Skip to main content

Advertisement

Log in

A single-center, multi-factor, retrospective study to improve the diagnostic accuracy of primary prostate cancer using [68Ga]Ga-PSMA-11 total-body PET/CT imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To improve the diagnostic accuracy of initial detection in patients with suspected primary prostate cancer (PCa).

Methods

Eighty-four patients who underwent Gallium-68–labeled prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) total-body positron emission tomography/computed tomography (PET/CT) imaging before treatment in our department were enrolled. The maximum standard uptake value (SUVmax) of the prostate (SUVmax-PSMA), liver (SUVmax-PSMA-L), and mediastinal blood pool (SUVmax-PSMA-M) was measured using [68Ga]Ga-PSMA-11 total-body PET/CT imaging. The [68Ga]Ga-PSMA-11 derived metabolic tumor volume (MTV), the total lesion (TLP), and the cross-sectional areas of focal concentration in the prostate (CAP) were also determined. Besides, the prostate-specific antigen (PSA) levels and the above imaging characteristics were analyzed using receiver operating characteristic curves to identify the cutoff value to improve the diagnostic accuracy of suspected PCa. Finally, a multivariate regression analysis was conducted to discover the independent predictor to improve the diagnostic accuracy on [68Ga]Ga-PSMA-11 total-body imaging.

Results

There was no significant difference between the PCa and Non-PCa groups in age, height, weight, injected dose, except for the PSA levels, the SUVmax-PSMA, TLP, MTV, and CAP. Besides, the SUVmax-PSMA-T/L and SUVmax-PSMA-T/M derived from SUVmax-PSMA were both significantly different. In addition, the areas under the curve of PSA levels, SUVmax-PSMA, SUVmax-PSMA-T/L, SUVmax-PSMA-T/M, TLP, MTV, and CAP to predict PCa on [68Ga]Ga-PSMA-11 imaging were 0.620 (95% confidence interval (CI) 0.485–0.755), 0.864 (95% CI 0.757–0.972), 0.819 (95% CI 0.704–0.935), 0.876 (95% CI 0.771–0.980), 0.845 (95% CI 0.741–0.949), 0.820 (95% CI 0.702–0.938), 0.627 (95% CI 0.499–0.754), respectively. However, a multivariate regression analysis showed that SUVmax-PSMA was an independent predictor, with a cutoff value of 11.5 and an odds ratio of 1.221.

Conclusion

The SUVmax-PSMA with a cutoff value of 11.5 was an independent predictor to improve the diagnostic accuracy of PCa on [68Ga]Ga-PSMA-11 total-body imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset used and/or analyzed in the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Prcic A, Begic E, Hiros M. Usefulness of total PSA value in prostate diseases diagnosis. Acta Inform Med. 2016;24(3):156–61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lomas DJ, Ahmed HU. All change in the prostate cancer diagnostic pathway. Nat Rev Clin Oncol. 2020;17(6):372–81.

    Article  PubMed  Google Scholar 

  4. Ghai S, Haider MA. Multiparametric-MRI in diagnosis of prostate cancer. Indian J Urol. 2015;31(3):194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhen L, Liu X, Yegang C, Yongjiao Y, Yawei X, Jiaqi K, et al. Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate cancer: a systematic review and meta-analysis. BMC Cancer. 2019;19(1):1244.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B, et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology. 2016;280(3):793–804.

    Article  PubMed  Google Scholar 

  7. Richenberg J, Logager V, Panebianco V, Rouviere O, Villeirs G, Schoots IG. The primacy of multiparametric MRI in men with suspected prostate cancer. Eur Radiol. 2019;29(12):6940–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid (6)(8)Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74.

    Article  PubMed  Google Scholar 

  9. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014;41(5):887–97.

    Article  CAS  PubMed  Google Scholar 

  10. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous (68)Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70(5):829–36.

    Article  CAS  PubMed  Google Scholar 

  11. Uprimny C, Kroiss AS, Decristoforo C, Fritz J, von Guggenberg E, Kendler D, et al. (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44(6):941–9.

    Article  CAS  PubMed  Google Scholar 

  12. Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77(4):403–17.

    Article  PubMed  Google Scholar 

  13. Fendler WP, Ferdinandus J, Czernin J, Eiber M, Flavell RR, Behr SC, et al. Impact of (68)Ga-PSMA-11 PET on the management of recurrent prostate cancer in a prospective single-arm clinical trial. J Nucl Med. 2020;61(12):1793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Keefe DS, Su SL, Bacich DJ, Horiguchi Y, Luo Y, Powell CT, et al. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim Biophys Acta. 1998;1443(1–2):113–27.

    Article  CAS  PubMed  Google Scholar 

  15. Mhawech-Fauceglia P, Zhang S, Terracciano L, Sauter G, Chadhuri A, Herrmann FR, et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using multiple tumour tissue microarray technique. Histopathology. 2007;50(4):472–83.

    Article  CAS  PubMed  Google Scholar 

  16. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009;15(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  17. Paschalis A, Sheehan B, Riisnaes R, Rodrigues DN, Gurel B, Bertan C, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76(4):469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pizzuto DA, Muller J, Muhlematter U, Rupp NJ, Topfer A, Mortezavi A, et al. The central zone has increased (68)Ga-PSMA-11 uptake: “Mickey Mouse ears” can be hot on (68)Ga-PSMA-11 PET. Eur J Nucl Med Mol Imaging. 2018;45(8):1335–43.

    Article  CAS  PubMed  Google Scholar 

  19. Ferraro DA, Rupp NJ, Donati OF, Messerli M, Eberli D, Burger IA. 68Ga-PSMA-11 PET/MR can be false positive in normal prostatic tissue. Clin Nucl Med. 2019;44(4):e291–3.

    Article  PubMed  Google Scholar 

  20. Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Badawi RD, Cherry SR, Qi J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13): 135010.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan H, Sui X, Yin H, Yu H, Gu Y, Chen S, et al. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966–75.

    Article  CAS  PubMed  Google Scholar 

  25. Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48(8):2373–83.

    Article  PubMed  Google Scholar 

  26. Lv J, Yin H, Yu H, Liu G, Shi H. The feasibility of ultralow-activity (18)F-FDG dynamic PET imaging in lung adenocarcinoma patients through total-body PET/CT scanner. Ann Nucl Med. 2022;36(10):887–96.

    Article  CAS  PubMed  Google Scholar 

  27. Hu Y, Liu G, Yu H, Wang Y, Li C, Tan H, et al. Feasibility of acquisitions using total-body PET/CT with an ultra-low (18)F-FDG activity. J Nucl Med. 2022;63(6):959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu C, Liu T, Zhang Z, Zhang N, Du P, Yang Y, et al. (68)Ga-PSMA PET/CT combined with PET/ultrasound-guided prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsy results. J Nucl Med. 2020;61(9):1314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Rossum PSN, Fried DV, Zhang L, Hofstetter WL, Ho L, Meijer GJ, et al. The value of (18)F-FDG PET before and after induction chemotherapy for the early prediction of a poor pathologic response to subsequent preoperative chemoradiotherapy in oesophageal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2017;44(1):71–80.

    Article  PubMed  Google Scholar 

  30. Mikhaeel NG, Smith D, Dunn JT, Phillips M, Moller H, Fields PA, et al. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur J Nucl Med Mol Imaging. 2016;43(7):1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Husby JA, Reitan BC, Biermann M, Trovik J, Bjorge L, Magnussen IJ, et al. Metabolic tumor volume on 18F-FDG PET/CT improves preoperative identification of high-risk endometrial carcinoma patients. J Nucl Med. 2015;56(8):1191–8.

    Article  CAS  PubMed  Google Scholar 

  32. Satapathy S, Singh H, Kumar R, Mittal BR. Diagnostic accuracy of (68)Ga-PSMA PET/CT for initial detection in patients with suspected prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol. 2021;216(3):599–607.

    Article  PubMed  Google Scholar 

  33. Shetty D, Patel D, Le K, Bui C, Mansberg R. Pitfalls in Gallium-68 PSMA PET/CT interpretation—a pictorial review. Tomography. 2018;4(4):182–93.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jain H, Sood R, Faridi MS, Goel H, Sharma U. Role of 68Ga-PSMA-PET/CT for the detection of primary prostate cancer prior to biopsy: a prospective study. Cent European J Urol. 2021;74(3):315–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189(2):323–8.

    Article  PubMed  Google Scholar 

  36. de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol. 2014;202(2):343–51.

    Article  PubMed  Google Scholar 

  37. Kuru TH, Fütterer JJ, Schiffmann J, Porres D, Salomon G, Rastinehad AR. Transrectal ultrasound (US), contrast-enhanced US, real-time elastography, HistoScanning, magnetic resonance imaging (MRI), and MRI-US fusion biopsy in the diagnosis of prostate cancer. Eur Urol Focus. 2015;1(2):117–26.

    Article  PubMed  Google Scholar 

  38. Amin A, Blazevski A, Thompson J, Scheltema MJ, Hofman MS, Murphy D, et al. Protocol for the PRIMARY clinical trial, a prospective, multicentre, cross-sectional study of the additive diagnostic value of gallium-68 prostate-specific membrane antigen positron-emission tomography/computed tomography to multiparametric magnetic resonance imaging in the diagnostic setting for men being investigated for prostate cancer. BJU Int. 2020;125(4):515–24.

    Article  CAS  PubMed  Google Scholar 

  39. Emmett L, Papa N, Buteau J, Ho B, Liu V, Roberts M, et al. The PRIMARY score: using intraprostatic (68)Ga-PSMA PET/CT patterns to optimize prostate cancer diagnosis. J Nucl Med. 2022;63(11):1644–50.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Shanghai Municipal Key Clinical Specialty Project (grant number: SHSLCZDZK03401), the Major Science and Technology Projects for Major New Drug Creation (grant number: 2019ZX09302001), the Shanghai Science and Technology Committee program (grant number: 20DZ2201800), the Three-year Action Plan of Clinical Skills and Innovation of Shanghai Hospital Development Center (grant number: SHDC2020CR3079B), and the Shanghai Sailing Program (19YF1408200).

Author information

Authors and Affiliations

Authors

Contributions

JL and HS were responsible for the design of the study. JL, HY, and HY were involved in data acquisition. JL, HY, and YS participated in data analysis. JL and HS drafted the manuscript and improved the performance of the research.

Corresponding author

Correspondence to Hongcheng Shi.

Ethics declarations

Ethics approval

This study was approved by the institutional review board of Zhongshan Hospital, Fudan University (IRB number: B2020-266R). Written informed consent was obtained from all participants.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Yu, H., Yin, H. et al. A single-center, multi-factor, retrospective study to improve the diagnostic accuracy of primary prostate cancer using [68Ga]Ga-PSMA-11 total-body PET/CT imaging. Eur J Nucl Med Mol Imaging 51, 919–927 (2024). https://doi.org/10.1007/s00259-023-06464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06464-1

Keywords

Navigation