Skip to main content
Log in

The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [11C]UCB-J

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo.

Methods

We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21–83 years old). Partial volume correction was applied to the PET data.

Results

Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions.

Conclusion

MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

Reference

  1. Farokhian F, Yang C, Beheshti I, Matsuda H, Wu S. Age-related gray and white matter changes in normal adult brains. Aging Dis. 2017;8:899–909. https://doi.org/10.14336/AD.2017.0502.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weinberger DR, Radulescu E. Structural magnetic resonance imaging all over again. JAMA Psychiatry. 2021;78:11–2. https://doi.org/10.1001/jamapsychiatry.2020.1941.

    Article  PubMed  Google Scholar 

  3. Huttenlocher PR. Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 1979;163:195–205. https://doi.org/10.1016/0006-8993(79)90349-4.

    Article  CAS  PubMed  Google Scholar 

  4. Terry RD, Katzman R. Life span and synapses: will there be a primary senile dementia? Neurobiol Aging. 2001;22:347–8. https://doi.org/10.1016/s0197-4580(00)00250-5. (discussion 53-4).

    Article  CAS  PubMed  Google Scholar 

  5. Rogalski EJ, Gefen T, Shi J, Samimi M, Bigio E, Weintraub S, et al. Youthful memory capacity in old brains: anatomic and genetic clues from the Northwestern SuperAging Project. J Cogn Neurosci. 2013;25:29–36. https://doi.org/10.1162/jocn_a_00300.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nabulsi NB, Mercier J, Holden D, Carre S, Najafzadeh S, Vandergeten MC, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;57:777–84. https://doi.org/10.2967/jnumed.115.168179.

    Article  CAS  PubMed  Google Scholar 

  7. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra96. https://doi.org/10.1126/scitranslmed.aaf6667.

    Article  CAS  PubMed  Google Scholar 

  8. Cai Z, Li S, Matuskey D, Nabulsi N, Huang Y. PET imaging of synaptic density: a new tool for investigation of neuropsychiatric diseases. Neurosci Lett. 2019;691:44–50. https://doi.org/10.1016/j.neulet.2018.07.038.

    Article  CAS  PubMed  Google Scholar 

  9. Bartholome O, Van den Ackerveken P, Sanchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, et al. Puzzling out synaptic vesicle 2 family members functions. Front Mol Neurosci. 2017;10:148. https://doi.org/10.3389/fnmol.2017.00148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunn AR, Stout KA, Ozawa M, Lohr KM, Hoffman CA, Bernstein AI, et al. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A. 2017;114:E2253–62. https://doi.org/10.1073/pnas.1616892114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomograPHIC IMAGING. JAMA Neurol. 2018;75:1215–24. https://doi.org/10.1001/jamaneurol.2018.1836.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Finnema SJ, Nabulsi NB, Mercier J, Lin SF, Chen MK, Matuskey D, et al. Kinetic evaluation and test-retest reproducibility of [(11)C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab. 2018;38:2041–52. https://doi.org/10.1177/0271678X17724947.

    Article  CAS  PubMed  Google Scholar 

  13. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529. https://doi.org/10.1038/s41467-019-09562-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Finnema SJ, Toyonaga T, Detyniecki K, Chen MK, Dias M, Wang Q, et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [(11) C]UCB-J positron emission tomography study. Epilepsia. 2020;61:2183–93. https://doi.org/10.1111/epi.16653.

    Article  CAS  PubMed  Google Scholar 

  15. Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann Neurol. 2020;87:329–38. https://doi.org/10.1002/ana.25682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2020;16:974–82. https://doi.org/10.1002/alz.12097.

    Article  PubMed  PubMed Central  Google Scholar 

  17. D’Souza DC, Radhakrishnan R, Naganawa M, Ganesh S, Nabulsi N, Najafzadeh S, et al. Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Mol Psychiatry. 2021;26:3192–200. https://doi.org/10.1038/s41380-020-00891-4.

    Article  PubMed  Google Scholar 

  18. Radhakrishnan R, Skosnik PD, Ranganathan M, Naganawa M, Toyonaga T, Finnema S, et al. In vivo evidence of lower synaptic vesicle density in schizophrenia. Mol Psychiatry. 2021;26:7690–8. https://doi.org/10.1038/s41380-021-01184-0.

    Article  PubMed  Google Scholar 

  19. Holmes SE, Finnema SJ, Naganawa M, DellaGioia N, Holden D, Fowles K, et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Mol Psychiatry. 2022;27:2273–81. https://doi.org/10.1038/s41380-022-01465-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  21. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4. https://doi.org/10.1212/wnl.43.11.2412-a.

    Article  CAS  PubMed  Google Scholar 

  22. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94. https://doi.org/10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  23. Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp. 1999;8:272–84. https://doi.org/10.1002/(sici)1097-0193(1999)8:4%3c272::aid-hbm10%3e3.0.co;2-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22. https://doi.org/10.1093/cercor/bhg087.

    Article  PubMed  Google Scholar 

  25. Rossano S, Toyonaga T, Finnema SJ, Naganawa M, Lu Y, Nabulsi N, et al. Assessment of a white matter reference region for (11)C-UCB-J PET quantification. J Cereb Blood Flow Metab. 2020;40:1890–901. https://doi.org/10.1177/0271678X19879230.

    Article  CAS  PubMed  Google Scholar 

  26. Carson RE, Barker WC, Liow JS, Johnson CA. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Symp conf Rec. 2003;5:3281–5.

    Google Scholar 

  27. Jin X, Mulnix T, Gallezot JD, Carson RE. Evaluation of motion correction methods in human brain PET imaging–a simulation study based on human motion data. Med Phys. 2013;40:102503. https://doi.org/10.1118/1.4819820.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015.

    Article  PubMed  Google Scholar 

  29. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119-59. https://doi.org/10.1088/0031-9155/57/21/R119.

    Article  PubMed  Google Scholar 

  30. Lu Y, Toyonaga T, Naganawa M, Gallezot JD, Chen MK, Mecca AP, et al. Partial volume correction analysis for (11)C-UCB-J PET studies of Alzheimer’s disease. Neuroimage. 2021;238:118248. https://doi.org/10.1016/j.neuroimage.2021.118248.

    Article  PubMed  Google Scholar 

  31. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9. https://doi.org/10.1038/sj.jcbfm.9600493.

    Article  CAS  PubMed  Google Scholar 

  32. Finnema SJ, Rossano S, Naganawa M, Henry S, Gao H, Pracitto R, et al. A single-center, open-label positron emission tomography study to evaluate brivaracetam and levetiracetam synaptic vesicle glycoprotein 2A binding in healthy volunteers. Epilepsia. 2019;60:958–67. https://doi.org/10.1111/epi.14701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30:46–50. https://doi.org/10.1038/jcbfm.2009.190.

    Article  PubMed  Google Scholar 

  34. Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika. 1988;75:383–6. https://doi.org/10.1093/biomet/75.2.383.

    Article  Google Scholar 

  35. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, et al. Age-related changes in grey and white matter structure throughout adulthood. Neuroimage. 2010;51:943–51. https://doi.org/10.1016/j.neuroimage.2010.03.004.

    Article  PubMed  Google Scholar 

  36. Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex. 2004;14:966–73. https://doi.org/10.1093/cercor/bhh057.

    Article  PubMed  Google Scholar 

  37. Sowell ER, Thompson PM, Toga AW. Mapping changes in the human cortex throughout the span of life. Neuroscientist. 2004;10:372–92. https://doi.org/10.1177/1073858404263960.

    Article  PubMed  Google Scholar 

  38. Koole M, van Aalst J, Devrome M, Mertens N, Serdons K, Lacroix B, et al. Quantifying SV2A density and drug occupancy in the human brain using [(11)C]UCB-J PET imaging and subcortical white matter as reference tissue. Eur J Nucl Med Mol Imaging. 2019;46:396–406. https://doi.org/10.1007/s00259-018-4119-8.

    Article  CAS  PubMed  Google Scholar 

  39. Kijonka M, Borys D, Psiuk-Maksymowicz K, Gorczewski K, Wojcieszek P, Kossowski B, et al. Whole brain and cranial size adjustments in volumetric brain analyses of sex- and age-related trends. Front Neurosci. 2020;14:278. https://doi.org/10.3389/fnins.2020.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smart K, Liu H, Matuskey D, Chen MK, Torres K, Nabulsi N, et al. Binding of the synaptic vesicle radiotracer [(11)C]UCB-J is unchanged during functional brain activation using a visual stimulation task. J Cereb Blood Flow Metab. 2021;41:1067–79. https://doi.org/10.1177/0271678X20946198.

    Article  CAS  PubMed  Google Scholar 

  41. Mansur A, Rabiner EA, Comley RA, Lewis Y, Middleton LT, Huiban M, et al. Characterization of 3 PET tracers for quantification of mitochondrial and synaptic function in healthy human brain: (18)F-BCPP-EF, (11)C-SA-4503, and (11)C-UCB-J. J Nucl Med. 2020;61:96–103. https://doi.org/10.2967/jnumed.119.228080.

    Article  CAS  PubMed  Google Scholar 

  42. Michiels L, Delva A, van Aalst J, Ceccarini J, Vandenberghe W, Vandenbulcke M, et al. Synaptic density in healthy human aging is not influenced by age or sex: a (11)C-UCB-J PET study. Neuroimage. 2021;232:117877. https://doi.org/10.1016/j.neuroimage.2021.117877.

    Article  CAS  PubMed  Google Scholar 

  43. McGeer PL, McGeer EG, Suzuki JS. Aging and extrapyramidal function. Arch Neurol. 1977;34:33–5. https://doi.org/10.1001/archneur.1977.00500130053010.

    Article  CAS  PubMed  Google Scholar 

  44. Siddiqi Z, Kemper TL, Killiany R. Age-related neuronal loss from the substantia nigra-pars compacta and ventral tegmental area of the rhesus monkey. J Neuropathol Exp Neurol. 1999;58:959–71. https://doi.org/10.1097/00005072-199909000-00006.

    Article  CAS  PubMed  Google Scholar 

  45. Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J. Gender differences in human cortical synaptic density. Proc Natl Acad Sci U S A. 2008;105:14615–9. https://doi.org/10.1073/pnas.0803652105.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Esiri MM. Ageing and the brain. J Pathol. 2007;211:181–7. https://doi.org/10.1002/path.2089.

    Article  CAS  PubMed  Google Scholar 

  47. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21:187–221. https://doi.org/10.1515/revneuro.2010.21.3.187.

    Article  PubMed  Google Scholar 

  48. Bourgeois JP, Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci. 1993;13:2801–20. https://doi.org/10.1523/JNEUROSCI.13-07-02801.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem. 2010;113:1577–88. https://doi.org/10.1111/j.1471-4159.2010.06719.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Varnas K, Stepanov V, Halldin C. Autoradiographic mapping of synaptic vesicle glycoprotein 2A in non-human primate and human brain. Synapse. 2020;74:e22157. https://doi.org/10.1002/syn.22157.

    Article  CAS  PubMed  Google Scholar 

  51. Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46:219–25. https://doi.org/10.1038/clpt.1989.129.

    Article  CAS  PubMed  Google Scholar 

  52. Grandison MK, Boudinot FD. Age-related changes in protein binding of drugs: implications for therapy. Clin Pharmacokinet. 2000;38:271–90. https://doi.org/10.2165/00003088-200038030-00005.

    Article  CAS  PubMed  Google Scholar 

  53. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003;23:3295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Markesbery WR. Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly. Neurobiol Aging. 2007;28:1075–87. https://doi.org/10.1016/j.neurobiolaging.2006.05.018.

    Article  PubMed  Google Scholar 

  55. Pieperhoff P, Homke L, Schneider F, Habel U, Shah NJ, Zilles K, et al. Deformation field morphometry reveals age-related structural differences between the brains of adults up to 51 years. J Neurosci. 2008;28:828–42. https://doi.org/10.1523/JNEUROSCI.3732-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Terribilli D, Schaufelberger MS, Duran FL, Zanetti MV, Curiati PK, Menezes PR, et al. Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging. 2011;32:354–68. https://doi.org/10.1016/j.neurobiolaging.2009.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14:721–30. https://doi.org/10.1093/cercor/bhh032.

    Article  PubMed  Google Scholar 

  58. Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage. 2011;55:468–78. https://doi.org/10.1016/j.neuroimage.2010.12.032.

    Article  PubMed  Google Scholar 

  59. Nugent S, Tremblay S, Chen KW, Ayutyanont N, Roontiva A, Castellano CA, et al. Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging. 2014;35:1386–95. https://doi.org/10.1016/j.neurobiolaging.2013.11.027.

    Article  CAS  PubMed  Google Scholar 

  60. Shen X, Liu H, Hu Z, Hu H, Shi P. The relationship between cerebral glucose metabolism and age: report of a large brain PET data set. PLoS One. 2012;7:e51517. https://doi.org/10.1371/journal.pone.0051517.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim IJ, Kim SJ, Kim YK. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography. Acta Radiol. 2009;50:1169–74. https://doi.org/10.3109/02841850903258058.

    Article  PubMed  Google Scholar 

  62. Knopman DS, Jack CR Jr, Wiste HJ, Lundt ES, Weigand SD, Vemuri P, et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging. 2014;35:2096–106. https://doi.org/10.1016/j.neurobiolaging.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med. 1995;36:1141–9.

    CAS  PubMed  Google Scholar 

  64. Kalpouzos G, Chetelat G, Baron JC, Landeau B, Mevel K, Godeau C, et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging. 2009;30:112–24. https://doi.org/10.1016/j.neurobiolaging.2007.05.019.

    Article  CAS  PubMed  Google Scholar 

  65. Chen MK, Mecca AP, Naganawa M, Gallezot JD, Toyonaga T, Mondal J, et al. Comparison of [(11)C]UCB-J and [(18)F]FDG PET in Alzheimer’s disease: a tracer kinetic modeling study. J Cereb Blood Flow Metab. 2021;41:2395–409. https://doi.org/10.1177/0271678X211004312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2017;57:36–46. https://doi.org/10.1016/j.neurobiolaging.2017.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matuskey D, Pittman B, Planeta-Wilson B, Walderhaug E, Henry S, Gallezot JD, et al. Age effects on serotonin receptor 1B as assessed by PET. J Nucl Med. 2012;53:1411–4. https://doi.org/10.2967/jnumed.112.103598.

    Article  CAS  PubMed  Google Scholar 

  68. Nord M, Cselenyi Z, Forsberg A, Rosenqvist G, Tiger M, Lundberg J, et al. Distinct regional age effects on [11C]AZ10419369 binding to 5-HT1B receptors in the human brain. Neuroimage. 2014;103:303–8. https://doi.org/10.1016/j.neuroimage.2014.09.040.

    Article  CAS  PubMed  Google Scholar 

  69. DuBois JM, Rousset OG, Rowley J, Porras-Betancourt M, Reader AJ, Labbe A, et al. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [(11)C]ABP688 PET. Eur J Nucl Med Mol Imaging. 2016;43:152–62. https://doi.org/10.1007/s00259-015-3167-6.

    Article  CAS  PubMed  Google Scholar 

  70. Mecca AP, Rogers K, Jacobs Z, McDonald JW, Michalak HR, DellaGioia N, et al. Effect of age on brain metabotropic glutamate receptor subtype 5 measured with [(18)F]FPEB PET. Neuroimage. 2021;238:118217. https://doi.org/10.1016/j.neuroimage.2021.118217.

    Article  CAS  PubMed  Google Scholar 

  71. Kato H, Shimosegawa E, Isohashi K, Kimura N, Kazui H, Hatazawa J. Distribution of cortical benzodiazepine receptor binding in right-handed healthy humans: a voxel-based statistical analysis of iodine 123 iomazenil SPECT with partial volume correction. AJNR Am J Neuroradiol. 2012;33:1458–63. https://doi.org/10.3174/ajnr.A3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tobinaga M, Suzuki Y, Fujinaka H, Ozawa T, Nakajima T. Age-related increase in GABAA receptor distribution in the prefrontal cortex. J Clin Neurosci. 2019;64:106–10. https://doi.org/10.1016/j.jocn.2019.03.044.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply thank all the staff of the Yale PET Center for their expert assistance.

Funding

This study was supported by grants UL1 TR000142 from the National Center for Advancing Translational Sciences (NCATS), and T32GM136651 from the National Institute of General Medical Sciences, components of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Toyonaga.

Ethics declarations

Disclaimer

The AQ contents of this article are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyonaga, T., Khattar, N., Wu, Y. et al. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [11C]UCB-J. Eur J Nucl Med Mol Imaging 51, 1012–1022 (2024). https://doi.org/10.1007/s00259-023-06487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06487-8

Keywords

Navigation