphatic drainage and anatomy [97]. In 
vulvar cancer, preoperative SPECT/CT can visualise more 

SNs with respect to planar lymphoscintigraphy and with 
better anatomical localisation. It is particularly useful in 
localising lymph nodes in the corresponding Daseler zone 
(83% in the medial region), or in case of nodal migration to 
unexpected sites (i.e., 17.5% in vesical, paravesical, retroves-
ical, paravaginal, and gluteal) [39, 95]. Also for cervical 
and endometrial malignancies, SPECT/CT enables a better 
bilateral detection with respect to planar lymphoscintigra-
phy (e.g., 69.0% vs 66.7% in cervical cancer, respectively) 
[96, 97]. In addition, this modality facilitates identification 
of SNs close to the injection point or in uncommon sites, 
such as para-aortic and pre-sacral regions [98–100]. Hence, 
there are preliminary experiences on fusion virtual naviga-
tion, which use molecular imaging to guide ultrasound for 
invasive diagnostic procedures on target inguinal nodes pre-
viously highlighted by SPECT/CT in vulvar cancer patients 
[101].

PET/CT

Current guidelines consider  [18F]FDG PET/CT for initial 
work-up in patients affected by uterine, cervical, and vulvar 
cancer with locally advanced tumour or in selected cases 
when metastatic disease is suspected [38, 41, 54]. Limited 
data are available on the role of  [18F]FDG PET/CT in nodal 
staging of patients with early stage disease [102–104]. A 
potential clinical impact may be anticipated for vulvar cancer 
[105]. A recent systematic review and meta-analysis, collect-
ing the results of few studies on small series of vulvar cancer 
patients, showed a good NPV (92%) and a disappointing 
PPV (70%) with an overall prevalence of metastatic groin 
of 28.6% [106]. Indeed, a positive lymph node is not highly 
predictive of metastasis as inguinal reactive lymph nodes can 
concentrate  [18F]FDG. Specificity is still suboptimal even 
when delayed imaging at 3 h from  [18F]FDG injection is 
used [49]. The high NPV of preoperative  [18F]FDG PET/

Fig. 2  Some examples of the 
possible applications of molecu-
lar image–guided surgery in 
gynaecology to aid and improve 
surgical guidance
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CT was confirmed in a large retrospective study of 160 vul-
var cancer patients [107]. In the GroSNaPET study, preop-
erative  [18F]FDG PET/CT was investigated in cN0 patients 
currently unfit for SNB. This study highlighted a high NPV 
(93%). Importantly, all false negative cases at  [18F]FDG 
PET/CT were identified by SNB and no false negative SNs 
were found. These results suggest that the combined use of 
 [18F]FDG PET/CT and SNB is useful to better select cN0 
patients who could benefit for a less invasive surgical treat-
ment or for sparing adjuvant radiation therapy, thus reducing 
treatment toxicity [48]. Additionally, a positive  [18F]FDG 
PET/CT may guide therapeutic decision making (Fig. 3). 
New methods to employ PET tracers for preoperative map-
ping have been attempted. In a pilot clinical trial, patients 
with cervical or uterine cancer underwent interstitial  [18F]
FDG injections in the uterine cervix (positron lymphogra-
phy). Dynamic PET/CT and late-phase PET/CT were carried 
out to detect metastatic invasion in  [18F]FDG-avid lymph 
nodes. Afterwards, patients underwent standard staging sur-
gery and SNB with blue dye or ICG. The procedure dem-
onstrated a high sensitivity, even though further evidence 
is warranted [14]. Another approach to integrate PET/CT 
within a surgical navigation setup is the use of PET/CT 

combined with an intraoperative ultrasound. In the study by 
Garganese et al. including breast cancer and gynaecological 
cancer patients, the pre-acquired  [18F]FDG PET/CT images 
were uploaded as Digital Imaging and Communications 
in Medicine (DICOM) files and registered with real-time 
ultrasound, performed on the superficial nodes. The results 
showed that fusion could be successfully achieved, detecting 
the suspicious target lymph nodes in most cases. Moreover, 
this technique could be used to guide bioptical procedures, 
as well as for diagnostic or therapeutic approaches [15]. In 
addition to  [18F]FDG, Fibroblast Activation Protein Inhibitor 
(FAPI) labelled with Gallium-68 is emerging as a promis-
ing radiotracer for PET/CT in gynaecological cancers [108, 
109]. Its potential role for preoperative roadmap in these 
malignancies deserves to be investigated.

Part 3: Intraoperative devices

Intraoperative detection modalities span from 1D probes to 
2D portable fluorescent or γ cameras and 3D freehand imag-
ing, such as freehand SPECT (Fig. 2). Localising tracer-
labelled structures in the operating room requires sterile 

Fig. 3  Multiple intensity projection (MIP) (top) and transverse fused 
PET/CT images (bottom) of four vulvar cancer patients. A A 66-year-
old woman with left-side unilateral vulvar squamous cell carcinoma 
(SCC) of 2.5  cm diameter. PET/CT images showing  [18F]-FDG 
uptake just in the primary tumour (arrowhead). This patient was 
scheduled for partial vulvectomy and ipsilateral SNB. B A 51-year-
old woman with midline vulvar SCC of 3  cm diameter. PET/CT 
images showing  [18F]-FDG uptake corresponding to the primary 
tumour (arrowhead) and focal  [18F]-FDG uptake in bilateral inguinal 
lymph nodes (short arrows). This patient was scheduled for radical 
vulvectomy and bilateral inguinal lymphadenectomy. C A 65-year-
old woman with midline vulvar SCC of 3  cm diameter previously 

excised. PET/CT images showing focal  [18F]-FDG uptake in bilat-
eral inguinal lymph nodes (short arrows) and bilateral pelvic nodes, 
which were located in the obturator and external iliac regions (long 
arrows). This patient was scheduled for upfront chemo-radiotherapy. 
D An 82-year-old woman with vulvar melanoma. MIP showing focal 
 [18F]-FDG uptake in the primary vulvar tumour (arrowhead), in the 
left internal iliac node (long arrow) and bilateral pulmonary nodules 
(dashed arrows). Transverse fused PET/CT images showing focal 
 [18F]-FDG uptake corresponding to a sub-centimetric pulmonary 
nodule localised in the right inferior lobe. This patient was scheduled 
for systemic therapy
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fashion (open setting) or rather small detectors to be placed 
inside the surgical incision (laparoscopic or robotic surgery). 
Herein, we present the most common devices used in molec-
ular image-guided surgery.

1D probes

The radioactive targets can be detected in real-time during 
surgical operations through handheld nuclear probes. They 
consist of a 1D detection approach that measures the emit-
ted γ or β particles. Signal intensity is measured in counts 
per second with a small field of view, providing audible and 
numerical signals in open surgery [7]. Similarly, 1D fluo-
rescence and magnetic probes have been proposed to detect 
fluorescent or magnetic tracers.

Nuclear probes

Gamma-emitting radiotracers emit γ photons that can be 
detected through low-to-mid energy probes. Their most 
common applications are SNB with  [99mTc]Tc-nanocolloid 
[110–113]. PET tracers can be detected through high-energy 
γ-probes, for precise surgical excision of lesions character-
ised by high  [18F]FDG uptake, such as cervical, endome-
trial, and ovarian carcinoma [114]. PET isotopes can also 
be detected using β + probes. A prospective study exploited 
these probes for ex vivo evaluation of cervical cancer speci-
mens [115]. Additionally, in cervical cancer patients, a sur-
gical scenario by a Monte Carlo simulation of the β probe 
suggests that this approach could help surgeons to distin-
guish tumour margins from healthy tissue [116]. From the 
handheld probes for open surgery [111, 112, 117], technol-
ogy is progressively moving in the direction of less invasive 
approaches as (robotic-assisted) laparoscopic surgery. Rigid 
and elongated γ laparoscopic probes were developed to be 
inserted in the trocar. Nonetheless, the limited rotational 
freedom makes it difficult to reach the target in proximity 
to high signal backgrounds. To increase the manoeuvrabil-
ity, a tethered DROP-IN γ-probe was developed for robotic-
assisted laparoscopic surgery [9]. After being first tested for 
prostate cancer [118], it has been used also in the setting 
of uterine cervix malignancies during robotic surgery. In a 
feasibility study by Baeten et al., ten patients with cervical 
cancer were included. They underwent SNB with  [99mTc]
Tc-nanocolloids, preoperative imaging and robot-assisted 
laparoscopic intervention. For SN localisation, a tethered 
DROP-IN γ-probe was employed; then, a rigid laparoscopic 
probe was used to confirm the results. No significant differ-
ence resulted from the count rate of the two probes, as well 
as no adverse events were recorded [119]. The combination 
of DROP-IN γ probes and freehand SPECT has been also 
shown in a phantom setup, called in-patient SPECT [120]. 
These developments may gain further momentum given the 

recent advantages in machine learning-based techniques 
for tracking [121]. To gain yet more flexibility, the DROP-
IN γ probe has been modified to be mounted directly on a 
grasper either in a laparoscopic or a robotic surgery setup. 
This concept is called the CLICK-ON γ probe and is promis-
ing towards reducing the learning curve of surgeons [122].

Fluorescence and magnetic probes

Unlike radioactive tracers, fluorescent and magnetic tracer 
detection needs specific stimulation. For fluorescence, next 
to the detector, a light fibre is placed to excite the fluores-
cence commonly with a laser light [7]. When using hybrid 
tracers, an opto-nuclear probe allows both the detection of 
NIR fluorescent and γ-photons. This approach, which has 
been tested in patients with various tumours including cervi-
cal cancer, was shown to be feasible both for open and lapa-
roscopic surgery [123]. For magnetic probes, an electromag-
netic field is generated by the probe and its distortion is used 
to detect the amount of magnetic tracer in the vicinity [124, 
125]. To our knowledge, these types of probes have not yet 
been used in gynaecology. However, in the frame of hybrid 
tracers, combined γ and fluorescence probes are also avail-
able and have been evaluated in endometrial cancer [126].

Portable γ cameras and 3D freehand imaging

When radiopharmaceuticals are employed, 2D images can 
be acquired using portable γ cameras, that display radioac-
tivity uptake distribution during surgical navigation [1]. This 
modality can be useful in the case of deep lesions, overlap-
ping of targets such as the injection site and SNs, or to check 
the surgical field after excision of the target lesion [7]. The 
use of this modality has been exploited in the SN excision in 
cases of pelvic tumours. In particular, the possibility to com-
pare real-time intraoperative findings with the preoperative 
SPECT/CT is useful in laparoscopic surgery, especially for 
iliac and para-aortic nodes [3, 127]. Nevertheless, the size of 
the detector, the limited manoeuvrability, and the costs have 
shifted use in favour of probes or conventional preoperative 
imaging [3, 128, 129].

To obtain 3D imaging, the concept of freehand SPECT 
has been developed [1]. The freehand SPECT technique may 
be particularly useful for internal organs, in which tracer 
administration is less accessible or 3D information is highly 
valuable, like uterine malignancies. In addition, the complex 
lymphatic drainage of these tumours can be challenging dur-
ing laparoscopic procedures. In patients with cervical and 
endometrial cancers, freehand SPECT was employed to iden-
tify SNs and guide their excision, providing a real time 3D 
image, which was useful to guide surgeons to the target [130].

Fusion of freehand SPECT with ultrasound has been 
attempted in patients with various malignancies, including 
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vulvar cancer. Co-registration of the hot spot with the lymph 
node visualised by ultrasound was achieved with a good rate 
of success, showing the potential usefulness of the proce-
dure [131]. The concept of freehand SPECT can be also 
extended to other modalities. For instance, instead of using 
a 1D γ probe, 3D surface images can be generated from 1D 
fluorescence probes as well as 1D magnetic probes [132]. 
The technology of freehand SPECT was initially developed 
for 3D surface imaging of beta radiation [133].

Fluorescence cameras

Fluorescence cameras provide real-time 2D images of in vivo 
fluorescent tracer distributions. Varying from open-surgery 
devices to laparoscopic ones, they use optical filters to display 
only the fluorescent light emitted by the tracer, cancelling any 
ambient light and most importantly the fluorescence excitation 
light. Newer and more complex setups include the possibil-
ity to acquire a white-light image next to the fluorescence 
one, to better understand the anatomical localisation of the 
fluorescent signal. A custom-made multispectral fluorescence 
camera system for intraoperative use was reported in vulvar 
cancer patients, undergoing SNB with ICG and blue dye [8].

Future directions

Robotic surgery is gaining momentum in the field of mini-
mally invasive surgery in gynaecological malignancies. 
Robot assisted SNB has been performed in vulvar, cervi-
cal and endometrial cancer patients, showing feasibility 
and potential to decrease short and long-term morbidity 
[134–136]. In addition, recent advances have let the inte-
gration of molecular imaging within the laparoscopic view 
of the surgeon. For instance, the digital environment created 
by virtual reality can be exploited pre- or intraoperatively, 
highlighting the anatomical structures and targets in rela-
tion with the surgical tools. Augmented reality visualisa-
tions allow the display of images directly on the patient, 
in the real surgical context [1]. The drawbacks of these 
technologies, such as poor registration accuracy and risk 
of improper interpretation, have reduced enthusiasm for 
such an approach. Nonetheless, technological improve-
ments through artificial intelligence could overcome these 
limits and support their clinical application [137]. These 
approaches have been mostly used in gynaecological set-
tings for benign pathologies, such as for dissection of uterine 
myomas. They have shown potential to guide the surgeon in 
cases of small or medium-sized myomas, that are difficult 
to detect [138]. Most recently, a phantom model was built 
to attempt real-time co-registration of preoperative SPECT 
with intraoperative CT, in order to integrate augmented 
reality guidance during SNB in endometrial cancer patients 

[139]. This preliminary work may pave the way for applica-
tion of these technologies in gynaecological clinical setting. 
Finally, financial aspects require a careful evaluation. To 
our knowledge, no studies described cost-effectiveness and 
cost-utility of image-guided surgery technologies in gynae-
cological cancers, comparing for instance different tracers 
and devices. These would be essential to allow reimburse-
ment, and consequently enable their widespread use.

Conclusions

In the field of gynaecology, molecular image–guided sur-
gery is increasingly used for a precise surgical guidance to 
increase resection accuracy and minimise surgical risk, thus 
improving patient outcome and quality of life. After success-
ful application of radio-guided SNB and SPECT, innova-
tion is leaning towards hybrid modalities, such as the hybrid 
tracer ICG-[99mTc]Tc-nanocolloid and the fusion of imaging 
approaches including SPECT/CT and PET/CT. Robotic sur-
gery, as well as augmented reality and virtual reality tech-
niques, is leading to application of these innovative tech-
nologies to the clinical setting, guiding surgeons towards 
a precise, personalised, and minimally invasive approach. 
Financial aspects might represent a limit in the clinical work-
up; thus, further studies are needed to investigate the cost-
effectiveness of both innovative agents and devices.
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