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Prostate-specific membrane antigen (PSMA) is a transmem-
brane aminopeptidase with catalytic activity, encoded by the 
FOLH1 (folate hydrolase 1) gene [1], consisting of a large 
extracellular domain, a small transmembrane domain, and 
a short cytoplasmic tail [2]. This protein is physiologically 
expressed in both prostatic epithelial cells and other healthy 
tissues, including the renal cortex, duodenum, ileum, sali-
vary and lacrimal glands, coeliac, and stellate ganglia [3]. 
PSMA is involved in folate and glutamate uptake, metabo-
lism, and signalling, and it plays a role in several processes, 
including the promotion of excitatory neural transmission in 
glial cells and the uptake of dietary folates in the duodenum 
[4]. Nevertheless, the physiological function of PSMA in the 
prostate is less clear, although it is suggested to contribute 
to genomic stability [5]. The complex regulation of PSMA 
involves different molecular pathways including the andro-
gen receptor, DNA damage response, and PI3K/Akt/mTOR 
signalling pathways [6]. Moreover, PSMA might be involved 
in cancer-related angiogenesis, playing a role in extracellu-
lar matrix degradation, tumor invasion, and integrin signal 
transduction [7]. Prostate cancer cells have up to 1000-fold 
higher PSMA expression than benign tissue. Previous stud-
ies reported an enhanced PSMA expression in high-grade 
or metastatic disease, whereas low PSMA levels were found 
in low-risk disease [3]; in addition, elevated PSMA expres-
sion was associated with hormone-refractory prostate cancer 
[8], poor clinical outcome [9], and the presence of deficient 
DNA damage repair pathways [5]. These findings promoted 
theranostic applications of radio-labelled PSMA ligands that 
reached an established role in the management of prostate 
cancer [6, 10–12]. Furthermore, increased PSMA expression 
has also been found in the neovascular endothelial cells of 
various malignancies, including renal clear cell carcinoma, 
hepatocarcinoma, salivary gland cancer, and glioblastoma 

[13], raising the possibility of PSMA-targeting in many 
other tumors.

In a recent issue of the European Journal of Nuclear 
Medicine and Molecular Imaging, Souza et al. [14] inves-
tigated the role of  [68 Ga]Ga-PSMA-11 PET/CT imaging 
for the identification of multiple myeloma (MM) lesions 
in 20 consecutive patients with the pathologically proven 
disease. In particular, the authors compared  [18F]FDG 
PET/CT and  [68 Ga]Ga-PSMA-11 PET/CT image findings 
in MM patients. They found that  [18F]FDG PET/CT and 
 [68 Ga]Ga-PSMA-11 PET/CT scans were able to identify 
a total of 266 lesions in 19 out of 20 patients.  [18F]FDG 
PET/CT scan detected 84% of all lesions in 17 patients, 
while  [68 Ga]Ga-PSMA-11 PET/CT scan detected 71% of 
all lesions in 19 patients. Moreover, a good concordance 
was found between the number of lesions (ICC = 0.748), 
the number of soft tissue lesions (ICC = 0.920), and the 
highest SUVmax values (ICC = 0.782) for the two trac-
ers. This well-designed and elegantly conducted study by 
Souza et al. [14] provides for the first time systematic data 
for the application of PSMA imaging in MM patients. In 
the literature, there were only case reports showing the 
detection of MM lesions by  [68 Ga]Ga-PSMA-11 [15–17]. 
These findings open up new diagnostic and therapeutic 
perspectives for MM patients. In fact, despite the recent 
advances in therapeutic strategies, MM is still an incurable 
disease characterized by markedly heterogeneous biologi-
cal behavior, with wide inter- and intra-patient variability 
and different clinical outcomes [18]. Although  [18F]FDG 
PET/CT scan allows the detection of the heterogeneous 
characteristics of MM lesions by simultaneously provid-
ing morphological and metabolic information on the status 
of the disease [19], image interpretation may be difficult 
in some patients due to the possible occurrence of false 
positive or false negative findings [20]. Interestingly, in 
the study by Souza et al. [14], a  [68 Ga]Ga-PSMA-11 scan 
alone was able to detect most bone and soft tissue MM 
lesions with minimal or no  [68 Ga]Ga-PSMA-11 uptake 
in areas of confirmed benign  [18F]FDG uptake. Further-
more, the absence of physiological brain uptake of  [68 Ga]
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Ga-PSMA-11 made it easier to identify MM lesions in the 
skull as compared to  [18F]FDG. In addition, the authors 
also suggested the possible complementary role of  [68 Ga]
Ga-PSMA-11 PET/CT and  [18F]FDG PET/CT scans due to 
the different uptake mechanisms of the two tracers based 
on the occurrence of neoplastic angiogenesis for PSMA-
ligands and the expression of glycolytic phenotype for 
 [18F]FDG.

Although the authors state that no  [68 Ga]Ga-PSMA-11 
uptake was detected in normal bone marrow, it would 
be interesting to evaluate whether diffuse bone marrow 
 [68 Ga]Ga-PSMA-11 uptake is present in these patients 
and whether there is a correlation with the plasma cell 
bone marrow infiltration. In addition to focal lesions, 
the characterization of diffuse bone marrow involvement 
may contribute to the staging, evaluation of treatment 
response, and prognosis of MM patients. Moreover, volu-
metric PET-based parameters, such as metabolic tumor 
volume and total lesion glycolysis, that are established 
 [18F]FDG prognostic factors not only in MM patients [21] 
but also in solid tumors [22, 23], could be calculated on 
PSMA images to improve the risk and prognostic strati-
fication of MM patients. It would also be interesting to 
investigate why MM lesions are detected by PSMA imag-
ing. The authors hypothesized that  [68 Ga]Ga-PSMA-11 
uptake in MM lesions is due to neoplastic angiogenesis. 
However, PSMA also plays an important role in folate 
metabolism. Malignant plasma cells may be dependent on 
folate metabolism to comply with their proliferative needs 
since folate is an important factor in DNA synthesis and 
methylation [24]. In this respect, plasma cells and other 
cancer cells show an overexpression of the folate receptor 
as a consequence of their increased folic acid requirement 
[25]. Alternative uptake mechanisms of PSMA should be 
further investigated in the future.

The article by Souza et al. [14] opens new therapeutic 
perspectives in MM patients due to the theranostic appli-
cations of PSMA ligands. In this regard, the choice of the 
treatment option should take into account the recent clinical 
introduction of new agents, such as belantamab mafodotin 
and the more established use of daratumumab targeting spe-
cifically plasma cells. Further investigations are needed to 
identify the clinical context in which PSMA ligands may 
provide the best therapeutic benefit.

In conclusion, PSMA PET/CT imaging is emerging as 
a reliable imaging modality not only for prostate cancer 
patients but also for other solid and lymphoproliferative 
malignancies. This scenario could lay the foundations for 
the theranostic applications of PSMA ligands in the manage-
ment of different malignancies, allowing to achieve more 
personalized therapies in individual patients.
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