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Medical imaging has its earliest roots in 1895 when Wilhelm 
Roentgen discovered X-ray, providing physicians with the 
first approach to image internal conditions of human body 
[1]. After that, multiple imaging methods were developed 
and optimized in succession based on various imaging prin-
ciples, such as computed tomography (CT) [2], magnetic 
resonance imaging (MRI) [3], and positron emission tomog-
raphy (PET) [4]. The advent of these imaging techniques has 
rendered medical imaging a crucial pillar of clinical practice 
and a fundamental domain for the realization of precision 
medicine.

With the ongoing advancements in biological and instru-
mental science, medical imaging technologies have made 
remarkable progress in recent decades. The overall struc-
tural, functional, and molecular alterations of the individuals 
could be obtained non-invasively through multiple imaging 
methods [5]. Especially, with the development of molecular 
imaging, pathophysiological processes at the cellular and 
molecular levels can be precisely visualized, characterized, 

and quantified [6–8]. The continuous advancement of imag-
ing equipment and probes has further enhanced the capac-
ity of molecular imaging to evaluate pathophysiological 
alternations noninvasively, thereby making the diagnostic 
capabilities increasingly approach the level of pathological 
practice. Recently, a novel pattern of pathological practice 
termed “transpathology,” which could comprehensively 
depict pathophysiological events in vivo from a multiscale 
perspective, holds the great potential to facilitate the trans-
lational processes from the bench to the bedside and drive 
traditional medicine towards precision medicine [9].

In parallel with the advancement of medical imaging 
technology, medical image analysis methods have also 
experienced rapid development, with an increasing focus 
on quantification and intelligence. In 2012, “radiomics” was 
proposed as an innovative approach to image analysis, using 
automated high-throughput extraction of large amounts of 
quantitative features from standard-of-care medical images 
[10]. With the assistance of artificial intelligence (AI), radi-
omics and other medical image analysis approaches could 
potentially aid more complex decision-making tasks, such 
as disease prognostication, prediction of response to differ-
ent treatment modalities, recognition of treatment-related 
changes, and discovery of imaging representations of pheno-
typic and genotypic features associated with prognosis [11]. 
However, the existing AI-based methodologies for medical 
image analysis encounter various obstacles. The dominant 
research paradigm heavily depends on a substantial quantity 
of annotated training samples to construct models tailored 
to particular tasks, which is heavily reliant on extensive 
medical imaging datasets [12]. Nevertheless, the scarcity of 
annotated medical data restricts the model’s generalizability, 
impeding its potential to achieve robust transferability across 
diverse tasks and diseases [13]. Moreover, a significant pro-
portion of existing medical image intelligence models pre-
dominantly rely on image data, with limited incorporation of 
textual language data. In clinical practice, radiologists often 
rely on extensive textual information during the process of 
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medical image diagnoses, leading to a stark disparity with 
the model’s architecture. This incongruity hampers the mod-
el’s ability to perform certain image-text tasks, including 
the automated generation of diagnostic reports for images.

Recently emerged large language models (LLMs) bring-
ing a ray of hope to address the above issues, especially Chat 
Generative Pre-Trained Transformer (ChatGPT) developed 
by OpenAI [14]. This model is trained using a large number 
of textual corpora, acquiring massive knowledge that can 
be used for various natural language processing tasks, such 
as language understanding, text generation, and machine 
translation. It possesses the capability to receive user input 
and generate coherent natural language responses, thereby 
accomplishing seamless and articulate conversations. Recent 
studies indicated that ChatGPT exhibits diverse application 
scenarios with the domain of medical imaging, including 
automated reporting, patient communication, addressing 
specific technical inquiries [15], and educational purposes 
[16]. However, the limited availability of high-quality medi-
cal data in the pre-training dataset of GPT-3.5 has resulted in 
certain constraints on its accuracy when providing responses 
to medical inquiries. Furthermore, its incapability to handle 
image inputs hinders its applicability in the field of medical 
imaging. Although the updated GPT-4.0 possesses the abil-
ity to process image inputs, it still demonstrates relatively 
restricted proficiency in medical image recognition [17].

The Visual-Linguistic Pre-training (VLP) models exhibit 
the capacity to acquire transferable visual and linguistic 
attributes by means of pre-training on extensive multilingual 
data that encompasses both language and vision [18]. Within 

the field of medicine, the BiomedCLIP model [19], which 
is based on the Contrastive Language-Image Pre-training 
(CLIP) framework [20], has exhibited improved zero-shot 
predictive abilities, making it well-suited for medical image 
recognition tasks. Additionally, PubMedCLIP has demon-
strated exceptional performance in tasks involving reciprocal 
retrieval of information between textual and visual modali-
ties [21]. These VLP models have broadened the range of 
tasks applicable to medical imaging, enabling the seamless 
integration of textual and visual data. Nevertheless, there is 
still potential for enhancing the precision of task execution.

Herein, we propose the concept of medical image GPT 
(MI-GPT), a pre-training foundation model that predomi-
nantly utilizes medical imaging as a primary data source, 
while also integrating multi-omics data and electronic health 
records, which might be the future direction of foundation 
model for application in the medical imaging field in clini-
cal practice (Fig. 1). The data formats used for MI-GPT can 
be derived from either pure image data, pure text data, or a 
combination of both image and text information.

To enhance the interpretability and generalizability of 
MI-GPT models in clinical practice, it is crucial to foster 
inter-institutional and multi-disciplinary research collabo-
rations by training models on extensive datasets obtained 
from various medical centers, scanners, and protocols, with 
a focus on disease detection, segmentation, and classification 
tasks in specific application scenarios. Furthermore, through 
the integration of diverse data types (e.g., text, images, and 
videos) along with multidimensional data (e.g., genomics, 
proteomics, transcriptomics, and phenomics), the future 

Fig. 1   The development of medical imaging modalities and image 
analysis approaches. With the continuous advancements in the fields 
of biological and instrumental sciences, medical imaging technolo-
gies have progressed from unimodal structural imaging towards 
multimodal structural–functional imaging. Simultaneously, there is 
a growing inclination towards the intelligent automation of image 
analysis methodologies, shifting from subjective evaluations to more 

accurate quantitative assessments. Considering the continuous pro-
gress in foundational models within contemporary medical research, 
we believe that the future integration of medical foundational models 
customized for specific pathophysiological conditions, such as medi-
cal image Generative Pre-Trained Transformer (MI-GPT), will sub-
stantially drive the advancement of precision medicine
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multi-modality MI-GPT models hold enormous promise for 
acquiring more comprehensive understanding of patients’ 
condition, thereby facilitating the potential for achieving 
more precise disease diagnoses and formulating individual-
ized therapeutic strategies [22, 23].

The progression of MI-GPT models holds potential for 
the advancement of clinical applications that cater to diverse 
user bases and disciplines (Fig. 2). One prominent applica-
tion is that they can aid radiologists in their workflow by 
automating the generation of structured radiology reports 
and describing abnormalities and findings, while also tak-
ing into account the patient’s history. Clinicians can receive 
additional support from MI-GPT through the combination 
of text reports and interactive visualizations, which may 
include the highlighting of the corresponding region for 
each phrase. Additionally, MI-GPT can assist clinicians by 
integrating image, language, and audio modalities, enabling 
real-time decision-making in clinical practice (e.g., pre-
treatment comprehensive evaluation, adjustment of surgical 
alternatives during surgery, monitoring in vivo drug deliv-
ery and therapeutic response), leading to more efficient and 
effective patient management and healthcare. Furthermore, 
the MI-GPT is expected to predict the risk of a certain dis-
ease in the future based on the patient’s previous and current 
conditions. Through extracting meaningful information from 
a patient’s time series data (e.g., imaging, vital laboratory 
parameters, and clinical notes), the MI-GPT possess the abil-
ity to provide a comprehensive summary of the patient’s 
current clinical state, while also projecting potential future 
states and offering treatment recommendations. We believe 
that MI-GPT can also be utilized as a chatbot to leverage 

multimodal data and construct a holistic understanding of 
a patient’s condition. It possesses the capability to decipher 
diverse data formats and engage in interactive conversa-
tions with patients to provide detailed medical advice and 
explanations, which will be crucial for the comfortable and 
precise medicine in the future.
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