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The ability to “see” has been a clinical necessity. Although 
the discovery of X-ray sparked the idea of seeing through 
and inside of our body and propelled the development of 
modern medicine, it was the advent of molecular imaging 
that has been driving the ongoing clinical shift toward indi-
vidualized and precision healthcare [1, 2]. Nuclear medicine 
techniques, including positron emission tomography (PET) 
and single photon emission computed tomography (SPECT), 
enable us to appreciate the complex structural and molecular 
dynamics that play out in our bodies. The ability to see how 
drug molecules metabolize, to observe how biological pro-
cesses progress, and to visualize how cells and organs func-
tion is an incredible leap forward in understanding human 
health and safeguarding it.

As our observations expand, so does our desire to under-
stand. While [18F]FDG PET/CT has become a clinical rou-
tine to inform the status of glucose metabolism for diagnosis 
and staging of cancers, it was not until recently that research-
ers confirming tumor-recruited immune cells are the true 
major source of increased FDG uptake [3]. Similar cases 
are [68Ga]/[177Lu]-PSMA tracers for prostate cancer thera-
nostics; recent evidence has confirmed that these tracers are 
also good for imaging and treatment of non-prostate cancers 
such as hepatocellular carcinoma by targeting angiogenesis 
[4, 5]. Fibroblast activating protein (FAP)-targeted agents 

are rapidly shaping the clinical management of various kinds 
of diseases, especially cancers [6, 7]. Meanwhile, massive 
preclinical studies are being conducted to improve the thera-
peutic efficacies [8–10]. A similar example goes with C-X-C 
chemokine receptor 4 (CXCR4)-targeted radiopharmaceu-
ticals [11, 12]. These findings highlight the importance of 
preclinical imaging research and translational studies in 
updating our knowledge, guiding better diagnosis and treat-
ment, generating personalized treatment plan, and expanding 
the current landscape of precision medicine.

To facilitate clearer, deeper, and better molecular imaging, 
interdisciplinary efforts are called upon. In response to the cur-
rent shortage of specific imaging tracers, several novel nuclear 
imaging probes, in the forms of small molecules, peptides, 
oligonucleotides [13], antibodies [14–16], and antibody frag-
ments, have been developed and evaluated in not only animals 
but also first-in-human studies. New tracers demand updated 
theories on “structure-effect” relationships [17], and stud-
ies regarding the choice of radionuclides, chelators, linkers, 
functional groups, molecular modifications, and overall drug 
pharmacokinetics have been another research hot spot [18]. 
Other than drug development to see disease lesions clearer, 
accurate image quantification and reconstruction have been 
vital in helping researchers and clinicians understand disease 
progress and underlying mechanisms. Traditional theory on 
PET and SPECT image spatial-temporal resolution and sensi-
tivity has been challenged by modern techniques. New imag-
ing machines, faster reconstruction algorithms, reconstruction-
free PET imaging [19], and the implementation of artificial 
intelligence (AI) have encouraged deeper research in the fields 
of nuclear medicine. Total-body PET machine has awed many 
of us since it undoubtedly shows the potential to change clini-
cal practice and preclinical tracer development. Very recently, 
scientists reported a newly developed tracing algorithm with 
the ability of probing one single cell on the whole-body level 
[20]. Another latest study shows that new imaging methods 
can differentiate co-administrated PET and SPECT isotopes 
with excellent image quality and quantification accuracy [21]. 
In the field of antibody theranostics [14], molecular imaging 
of pivotal biomarkers on the tumor cells [22, 23] and immune 
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cells [24–26] broadened our understanding of the expression 
spectrum of those biomarkers across the body, facilitated pre-
cise evaluation of specific types of cancers, and preliminary 
enabled better clinical management of those diseases. Mean-
while, exquisite methods and toolbox are being developed for 
more facile total synthesis [27–29] and labeling of proteins/
antibodies [30–32]. Along with the stride in molecular imag-
ing, exciting progress has been made in terms of pre-targeted 
radioimmunotherapy [33] and targeted alpha therapy [34–36].

These exciting advances across various aspects of pre-
clinical imaging and theranostics encouraged us to organize 
this collection on “Preclinical Molecular Imaging and Can-
cer Theranostics.” As we celebrate the 50th anniversary of 
the European Journal of Nuclear Medicine and Molecular 
Imaging [37], we are immensely grateful and humbled for the 
opportunity to host this collection, gathering opinions from 
researchers and clinical experts, on the latest development 
of molecular imaging tracers, theranostic agents, imaging 
technologies, and clinical translation. Despite we added the 
attribute “preclinical” in the title, we do welcome submissions 
reporting clinical evaluation of novel radiopharmaceuticals. 
Although clinical translation of radiopharmaceuticals should 
aim to solve unmet clinical demand, preclinical studies are 
designed to address challenges in various fields. We have care-
fully selected 35 research articles to include in the collection 
(https://​link.​sprin​ger.​com/​colle​ctions/​ifdgb​higbj) and look for-
ward to receiving exciting and inspiring work on molecular 
imaging and cancer theranostics enriching the collection. We 
genuinely believe that, through the power of molecular imag-
ing, our ability to “see” would stand firmly in the realm of 
cancer theranostics and reach out toward the vast possibilities 
of medical exploration, on all frontiers, for all of us.
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