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Abstract
Purpose  Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma 
(LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation 
in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep 
learning for prognostic prediction in LA-NPC patients.
Methods  A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [18F]
FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model 
(DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. 
The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used 
for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) 
nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) 
and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the 
proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using 
Kaplan–Meier method and compared with the observed PFS probability.
Results  Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785–0.851), 0.752 (95% CI: 
0.638–0.865), and 0.717 (95% CI: 0.641–0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822–0.895), 0.769 (95% 
CI: 0.642–0.896), and 0.730 (95% CI: 0.634–0.826) in the training, internal validation, and external validation cohorts, 
which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided 
patients into significantly different high- and low-risk groups.
Conclusion  Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in 
LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.
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Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial malig-
nancy arising from the nasopharyngeal mucosal lining [1], 
with high prevalence rates in east and southeast Asia [2]. 
About 70%-80% of NPC patients are categorized as locore-
gionally advanced NPC (LA-NPC) (Tumor-Node-Metastasis 

(TNM) stage III or IVa) according to the 8th edition of 
American Joint Committee on Cancer (AJCC)/Union for 
International Cancer Control (UICC) staging system [3]. 
The primary therapeutic regimen for NPC is radiation ther-
apy (RT) with or without chemotherapy due to its radiosen-
sitivity [4]. However, despite the improvement in treatment, 
due to locoregional recurrences and distant metastasis, the 
5-year survival rates of LA-NPC patients is still a persistent 
problem, usually ranging from 10 to 40% [5]. Under this 
circumstance, pretreatment prognosis is a major concern for 
LA-NPC patients, which is conducive to guide the individu-
alized therapeutic regimen. Specifically, based on the pre-
treatment prognosis, patients could be stratified into different 
risk groups with different therapeutic regimens applied, and 
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this has been reported to potentially improve the patients’ 
overall survival outcomes [6].

TNM staging system is widely used for prognostic pre-
diction and patient stratification [7–9]. However, despite 
the fact that patients with the same TNM stage receive the 
same treatment, large variations in prognosis exists due to 
the heterogeneous nature of tumor microenvironment [10]. 
Image-derived biomarkers, such as the standardized uptake 
value (SUV) and metabolic tumor volume (MTV) derived 
from [18F]-fluorodeoxyglucose ([18F]FDG) positron emis-
sion tomography/computed tomography (PET/CT), can pro-
vide promising prognostic information for NPC [11, 12]. 
Nevertheless, these factors are limited in clinical practice as 
they are arduous to represent intra-tumor information such 
as tumor texture, intensity, heterogeneity, and morphology. 
Therefore, a reliable and accurate prognostic prediction 
model is needed to predict their progression-free survival 
(PFS), and to distinguish high-risk from low-risk patients. 
Such prediction will ultimately facilitate the formulation of 
therapeutic regimens and improve patients’ overall survival 
outcomes.

Radiomics is a widely recognized computational method 
for prognostic prediction, which extracts high-dimensional 
handcrafted features from medical images to characterize 
intra-tumor information and then models the relevance 
between the features and prognostic outcomes through 
statistical methods [13, 14]. Radiomics has been widely 
used for prognostic prediction in various cancers including 
NPC [15–17]. However, the extraction of radiomics fea-
tures requires tumor segmentation masks as the guidance, 
which inevitably brings an additional segmentation step 
into the radiomics pipeline. In addition, radiomics features 
are extracted from the segmented regions, which are usu-
ally limited to primary and metastatic lesions [5, 18]. This 
suggests that the extracted radiomics features may have dif-
ficulties in representing the prognostic information outside 
of malignant lesions (e.g., adjacent tissue invasion). There 
have been attempts at leveraging lymph node segmentation 
for radiomics analysis [19–21]. However, lymph node seg-
mentation is intractable and the adjacent tissue invasion has 
not been considered yet. This limitation is more critical for 
LA-NPC patients, as many vital tissues and organs adjacent 
to the nasopharynx (e.g., brain, ethmoidal sinus, and orbit) 
might have already been invaded by LA-NPC [22].

Deep learning is an alternative approach to prognostic 
prediction and is becoming popular in the literature [15, 
23, 24]. Deep survival models based on deep learning usu-
ally adopt convolutional neural networks (CNNs) to extract 
image features and then perform end-to-end prediction from 
medical images, where tumor segmentation masks are often 
not required [25]. Without tumor masks as constraints, deep 
survival models may potentially leverage the prognostic 
information existing within the entire images. Deep survival 

models have demonstrated the potential to outperform con-
ventional radiomics-based prognostic prediction models 
[26–28]. However, performing end-to-end prediction with-
out using tumor masks introduces interference from non-
relevant background information and incurs difficulties in 
extracting tumor-specific information. Recently, multi-task 
deep survival models were explored to perform prognos-
tic prediction jointly with tumor segmentation [29–31], 
which implicitly guided the model to extract tumor-related 
information while not discarding out-of-tumor information. 
However, the value of multi-task deep learning for prog-
nostic prediction in LA-NPC has not been validated with 
large patient cohorts. In addition, deep survival models are 
limited by the ‘block box’ nature [32], which undermines 
their generalizability in clinical practice.

Nomograms serve as a common tool for guiding individu-
alized treatments as they can simplify complicated prog-
nostic models to numerical estimate of survival probability 
and provide a clear visual illustration of the factors lead-
ing to the prediction [33, 34]. Zhang et al. [5] developed a 
multiparametric magnetic resonance imaging (MRI)-based 
radiomic nomogram, which provides an illustrative exam-
ple of precision medicine and prognostic prediction. Peng 
et al. [15] developed a deep learning FDG-PET/CT-based 
nomogram that may act as an individual chemotherapy (IC) 
indicator in advanced NPC. Pan et al. [3] developed a radi-
omic nomogram with better prognostic performance than 
the 8th edition of AJCC/UICC staging system. Neverthe-
less, it has been reported with an external validation cohort 
that Pan et al.’s nomogram underestimated the 5-year overall 
survival (OS) of LA-NPC patients [35]. Therefore, a more 
reliable and accurate prognostic nomogram is still needed 
for LA-NPC patients.

In this study, we aim to evaluate the value of multi-task 
deep learning for prognostic prediction in LA-NPC patients 
with a large database acquired from two medical centers. We 
adopted the state-of-the-art deep multi-task survival model 
(DeepMTS) [29] for joint prognostic prediction and tumor 
segmentation from pretreatment FDG-PET/CT images, 
which predicted a survival risk score (DeepMTS-Score) and 
a tumor segmentation mask for individual LA-NPC patient. 
The DeepMTS-Score can be directly used for prognostic 
prediction, while the predicted tumor masks were lever-
aged for prognostic prediction through radiomics analysis 
(AutoRadio-Score). We further developed a multi-task deep 
learning-based radiomic (MTDLR) nomogram by integrat-
ing DeepMTS-Score, AutoRadio-Score, and clinical data, so 
as to improve the accuracy and interpretability of prognostic 
prediction. Compared with conventional radiomic nomo-
grams, our MTDLR nomogram achieved better prognostic 
performance and enabled better patient stratification, which 
demonstrated the potential to facilitate personalized treat-
ment planning.
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Materials and methods

Patients

Between May 2009 and May 2019, the medical records of 
903 NPC patients were collected from Fudan University 
Shanghai Cancer Center (FUSCC) and Shanghai Proton and 
Heavy Ion Center (SPHIC). The inclusion criteria are as fol-
lows: (1) histologically confirmed LA-NPC (TNM stage III 
or IVa); (2) received concomitant systemic treatment with 
intensity modulated radiotherapy (IMRT); (3) underwent pre-
treatment FDG-PET/CT scans; and (4) available clinical data 
and FDG-PET/CT images. Patients with previous chemother-
apy/radiotherapy or other malignant tumors were excluded. 
Finally, 652 patients from FUSCC and 234 patients from 
SPHIC were enrolled in this study. Patients from FUSCC 
were randomly divided into a training cohort (n = 522) and 
an internal validation cohort (n = 130) with a 4:1 ratio, while 
patients from SPHIC (n = 234) were used as an external vali-
dation cohort and used merely for evaluation purpose.

After completion of initial treatment, each patient was fol-
lowed up for every 3 months in the first 2 years, then every 
6 months in the third to fifth year, and annually thereafter. The 
follow-up endpoint of this study is PFS, defined as the time 
from randomization to the date of disease progression or death 
from any cause. The median follow-up time is 50 months 
(ranging from 44 to 120 months) for FUSCC and 49 months 
(ranging from 44 to 97 months) for SPHIC. FUSCC and 
SPHIC Ethical Committee approved this retrospective study 
with informed consent obtained from all enrolled patients.

PET/CT imaging

FDG-PET/CT images were obtained on a Siemens biograph 
16HR PET/CT scanner (Knoxville, Tennessee, USA). 
FDG-PET/CT data acquisition procedure was detailed in 
Online Resource.

For quantitative analysis, maximum or mean of stand-
ardized uptake value (SUV) normalized to body weight and 
metabolic tumor volume (MTV) were manually computed for 
tumor lesions by drawing a 3-dimensional volume of interest 
(VOI). Meanwhile, total lesion glucose (TLG) was calculated 
according to the formula: TLG = SUVmean × MTV, where the 
SUVmean and MTV were recorded at the SUV threshold of 2.5.

Multi‑task deep learning‑based radiomics analysis

The workflow of multi-task deep learning-based radiomics 
analysis is illustrated in Fig. 1, which presents a three-step pipe-
line including multi-task deep learning model construction, 
automatic radiomics analysis, and nomogram construction.

We adopted a deep multi-task survival model (DeepMTS) 
[29] for joint prognostic prediction and tumor segmentation 
from FDG-PET/CT images. We preprocessed FDG-PET/CT 
images with resampling, SUV conversion (for PET only), 
affine registration, Regions-of-Interest (ROIs) cropping, and 
intensity normalization (detailed in Online Resource). The pre-
processed PET and CT images were concatenated and fed into 
the DeepMTS as input, while the manual segmentation masks 
of primary tumors were used as ground truth labels for train-
ing only. The DeepMTS is a CNN consisting of a Unet-based 
segmentation backbone [36] and a DenseNet-based cascaded 
survival network (CSN) [37]. The Unet is a U-shape encoder-
decoder CNN with skip connections between its contracting 
encoder and expanding decoder [36]. The DenseNet is a CNN 
consisting of multiple dense blocks with dense connections 
between layers, which enables feature reuse to enhance the 
capacity to generalize to unseen data [37]. The segmenta-
tion backbone is hard-shared by prognostic prediction and 
tumor segmentation tasks, which implicitly guides the model 
to extract features related to tumor regions. The outputs of 
the segmentation backbone are fed into the CSN as a supple-
mentary input (together with FDG-PET/CT images), which 
further leverages the global tumor information (e.g., tumor 
size, shape, and locations) for prognostic prediction. Deep fea-
tures derived from both segmentation backbone and CSN are 
used for prognostic prediction via two fully-connected layers. 
After training, DeepMTS can predict the survival risk scores 
of patients (DeepMTS-Score) and the segmentation masks of 
tumor regions. The DeepMTS-Score is relevant to PFS and 
can be directly used for prognostic prediction, while the pre-
dicted tumor masks were further leveraged in the following 
automatic radiomics analysis. The architecture of DeepMTS is 
detailed in [29] and its implementation code is publicly avail-
able at https://​github.​com/​Mungo​Meng/​Survi​val-​DeepM​TS. 
We also provide more training details in Online Resource. For 
comparison, we also built a single-task deep survival model for 
prognostic prediction, following Qiang et al.’s study [38], and 
its output scores are denoted by SingleTask-Score.

With the tumor masks predicted by DeepMTS, we 
extracted 1456 handcrafted radiomics features from FDG-
PET/CT images via Pyradiomics [39], including 720 PET 
features, 720 CT features, and 16 shape features based on 3D 
shape of tumors (detailed in Online Resource). The extracted 
features were analyzed by a Lasso-Cox model [40], whose 
output scores are denoted by AutoRadio-Score. We refer to 
this radiomics process as automatic radiomics, which dif-
ferentiates it from conventional radiomics based on manual 
segmentation. For comparison, we also performed the same 
radiomics analysis based on manual segmentation masks and 
refer to the output scores as ManualRadio-Score.

After the DeepMTS-Score and AutoRadio-Score are 
derived, we developed a multi-task deep learning-based radi-
omic (MTDLR) nomogram by combining the DeepMTS-Score, 

https://github.com/MungoMeng/Survival-DeepMTS
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AutoRadio-Score, and clinical data. Univariate and multivariate 
analyses were performed for all clinical data and prediction 
scores via Cox proportional hazards regression, so as to screen 
out the prognostic indicators with significant relevance to PFS 
and build the nomogram. For comparison, we also built a con-
ventional radiomic nomogram and a single-task deep learning-
based radiomic nomogram by combining the ManualRadio-
Score and SingleTask-Score with clinical data.

Statistical analysis

Continuous parameters were described using median or mean 
with range, while categorical variables were described using 

frequency with percentage. Differences among the training, 
internal validation, and external validation cohorts were analyzed 
using the Mann–Whitney test, χ2 test, or Fisher’s exact test.

Univariate and multivariate Cox analyses were per-
formed using SPSS (version 26.0; IBM Inc., New York, NY, 
USA). All radiomic nomograms were developed based on 
the multivariate analyses. Calibration curves with the Hos-
mer–Lemeshow goodness-of-fit test were applied to evalu-
ate the consistence between the observed PFS proportion 
and the predicted survival probability.

The prognostic performance of nomograms was evalu-
ated using Harrell's concordance indices (C-index), time-
independent receiver operating characteristic (ROC) curve, 
and area under curve (AUC). The statistical significance 

Fig. 1   Workflow of multi-task deep learning-based radiomics analysis
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between AUCs was tested via DeLong’s method using R 
packages (version 3.6.3, http://​www.R-​proje​ct.​org). Survival 
analyses based on Kaplan–Meier method were performed 
for risk group stratification. Patients with score higher/lower 
than the cutoff value calculated by ROC were stratified into 
high/low-risk groups, and then a two-sided log-rank test was 
applied for comparisons. All tests were two-sided for sta-
tistical significance, and P value < 0.05 was considered to 
indicate statistically significant differences.

Results

Patient characteristics

The demographic and clinical characteristics of patients are 
presented in Table 1. The median age was 45 years (range 
15–83 years), 48 years (range 14–79 years) and 48 years (range 
14–74 years) for the training cohort, internal validation cohort, 
and external validation cohort, respectively. Among these three 
cohorts, no statistically significant difference was observed in 
age, gender, EBV DNA, T stage, N stage, and TNM stage, 
whereas BMI, LDH, histology, and PET parameters were 
statistically significantly different. At the end of the follow-
up, the PFS ratio was 75.67% (395/522), 81.54% (106/130), 
and 80.77% (189/234) in the training, internal validation, and 
external validation cohorts, and there was no significant dif-
ference of PFS distribution among these cohorts (P = 0.163).

Establishment of MTDLR nomogram

Among the clinical and conventional PET parameters, only 
TNM stage was significantly associated with PFS in univariate 
analysis for the training cohort (P = 0.031, Table 2). However, 
none of these parameters showed a significant correlation with 
PFS in the internal and external validation cohorts. Notably, all 
the DeepMTS-Score, SingleTask-Score, AutoRadio-Score, and 
ManualRadio-Score were significantly associated with PFS in 
univariate analysis for the training, internal and external vali-
dation cohorts. For multivariate analysis, the DeepMTS-Score 
and AutoRadio-Score could serve as independent factors for 
predicting disease progression in all three cohorts (Table 3).

Based on the multivariate analysis, we built the MTDLR 
nomogram with TNM stage, AutoRadio-Score, and Deep-
MTS-Score (Fig.  2a). The C-index of the nomogram 
was 0.818 (95% confidence interval (CI): 0.785–0.851, 
P < 0.001), 0.752 (95% CI: 0.638–0.865, P < 0.001), and 
0.717 (95% CI: 0.641–0.793, P < 0.001) in the training, 
internal validation, and external validation cohort. Fur-
thermore, the calibration curves showed that the predicted 
3-year and 5-year PFS probability of the nomogram was 

highly consistent with the observed PFS probability (Hos-
mer–Lemeshow test: P > 0.05, Fig. 2b and c).

Performance of radiomic nomograms

To evaluate the prognostic performance of our MTDLR nomo-
gram, the conventional radiomic nomogram (ManualRadio-
Score + TNM) and the single-task deep learning-based radiomic 
nomogram (SingleTask-Score + TNM) were compared (Online 
Resource Fig. 1 and Table 1). Table 4 shows that our Deep-
MTS-Score exhibits better prognostic performance than the 
SingleTask-Score in the training (C-index and AUC: 0.780 and 
0.819; Fig. 3a), internal validation (0.731 and 0.750; Fig. 3b), 
and external validation cohorts (0.695 and 0.702; Fig. 3c). 
Furthermore, the AutoRadio-Score also shows better prognos-
tic performance than the ManualRadio-Score in these three 
cohorts (C-index: 0.728, 0.702, and 0.669; AUC: 0.751, 0.706, 
and 0.704). Moreover, the MTDLR nomogram combining TNM 
stage, DeepMTS-Score, and AutoRadio-Score achieved the best 
prognostic performance among all prognostic scores and nomo-
grams in all three cohorts (C-index: 0.818, 0.752, and 0.717; 
AUC: 0.859, 0.769, and 0.730).

Survival analysis for risk group stratification

The conventional radiomic nomogram (ManualRadio-
Score + TNM), single-task deep learning-based radiomic nomo-
gram (SingleTask-Score + TNM), and our MTDLR nomogram 
were used to stratify patients into high- and low-risk groups by 
cutoff values calculated with ROC curves. The Kaplan–Meier 
curves of the high- and low-risk patient groups were showed 
in Fig. 4. For comparison, the commonly-used TNM stage 
was also adopted to stratify patients according to stage III or 
IVa, where the patients with stage IVa had significantly poorer 
prognosis than the patients with stage III in the training cohort 
(Hazard rate (HR): 1.541, 95% CI: 0.991–2.397, P = 0.029). 
However, the TNM stage failed to stratify patients into signifi-
cantly different groups in the internal and external validation 
cohorts (HR: 1.457, 95% CI: 0.582–3.647, P = 0.381 and HR: 
1.839, 95% CI: 0.861–3.928, P = 0.059, respectively). Figure 4 
also show that all three nomograms stratify patients into signifi-
cantly different groups in all three cohorts (P < 0.001). Never-
theless, our MTDLR nomogram differentiated the high- and 
low-risk groups with the highest HR value among these three 
nomograms (HR: 10.250, 95% CI: 6.853–15.340, in the train-
ing cohort; HR: 7.519, 95% CI: 2.339–24.170, in the internal 
validation cohort; and HR: 4.812, 95% CI: 2.291–10.100, in 
the external validation cohort). In addition, the Kaplan–Meier 
curves of the patient groups stratified by ManualRadio-Score, 
SingleTask-Score, DeepMTS-Score, and AutoRadio-Score 
were presented in Online Resource Fig. 2.

http://www.R-project.org
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Table 1   Demographic and clinical characteristics of patients

a  WHO Type I = keratinizing, WHO Type II = non-keratinizing (differentiated), WHO Type III = non-keratinizing (undifferentiated)
P value less than 0.05 was in bold
EBV Epstein–Barr virus, WHO World Health Organization, BMI body mass index, LDH lactate dehydrogenase, IMRT intensity-modulated radia-
tion therapy, IC induction chemotherapy, CCRT​ concurrent chemoradiotherapy, AC adjuvant chemotherapy, SUV standardized uptake value, 
MTV metabolic tumor volume, TLG total lesion glycolysis, PFS progression-free survival

Characteristics Training cohort
(n = 522)

Internal validation cohort 
(n = 130)

External validation cohort 
(n = 234)

P value

Age (years), median (range) 45 (15–83) 48 (14–79) 48 (14–74) 0.385
Gender 0.984
Male 402 (77.01%) 101 (77.69%) 180 (76.92%)
Female 120 (22.99%) 29 (22.31%) 54 (23.08%)
EBV antibody 0.185
Negative 92 (17.62%) 33 (25.38%) 42 (17.95%)
Positive 346 (66.28%) 72 (55.38%) 155 (66.24%)
Unknown 84 (16.10%) 25 (19.24%) 37 (15.81%)
Histology, WHO Type a 0.009
I 4 (0.77%) 2 (1.54%) 2 (0.86%)
II 50 (9.58%) 14 (10.77%) 6 (2.56%)
III 468 (89.65%) 114 (87.69%) 226 (96.58%)
BMI (Kg/m2), mean (range) 23.22 (14.69–38.89) 23.35 (15.23–31.41) 24.09 (16.41–34.38) 0.002
LDH (U/L), mean (range) 198.02 (89–782) 177.68 (101–728) 212.89 (111–1400) 0.011
T stage 0.125
T1 133 (25.48%) 34 (26.15%) 68 (29.06%)
T2 52 (9.96%) 17 (13.08%) 29 (12.39%)
T3 289 (55.36%) 65 (50.00%) 128 (54.70%)
T4 48 (9.20%) 14 (10.77%) 9 (3.85%)
N stage 0.116
N0 29 (5.56%) 1 (0.77%) 6 (2.56%)
N1 130 (24.90%) 33 (25.38%) 54 (23.08%)
N2 301 (57.66%) 76 (58.46%) 137 (58.55%)
N3 62 (11.88%) 20 (15.39%) 37 (15.81%)
TNM stage 0.352
III 416 (79.69%) 97 (74.62%) 189 (80.77%)
IVa 106 (20.31%) 33 (25.38%) 45 (19.23%)
Concomitant systemic treatment with IMRT
IC 472 (90.42%) 121 (93.08%) 222 (94.87%) 0.101
CCRT​ 343 (65.71%) 82 (63.08%) 157 (67.09%) 0.741
AC 98 (18.77%) 24 (18.46%) 42 (17.95%) 0.964
Targeted Therapy 72 (13.79%) 11 (8.46%) 24 (10.26%) 0.151
PET Parameters, mean (range)
Maximum diameter (cm) 3.63 (0.87–9.81) 3.21 (0.60–6.95) 3.86 (0.82–10.10) 0.001
SUVmax (g/ml) 12.19 (2.76–33.29) 12.14 (3.36–46.54) 14.82 (2.91–70.84)  < 0.001
SUVmean (g/ml) 4.84 (2.60–11.24) 4.77 (2.79–9.23) 5.11 (2.61–18.43) 0.025
MTV (ml) 35.70 (0.29–310.48) 33.84 (0.51–199.58) 24.92 (0.18–99.32)  < 0.001
TLG (g) 190.64 (0.76–1950.18) 177.06 (1.46–956.73) 144.98 (0.47–1624.22) 0.005
PFS 0.163
Progression free 395 (75.67%) 106 (81.54%) 189 (80.77%)
Progression 127 (24.33%) 24 (18.46%) 45 (19.23%)
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Discussion

In this study, we constructed a multi-task deep learning-
based radiomic (MTDLR) nomogram to predict the PFS 
of LA-NPC patients. The prognostic prediction and risk 
stratification performance of the MTDLR nomogram was 
superior to the conventional radiomic nomogram and 

single-task deep learning-based radiomic nomogram. 
LA-NPC patients can be stratified into low- and high-risk 
groups, where the high-risk group was characterized by 
worse PFS rates than the low-risk group.

The TNM staging system, focusing on anatomical and loca-
tional information, has been widely used in clinical studies 
[7–9] but, unfortunately, was not an independent prognostic 

Table 2   Univariate Cox proportional hazard regression analysis for PFS on the training, internal validation, and external validation cohorts

P value less than 0.05 was in bold
PFS progression-free survival, HR hazard ratio, CI confidence interval, EBV Epstein–Barr virus, BMI body mass index, LDH lactate dehydroge-
nase, SUV standardized uptake value, MTV metabolic tumor volume, TLG total lesion glycolysis

Characteristics Training cohort Internal validation cohort External validation cohort

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Age 1.006 (0.992–1.019) 0.414 1.029 (0.994–1.065) 0.105 1.004 (0.978–1.031) 0.747
Gender
Male Reference - Reference - Reference -
Female 0.908 (0.593–1.389) 0.656 1.120 (0.444–2.822) 0.810 0.818 (0.394–1.699) 0.591
EBV antibody - 0.161 - 0.527 - 0.068
Negative Reference - Reference - Reference -
Positive 0.668 (0.433–1.030) 0.068 1.127 (0.437–2.905) 0.805 2.050 (0.720–5.832) 0.178
Unknown 0.847 (0.487–1.472) 0.556 0.549 (0.136–2.212) 0.399 3.558 (1.145–11.051) 0.028
Histology - 0.399 - 0.992 - 0.960
I 2.483 (0.613–10.052) 0.202 0.000 0.984 0.000 0.977
II 0.879 (0.473–1.632) 0.683 1.079 (0.321–3.627) 0.902 0.749 (0.103–5.441) 0.775
III Reference - Reference - Reference -
BMI 0.978 (0.925–1.033) 0.417 1.083 (0.952–1.233) 0.224 1.041 (0.953–1.137) 0.378
LDH 1.001 (1.000–1.003) 0.113 1.003 (0.999–1.006) 0.114 0.998 (0.995–1.002) 0.321
T stage - 0.773 - 0.610 - 0.364
T1 Reference - Reference - Reference -
T2 0.770 (0.392–1.513) 0.448 1.596 (0.357–7.133) 0.541 0.911 (0.286–2.906) 0.875
T3 0.849 (0.566–1.272) 0.427 2.122 (0.698–6.452) 0.185 1.726 (0.846–3.520) 0.134
T4 1.024 (0.543–1.931) 0.941 1.953 (0.437–8.734) 0.381 0.000 0.969
N stage - 0.145 - 0.515 - 0.032
N0 0.552 (0.223–1.369) 0.200 0.000 0.983 0.396 (0.052–3.027) 0.372
N1 0.512 (0.287–0.915) 0.024 1.075 (0.352–3.289) 0.898 0.585 (0.267–1.282) 0.180
N2 0.691 (0.426–1.121) 0.135 0.564 (0.196–1.624) 0.288 0.347 (0.172–0.704) 0.003
N3 Reference - Reference - Reference -
TNM stage
III Reference - Reference - Reference -
IVa 1.541 (1.041–2.283) 0.031 1.457 (0.624–3.405) 0.385 1.839 (0.965–3.505) 0.064
Maximum diameter 1.082 (0.945–1.238) 0.255 1.136 (0.843–1.531) 0.401 1.054 (0.868–1.280) 0.594
SUVmax 1.007 (0.973–1.042) 0.688 1.028 (0.976–1.082) 0.297 0.991 (0.955–1.028) 0.626
SUVmean 1.036 (0.900–1.193) 0.618 1.109 (0.825–1.490) 0.493 1.000 (0.852–1.175) 0.995
MTV 1.005 (1.000–1.009) 0.054 1.000 (0.987–1.014) 0.968 1.005 (0.991–1.018) 0.504
TLG 1.001 (1.000–1.001) 0.138 1.000 (0.998–1.002) 0.921 1.000 (0.999–1.002) 0.764
ManualRadio-Score 2.304 (1.909–2.781)  < 0.001 1.577 (1.136–2.190) 0.006 1.703 (1.235–2.348) 0.001
SingleTask-Score 4.365 (3.162–6.026)  < 0.001 2.669 (1.448–4.919) 0.002 1.724 (1.157–2.569) 0.007
DeepMTS-Score 5.409 (4.016–7.283)  < 0.001 2.633 (1.556–4.457)  < 0.001 1.771 (1.219–2.574) 0.003
AutoRadio-Score 1.818 (1.616–2.045)  < 0.001 2.000 (1.250–3.199) 0.004 1.615 (1.208–2.161) 0.001
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Table 3   Multivariate Cox proportional hazard regression analysis for PFS on the training, internal validation, and external validation cohorts

P value less than 0.05 was in bold
PFS progression-free survival, HR hazard ratio, CI confidence interval

Characteristics Training cohort Internal validation cohort External validation cohort

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

TNM stage
III Reference - Reference - Reference -
IVa 1.464 (0.986–2.174) 0.058 1.229 (0.516–2.929) 0.642 1.786 (0.930–3.432) 0.082
AutoRadio-Score 1.491 (1.314–1.693)  < 0.001 1.679 (1.029–2.738) 0.038 1.489 (1.102–2.012) 0.010
DeepMTS-Score 4.193 (3.074–5.718)  < 0.001 2.455 (1.399–4.308) 0.002 1.520 (1.037–2.229) 0.032

Fig. 2   Nomogram and calibration curves. a An integrated MTDLR 
nomogram was built with TNM stage, DeepMTS-derived prognostic 
prediction score (DeepMTS-Score), and DeepMTS-derived automatic 
radiomics score (AutoRadio-Score) to predict 3-year and 5-year PFS 
probability. For calculating the 3-year and 5-year PFS probability with 
the nomogram, firstly, we locate the patient’s TNM stage and draw a 
line straight upward to the “Points” axis to determine the points asso-
ciated with the corresponding TNM stage. Then, we repeat the pro-
cess for DeepMTS-Score and AutoRadio-Score, and sum the total 
points achieved for the three covariates. Lastly, we locate this sum on 

the “Total Points” axis, and draw a line straight down to determine the 
probability of 3-year and 5-year PFS. b The 3-year and c 5-year PFS 
calibration curves of the integrated MTDLR nomogram in the train-
ing, internal validation, and external validation cohorts. The actual PFS 
probability is plotted on the y-axis, while nomogram predicted proba-
bility is plotted on the x-axis. The P value of calibration was calculated 
by Hosmer–Lemeshow goodness-of-fit test, and P value > 0.05 indi-
cates the good match between the actual and predicted PFS probability
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Table 4   C-index and AUC of different clinical, conventional, and deep learning-based radiomic scores/nomograms evaluated on the training, 
internal validation, and external validation cohorts

* Com1 means the P value was for the comparison of C-index, and Com2 was for AUC​
The best result in each cohort was in bold
AUC​ area under the curve, CI confidence interval

Signatures C-index (95% CI) AUC (95% CI) P value

C-index Com1* AUC​ Com2*

Training cohort
  TNM 0.538 (0.500–0.576) 0.543 (0.500–0.586) 0.028 Reference 0.981 Reference
  ManualRadio-Score 0.720 (0.678–0.762) 0.747 (0.698–0.795)  < 0.001 0.015  < 0.001  < 0.001
  ManualRadio-Score + TNM 0.725 (0.683–0.767) 0.753 (0.705–0.801)  < 0.001 0.008  < 0.001  < 0.001
  SingleTask-Score 0.767 (0.731–0.803) 0.799 (0.759–0.839)  < 0.001  < 0.001  < 0.001  < 0.001
  SingleTask-Score + TNM 0.770 (0.734–0.806) 0.802 (0.762–0.842)  < 0.001  < 0.001  < 0.001  < 0.001
  DeepMTS-Score 0.780 (0.741–0.819) 0.819 (0.777–0.861)  < 0.001  < 0.001  < 0.001  < 0.001
  AutoRadio-Score 0.728 (0.685–0.771) 0.751 (0.703–0.799)  < 0.001 0.009  < 0.001  < 0.001
  MTDLR nomogram 0.818 (0.785–0.851) 0.859 (0.822–0.895)  < 0.001  < 0.001  < 0.001  < 0.001

Internal validation cohort
  TNM 0.526 (0.435–0.617) 0.527 (0.417–0.638) 0.578 Reference 0.698 Reference
  ManualRadio-Score 0.680 (0.578–0.782) 0.710 (0.587–0.833)  < 0.001 0.049 0.001 0.051
  ManualRadio-Score + TNM 0.693 (0.595–0.791) 0.722 (0.606–0.839)  < 0.001 0.016 0.001 0.019
  SingleTask-Score 0.705 (0.587–0.823) 0.712 (0.577–0.846)  < 0.001 0.005 0.001 0.014
  SingleTask-Score + TNM 0.708 (0.589–0.827) 0.715 (0.579–0.851)  < 0.001 0.002 0.001 0.008
  DeepMTS-Score 0.731 (0.605–0.856) 0.750 (0.609–0.890)  < 0.001 0.009  < 0.001 0.011
  AutoRadio-Score 0.702 (0.619–0.785) 0.706 (0.597–0.815)  < 0.001 0.015 0.002 0.021
  MTDLR nomogram 0.752 (0.638–0.865) 0.769 (0.642–0.896)  < 0.001 0.001  < 0.001 0.002

External validation cohort
  TNM 0.554 (0.489–0.619) 0.523 (0.451–0.595) 0.628 Reference 0.595 Reference
  ManualRadio-Score 0.642 (0.567–0.717) 0.683 (0.596–0.770)  < 0.001 0.111  < 0.001 0.009
  ManualRadio-Score + TNM 0.655 (0.582–0.728) 0.688 (0.603–0.773)  < 0.001 0.039  < 0.001 0.003
  SingleTask-Score 0.655 (0.575–0.735) 0.695 (0.603–0.786)  < 0.001 0.056  < 0.001 0.002
  SingleTask-Score + TNM 0.662 (0.582–0.742) 0.694 (0.602–0.786)  < 0.001 0.024  < 0.001 0.001
  DeepMTS-Score 0.695 (0.616–0.774) 0.702 (0.603–0.801)  < 0.001 0.033  < 0.001 0.001
  AutoRadio-Score 0.669 (0.589–0.749) 0.704 (0.609–0.799)  < 0.001 0.109  < 0.001 0.004
  MTDLR nomogram 0.717 (0.641–0.793) 0.730 (0.634–0.826)  < 0.001 0.009  < 0.001  < 0.001

Fig. 3   ROC curves for comparison among different clinical, conventional, and deep learning-based radiomics scores/nomograms on the training 
(a), internal validation (b), and external validation (c) cohorts
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factor in our study (Table 3). Nevertheless, we identified 
that combining TNM stage with other prognostic scores still 

improved the prognostic performance, which is consistent 
with the findings reported in previous studies [8, 28, 35]. 

Fig. 4   Kaplan–Meier curves of risk group stratification based on TNM stage, ManualRadio-Score + TNM, SingleTask-Score + TNM, and 
MTDLR nomogram on the training, internal validation, and external validation cohorts
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FDG-PET/CT images, given the capabilities in providing 
tumors’ metabolic and anatomical information, have also been 
widely used for prognostic prediction [41–43]. However, the 
conventional FDG-PET/CT-derived parameters (SUV, MTV, 
and TLG) cannot serve as effective prognostic indicators 
in our univariate analysis (Table 2). To further leverage the 
prognostic information in FDG-PET/CT images, radiomics 
or deep learning were adopted and showed superiority over 
conventional parameters [28, 44]. Nevertheless, the prognostic 
performance varied with different radiomics or deep learn-
ing models, which suggests that the prognostic information in 
FDG-PET/CT image cannot be easily accessed and should be 
carefully leveraged with well-developed models.

Currently, there is a dilemma for extracting prognostic 
information from medical images. As discussed, conven-
tional radiomics can well characterize the intra-tumor infor-
mation while it is limited to the segmented tumor regions. 
Deep learning can access the prognostic information in 
the entire images. However, it has difficulties in extract-
ing tumor-specific information. In this study, we adopted a 
deep multi-task survival model (DeepMTS) [29] to address 
this dilemma. It has been demonstrated that, through jointly 
learning tumor segmentation task with a hybrid multi-task 
architecture, DeepMTS can effectively extract prognostic 
information from tumor regions while also capturing the 
out-of-tumor prognostic information, which enables Deep-
MTS to outperform existing radiomics- or deep learning-
based prognostic prediction models [29]. Nevertheless, we 
noticed that the segmentation output of DeepMTS was not 
fully leveraged for prognostic prediction and the prognostic 
information within tumor regions could be further explored. 
Therefore, we used the DeepMTS-segmented tumor masks 
for automatic radiomics analysis, which further explored the 
intra-tumor prognostic information and removed the reli-
ance of conventional radiomics on manual segmentation. 
For tumor segmentation, the DeepMTS achieved a Dice 
Similarity Coefficient (DSC) of 0.826, 0.775, and 0.765 
on the training, internal validation, and external valida-
tion cohorts, which demonstrates great consistency with 
the manually delineated segmentation masks. It has been 
reported that automatic segmentations improved the objec-
tiveness [45] and resulted in significantly better prognostic 
prediction performance than manual segmentation [46], 
which potentially enables better radiomics analysis and 
facilitates the final prognostic prediction [47, 48].

The prognostic scores from DeepMTS and automatic 
radiomics were combined with clinical data to build the 
MTDLR nomogram, which leveraged both FDG-PET/CT 
and clinical information and also improved the interpret-
ability for prediction. Our MTDLR nomogram achieved the 
best prognostic performance among all comparison prog-
nostic scores and nomograms (Table 4), which could be 
attributed to three facts. First, the DeepMTS produced more 

discriminative prognostic scores (DeepMTS-Score) than the 
commonly used single-task deep survival model (Single-
Task-Score). Second, the automatic radiomics also produced 
more discriminative prognostic scores (AutoRadio-Score) 
than conventional radiomics (ManualRadio-Score). Finally, 
the DeepMTS-Score and AutoRadio-Score were combined 
together to achieve better prognostic prediction. The strategy 
of combining multi-task deep learning and radiomics has 
been adopted for prognostic prediction in head and neck can-
cer [48] and achieved one of the top prognostic performance 
in HEad and neCK TumOR segmentation and outcome pre-
diction (HECKTOR 2022) challenge [49]. Our study further 
validated this strategy with a large database of NPC patients.

We divided patients based on our MTDLR nomogram and 
found that the MTDLR nomogram effectively stratified LA-NPC 
patients into significantly different risk groups, which is poten-
tially beneficial for individualized treatment regimens. Induction 
chemotherapy (IC) plus concurrent chemoradiotherapy (CCRT) 
is recommended as 2A-level evidence according to the National 
Comprehensive Cancer Network (NCCN) guidelines [4]. How-
ever, it’s still a controversy as a portion of LA-NPC patients do 
not benefit from IC. Qiang et al. [38] developed a prognostic sys-
tem to explore whether high-risk or low-risk patients can benefit 
from IC + CCRT than CCRT only. Zhong et al. [16] developed a 
deep learning-based radiomic nomogram to predict the prognosis 
of NPC patients with different regimens and accordingly recom-
mend an optimal treatment regimen. These studies demonstrated 
the necessity of stratifying LA-NPC patients into different risk 
groups so as to optimize treatment regimens.

There exist several inevitable limitations with our study. 
First, the completeness and homogeneity of our data had 
deficiencies due to its retrospective nature. EBV status was 
missing for about 15% of patients, which might limit the 
accuracy of statistical analysis. Second, our study was con-
ducted in endemic areas and thus only included patients 
with TNM stage III and IVa. Therefore, the MTDLR nomo-
gram could be further validated with more extensive data-
bases in future studies. However, it should be noted that we 
have validated our MTDLR nomogram in a large database 
(886 patients) with two validation cohorts, which can sup-
port the effectiveness of MTDLR nomogram in LA-NPC.

Conclusion

In this study, we evaluated the value of multi-task learning for 
prognostic prediction in LA-NPC patients. To achieve this, 
we adopted a deep multi-task survival model (DeepMTS) and 
developed a multi-task deep learning-based radiomic (MTDLR) 
nomogram that combines TNM stage, DeepMTS-Score, and 
AutoRadio-Score. Compared to the conventional and single-
task deep learning-based radiomic nomograms, the MTDLR 
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nomogram extracted more heterogeneous and prognostic infor-
mation to better predict the prognosis of LA-NPC patients. We 
validated our MTDLR nomogram with a large LA-NPC data-
based with two (internal/external) validation cohorts, which 
support the effectiveness of MTDLR nomogram and its poten-
tial contributions to clinical decision making.
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