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Abstract
Purpose Orbital  [99mTc]TcDTPA orbital single-photon emission computed tomography (SPECT)/CT is an important method 
for assessing inflammatory activity in patients with Graves’ orbitopathy (GO). However, interpreting the results requires 
substantial physician workload. We aim to propose an automated method called GO-Net to detect inflammatory activity in 
patients with GO.
Materials and methods GO-Net had two stages: (1) a semantic V-Net segmentation network (SV-Net) that extracts 
extraocular muscles (EOMs) in orbital CT images and (2) a convolutional neural network (CNN) that uses SPECT/CT 
images and the segmentation results to classify inflammatory activity. A total of 956 eyes from 478 patients with GO 
(active: 475; inactive: 481) at Xiangya Hospital of Central South University were investigated. For the segmentation 
task, five-fold cross-validation with 194 eyes was used for training and internal validation. For the classification task, 
80% of the eye data were used for training and internal fivefold cross-validation, and the remaining 20% of the eye data 
were used for testing. The EOM regions of interest (ROIs) were manually drawn by two readers and reviewed by an 
experienced physician as ground truth for segmentation GO activity was diagnosed according to clinical activity scores 
(CASs) and the SPECT/CT images. Furthermore, results are interpreted and visualized using gradient-weighted class 
activation mapping (Grad-CAM).
Results The GO-Net model combining CT, SPECT, and EOM masks achieved a sensitivity of 84.63%, a specificity of 
83.87%, and an area under the receiver operating curve (AUC) of 0.89 (p < 0.01) on the test set for distinguishing active and 
inactive GO. Compared with the CT-only model, the GO-Net model showed superior diagnostic performance. Moreover, 
Grad-CAM demonstrated that the GO-Net model placed focus on the GO-active regions. For EOM segmentation, our seg-
mentation model achieved a mean intersection over union (IOU) of 0.82.
Conclusion The proposed Go-Net model accurately detected GO activity and has great potential in the diagnosis of GO.
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Introduction

Graves’ orbitopathy (GO), which is also known as thyroid eye 
disease or thyroid-associated orbitopathy, is the most com-
mon orbital disease in adults [1]. It is generally accepted that 
immune-mediated inflammation is the primary pathogenesis 
of GO, which is characterized by extraocular muscle (EOM) 
thickening, congestion, and orbital fat edema [2, 3]. Most 
patients with GO experience an active (dynamic) phase fol-
lowed by an inactive (static) phase. For patients with mild 
GO, supportive treatments such as lubricant eye drops are 
sufficient. However, patients with severe GO may require glu-
cocorticoids or radiation therapy to minimize inflammatory 
sequelae. Moreover, surgical rehabilitation is mainly indicated 
during the inactive phase. Therefore, an accurate method for 
assessing the inflammatory activity stage is important to 
develop efficient and precise treatments for GO patients.

The clinical activity score (CAS) is the most widely used 
metric to assess the activity stage in clinical settings. However, 
the CAS is subjective and largely depends on the opinion of the 
ophthalmologist. Orbital computed tomography is a fast and 
affordable imaging method for orbital diseases that provides 
accurate morphological information, such as changes in the 
extracted EOMs. This information can help in GO diagnoses; 
however, it is difficult to accurately assess the inflammatory 
activity stage of GO. Radionuclide imaging, such as orbital 
single-photon emission computed tomography (SPECT) with 
99mtechnetium(99mTc)-labeled diethylene triamine pentaacetic 
acid (DTPA), has been reported as a useful biomarker for diag-
nosing and staging GO activity due to its low costs, simplicity, 
and accuracy [4]. SPECT/CT is a hybrid modality consisting of 
SPECT for functional images and CT for anatomical images, 
thereby increasing the diagnostic accuracy [5, 6]. We recently 
reported that hybrid diagnostic CT and SPECT imaging has 
potential in assessing inflammatory activity through semi-
quantitative image analyses of EOMs in patients with GO [7]. 
Moreover, determining the DTPA uptake of EOMs through 
SPECT/CT might be superior to applying the CAS to predict 
treatment responses to periocular glucocorticoid therapy in GO 
patients, even if the CAS is below 3 points [5, 7].

Recently, machine learning (ML) has been widely used 
in the field of medical imaging, including eye imaging 
[8–10]. We have previously developed deep neural net-
works for medical image segmentation and classification 
[11–13]. Recently, a new segmentation method known as 
SV-Net was developed by our group for automatic segmen-
tation of EOMs based on orbital CT images. The results 
had good agreement with the ground truth (all R > 0.98, 
P < 0.0001) [14]. Song et al. [15] built an ML-based model 
for screening GO patients using orbital CT, and Chen 
et al. [10] proposed a deep learning model for detecting 
the activity stage of GO patients through orbital magnetic 

resonance imaging (MRI). However, the automation level 
and accuracy of these approaches need to be improved.

This study is aimed at developing a two-stage auto-
mated approach to detect GO disease activity by using 
deep learning algorithms, including a segmentation model 
to extract EOMs and a classification model to distinguish 
active and inactive GO patients.

Materials and methods

Study cohort

This study included 478 patients with GO (181 males, 297 
females, aged 8–82 years, mean age: 43 ± 12 years) that were 
referred for orbital SPECT/CT at Xiangya Hospital of Central 
South University between January 2017 and December 2019. 
Clinical information was collected from each patient, including 
age, sex, and ill assessment by three experienced ophthalmolo-
gists. Given the retrospective nature of the present study, the 
GO diagnostic criteria were based on the 2021 European Group 
on Graves’ Ophthalmopathy (EUGOGO) guidelines [16]. The 
exclusion criteria were defined as follows: (1) pregnant or lac-
tating women, (2) other orbital inflammation, and (3) poor 
image quality due to avid DPTA uptake of adjacent pansinusitis. 
This study was approved by the Ethics Committee of Xiangya 
Hospital of Central South University (No. 202101021), and the 
requirement to obtain written informed consent was waived.

[99mTc]TcDTPA SPECT/CT scan acquisition

After intravenous administration of  [99mTc]TcDTPA (Chinese 
Atomic Energy Institute, Beijing, China) 555 MBq (15 mCi) 
for 20 min, orbital SPECT/CT was performed using a 16-slice 
SPECT/CT scanner (Preference 16, SPECT/CT, Philips Medi-
cal Systems, The Netherlands) as described in our previous 
report [7]. Briefly, subjects were stabilized in a supine position 
and asked to keep their eyes closed and stationary throughout 
the scan to reduce eye movements [7]. The CT scans (140 kV, 
100 mA, 1 mm slice thickness, 1:1 pitch ratio) were performed 
first. SPECT tomographic images were then acquired at the 
same position by a low-energy and high-resolution collimator 
with 1 × magnification and a 64 × 64 acquisition matrix at 25 
frames/s, with 32 projections per camera head.

Annotations for EOM contours and GO activity

For the segmentation task, 20% of the CT image data (194 
eyes) were randomly selected to generate ground truth labels 
for model training and validation (4:1 ratio) using fivefold 
cross-validation. The remaining 80% of the data (762 eyes) 
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without ground truth labels were used as an independent 
test set. Two readers (LL and ZG) were trained by an sen-
ior nuclear medicine physician (MZ) to manually draw the 
regions of interest (ROIs) of the superior, inferior, medial, 
and lateral rectus on both eyes using the open annotation 
tool LabelMe, as previously described [14]. Thereafter, all 
EOM ROIs drawn by the two readers were reviewed and 
corrected by the senior physician in order to assure consist-
ency and accuracy. The final segmentation results served as 
the ground truth labels for training the segmentation model. 
Additionally, a binary map derived from the all EOM ROIs 
was generated and served as EOM mask, as depicted in Sup-
plementary Fig. 1. It is computed by the following equation:

In Equation (1), binary image (x, y) represents the pixel 
value at coordinates (x, y) in the binary map. If the coordi-
nates (x, y) are within the EOM region, the corresponding 
pixel value is set to 1, indicating the presence of EOMs. 
Conversely, if the coordinates are outside the EOM region, 
the pixel value is set to 0, indicating the absence of EOMs.

For the classification task, the activity stage was deter-
mined based on the following criteria: (1) based on the 2021 
EUGOGO guidelines [16], eyes with CASs ≥ 3/7 were anno-
tated as active; (2) for eyes with CASs < 3/7, high  [99mTc]
TcDTPA uptake observed in orbit was annotated as active, 
while the absence of  [99mTc]TcDTPA uptake was anno-
tated as inactive. After the images were annotated, 475 eyes 
[median CAS: 3, interquartile range (IQR): 2 to 4] were 
labeled “active” and 481 eyes (median CAS: 1, IQR: 1 to 2) 
were labeled “inactive.” The test dataset was generated by 
randomly selecting 20% of the entire dataset, and the remain-
ing 80% of the data were divided into training and validation 
sets (4:1 ratio) to perform fivefold cross-validation.

Data preprocessing

The SPECT and CT scans were both resampled with three 
spline interpolations to obtain uniform 1 × 1 × 1  mm3 voxel 
images. The pixel values of the CT and SPECT images were 
normalized to the range of 0 to 1 to reduce inconsistencies 
between the two images [17–19].

A trained radiologist identified slices containing the com-
plete orbit according to the coronal planes. Two 256 × 256 
regions of interest (ROIs) centered on the optic nerves of the 
right, and left eyes were automatically cut from these slices. 
In order to increase the size of the deep-learning dataset for 
augmentation, all images of the left eye were flipped hori-
zontally to maintain consistency in the orientation of the four 
extraocular muscles on both eye images.

(1)Binary image(x, y) =

{
1 , if (x, y) ∈ contour

0 , otherwise

Deep learning model architecture

To automatically identify active GO patients, we developed 
a deep learning-based approach called GO-Net. GO-Net 
includes a SV-Net for extracting EOMs and a 3D convolu-
tional neural network (CNN) for classifying active and inac-
tive GO. The details of the model architectures in the GO-Net 
segmentation stage are presented in Supplementary Fig. 2. 
For the GO-Net classification stage, inspired by the study of 
Wang et al. [20], we employed a combination of SPECT/CT 
images and the EOM masks, derived from the segmentation 
results, to construct multi-channel image, which was utilized 
as input to the GO classification network, thus generating 
four models with different inputs as follows: (i) the model 
employs only CT images as a single-channel input. (ii) The 
model utilizes a dual-channel input, composed of both CT 
and SPECT images. (iii) The model utilizes a dual-channel 
input, composed of both CT and EOM masks. (iv) The model 
employs a three-channel input, consisting of CT and SPECT 
images along with EOM masks. The architecture of the GO-
Net classification network is shown in Fig. 1.

The above analyses were implemented in Python using the 
PyTorch library, and the model was trained on a Tesla V100 GPU 
with 32 GB GPU memory. In terms of parameters, both models 
were trained by using the adaptive moment estimation optimizer 
with a learning rate of 0.0001. The batch sizes of the segmentation 
and classification models were set to 4 and 1, respectively, and the 
number of training epochs was set to 125 and 100, respectively.

Evaluation

To evaluate the performance of the segmentation model, the 
intersection over union (IOU), specificity (SP), and sensitiv-
ity (SN) (Equations 2–4) were calculated on the training and 
validation sets, respectively.

In Equations (2–4), Rk is the kth predicted image after 
postprocessing, and R'k is the kth ground truth image.

To assess the performance of the classification models, 
receiver operator characteristic (ROC) curves were plotted 
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for the test set. The accuracy, precision, sensitivity, specific-
ity, F1 score, and AUC were also calculated.

To better visualize the effect of the GO-Net model, a gra-
dient weighted class activation map (Grad-CAM) was used 
to identify and highlight the different areas during the clas-
sification process.

Results

Segmentation performance

The GO-Net segmentation model was trained on the train-
ing set (155 eyes), which required approximately 165 min, 
while predicting the EOM segmentation results on the vali-
dation set took an average of 4.7 s per eye. The performance 
of the segmentation model for each rectus muscle in the 
validation set is shown in Table 1. Overall, the IOU, SN, 
and SP of the average rectus muscle were 0.82 ± 0.05%, 
91.01 ± 5.32%, and 99.96 ± 0.03%, respectively. As 

illustrated in Supplementary Fig. 3, the EOM masks pre-
dicted by our segmentation model approximately overlap 
with the ground truth results, indicating the good perfor-
mance of the model. Nevertheless, the segmentation results 
of 47 eyes did not match the actual EOMs and were adjusted 
manually (Supplementary Fig. 4), which took an average of 
five minutes per eye.

Classification performance

The GO-Net classification model was trained on the training 
set (765 eyes) in approximately 42 min, while on the test set, 
the classification of GO activity took approximately 1.23 s 
per eye on average. First, we compared the GO-Net clas-
sification models with three different inputs. As expected, 
the best performance on the test set was obtained by the 
three-channel input model combining CT, SPECT, and 
EOM masks, reaching an AUC score of 0.90 and a diagnos-
tic accuracy of 86.10% for predicting active GO. The two-
channel input model, which combined CT and SPECT data, 

Fig. 1  Flowchart of the classi-
fication network in the GO-Net 
architecture. GO-Net’s clas-
sification stage consists of three 
parts: the first part includes 
a 3D ConvBlock layer; the 
second part consists of two 3D 
ResBlock layers and a pooling 
layer; and the third part consists 
of three ConvBlock layers and a 
classification layer

Table 1  Performance of the 
segmentation models on the 
validation set ( n = x ± s)

SR superior rectus muscle, LR later rectus muscle MR medial rectus muscle, IR inferior rectus muscle

SR LR MR IR Average

IOU 0.79 ± 0.03 0.81 ± 0.06 0.85 ± 0.08 0.82 ± 0.08 0.82 ± 0.05
SP (%) 99.93 ± 0.04 99.97 ± 0.02 99.96 ± 0.03 99.96 ± 0.03 99.96 ± 0.03
SN (%) 89.13 ± 3.92 90.81 ± 4.71 92.35 ± 7.52 90.62 ± 7.93 91.01 ± 5.32
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achieved an AUC score of 0.67 and a diagnostic accuracy of 
60.88%. The single-channel input model, which only used 
CT images, had the lowest predictive value with an AUC 
score of 0.54. Four different GO-Net classification models 
with distinct inputs were evaluated through fivefold cross-
validation to determine the optimal model for each input. 
The ROC curves and precision, sensitivity, specificity, and 
F1 scores are shown in Fig. 2 and Table 2. Table 3 shows 
the metrics for the best GO-Net classification model, and 
the AUCs were 0.90 ± 0.01, 0.89 ± 0.01, and 0.89 ± 0.02 on 
the training, validation, and test sets, respectively. Further-
more, given the heterogeneity of GO among patients with 
different ages and sexes, we compared the model perfor-
mance in different sex and age subgroups on the test set 

(Supplementary Table 1). The classification model obtained 
better performance for males than females (AUC: 0.94 vs. 
0.85), while the model showed similar performance for older 
and younger patients (AUC: 0.86 vs. 0.89).

Visualization

According to Grad-CAM analyses, our classification model 
could automatically identify thickened or DPTA-avid EOMs. 
Example images of accurate predictions (true positives and 
true negatives) and false predictions (false positives and 
false negatives) are shown in Fig. 3. Furthermore, to visual-
ize the role of EOMs in diagnosing active GO, we randomly 
selected 3 left eyes with active GO and 3 left eyes with inac-
tive GO. As shown in a schematic 3D segmentation of the 
CT and SPECT EOMs (Supplemental Fig. 5), the EOMs in 
the active GO group were thicker and less attenuated than 
those in the inactive GO group, which is consistent with our 
previous orbital SPECT/CT findings [7].

Discussion

In this study, we developed a two-stage deep learning 
method based on orbital  [99mTc]TcDTPA SPECT/CT images 
that was highly accurate in distinguishing the active and 
inactive phases of GO (AUC = 0.89). Furthermore, our seg-
mentation module extracted the EOMs in orbital CT images 
well (IOU = 0.82).

[99mTc]TcDTPA SPECT/CT imaging for classification 
of GO

Several previous studies have demonstrated that orbital 
 [99mTc]TcDTPA SPECT/CT can be used to obtain accu-
rate assessments of disease activity in patients with GO. 
Szumowski et al. [6] concluded that SPECT/CT had a high 

Fig. 2  ROC curves of the classification models with different inputs 
on the test set

Table 2  Performance of the classification models with different inputs on the test set

Accuracy(%) Precision (%) Sensitivity (%) Specificity (%) F1 score AUC 

CT 54.92 55.88 57.14 53.68 0.47 0.54
CT + SPECT 60.88 58.56 51.58 75.51 0.63 0.67
CT + EOM mask 75.13 77.65 74.74 87.76 0.81 0.85
CT + SPECT + EOM masks 86.10 85.17 87.37 85.71 0.86 0.90

Table 3  Performance of the 
three-channel input model on 
the training, validation and test 
sets ( n = x ± s)

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1 score AUC 

Training set 84.31 ± 0.25 85.67 ± 1.06 86.64 ± 0.42 82.32 ± 1.28 0.85 ± 0.01 0.90 ± 0.01
Validation set 82.06 ± 0.32 85.01 ± 2.35 83.63 ± 1.54 82.53 ± 1.26 0.83 ± 0.02 0.89 ± 0.01
Test set 84.25 ± 1.25 83.35 ± 1.53 84.63 ± 0.84 83.87 ± 1.97 0.83 ± 0.01 0.89 ± 0.02
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sensitivity of 93% and a specificity of 89% for diagnosing 
GO. We previously reported that the DPTA uptake ratio 
(UR) within EOMs was correlated with the CAS (R = 0.77, 
P < 0.01) [21]. However, the semiquantitative UR measure-
ments varied depending on the choice of referenced denomi-
nators, which may reduce the reproducibility of the results. 
On the other hand, in the active stage of GO, infiltration with 
inflammatory cells and increased proteoglycan content may 
cause edematous swelling of orbital soft tissues and enlarged 
EOMs. Therefore, EOM involvement is a critical feature 
of GO. The EOM volume has been proven to be a reliable 
parameter for judging the staging and therapeutic efficacy 
in patients with GO [22]. However, these measurements are 
difficult and require computer analyses, including specific 
application software and hardware, as well as considerable 
radiologist time [21]. Additionally, EOM enlargement can 
occur in different phases, and it may be challenging to stage 
GO using only morphologic parameters. Thus, a fully auto-
matic method for assessing EOMs by combining morpho-
logical and functional features using hybrid SPECT/CT is 
highly desirable.

Machine learning for GO diagnosis and activity 
assessment

Several studies have demonstrated that ML can be applied to 
automatically screen and diagnose various ocular disorders, 
such as cataracts, diabetic retinopathy, glaucoma, age-related 
macular degeneration, and premature retinopathy [8]. Nev-
ertheless, ML-based techniques using orbital imaging have 
rarely been investigated in diagnosing GO and assessing GO 
activity. Hu et al. [9] used an ML model to classify GO using 
MRI. They considered a group of 60 patients with active GO 
and 40 patients with inactive GO. They determined vari-
ations in the magnetization transfer ratio, signal intensity 
ratio (SIR), and apparent diffusion coefficient (ADC) of 
the EOMs for each eye according to the MRI images. Their 
ML-based model obtained better performance for disease 
activity differentiation and CAS prediction than a model that 
combined SIRs and ADCs (AUC, 0.93 vs. 0.90). However, 
the study cohort was small, and only preplanned features 
were used in the proposed ML model. Song et al. [15] built 
a deep learning model for screening GO using 784 (normal: 

Fig. 3  Grad-CAM results of the GO-Net classification model. In 
order to enhance the comprehension of the GO-Net classification 
model’s decision-making process, four illustrative eyes (left eyes 
belonging to patients with GO) were randomly selected, and the 
orbital images (CT scans, SPECT/CT fusion images, and Grad-CAM 
results with CT scans as a base) of their coronal surfaces centered 
around the optic nerve were displayed. The superior rectus and infe-
rior rectus correspond to the upper and lower sides of the patient’s 
image, while the internal rectus and external rectus correspond to the 

left and right sides, respectively. (a) True positive: clinical diagnosis 
of activity and model classification result of activity; (b) true nega-
tive: clinical diagnosis of inactivity and model classification result of 
inactivity; (c) false positive: clinical diagnosis of inactivity and model 
classification result of activity; (d) false negative: clinical diagnosis 
of activity and model classification result of inactivity. Probability 
(active): probability that the sample is in the active phase; probability 
(inactive): probability that the sample is in the inactive phase
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625, GO: 168) orbital CT images to train the model and 
114 and 227 orbital CT images as the validation and test 
sets, respectively. This study achieved good results (accu-
racy, 87%; sensitivity, 88%; specificity, 85%). However, the 
sample of GO patients was small, and GO activity was not 
staged. Chen et al. [10] proposed an algorithm based on a 
deep convolutional neural network (DCNN) for detecting 
GO activity. This algorithm was trained using 160 orbital 
MRI images of GO patients (50 active, 110 inactive), with 
80% of the images used for training and validation and the 
remaining 20% used for testing. The accuracy, precision, 
sensitivity, specificity, and F1 score of the resulting best 
model were 85.5%, 64.0%, 82.1%, 86.5%, and 0.72, respec-
tively. However, this study included only 32 GO patients (7 
active, 25 inactive) in the test set, which was unbalanced, 
resulting in overfitting of the model.

Strengths of our study

Our study proposed a deep learning-based method using 
SPECT/CT images. Compared to previous studies using ML 
methods to assess GO, our model utilized both anatomic and 
functional features. Moreover, our method has two important 
modules: EOM segmentation and disease activity classifi-
cation. The EOM mask segmentation results were used as 
inputs to the classification network. Compared with our pre-
viously developed algorithm [14], the IOU on the superior 
rectus muscle increased from 0.74 to 0.79.

In terms of classification modules, the three-channel 
input models comprising SPECT, CT, and EOM masks 
achieved the highest accuracy of 86.10%. In contrast, the 
accuracy of the two-channel model incorporating SPECT 
and CT was 60.88%, while the accuracy of the single-chan-
nel model using only CT images was the lowest at 54.92%. 
Furthermore, the findings highlighted that the utilization of 
the three-channel architecture method could significantly 
improve the diagnostic sensitivity and specificity of GO 
activity staging. Moreover, this three-channel input model 
achieved a higher sensitivity, precision, and F1 score than 
the DCNN and MRI-based architecture developed by Chen 
et  al. [10], with sensitivities, precisions, and F1 scores 
of 84.6% vs. 82.1%, 83.4% vs. 64.0%, and 0.83 vs. 0.72, 
respectively.

It is worth noting that we used a new criterion that com-
bined the CAS with SPECT images to annotate the activity 
stage, in contrast to previous ML studies, which used only 
on the CAS [9, 10, 15]. We initially constructed a CAS-
based classification model. However, its accuracies on the 
training, validation and test sets were substantially lower 
than those of the model based on the combined criteria (see 
Supplementary Methods and Table 2), mainly due to the 
subjective nature of the CAS, which may underestimate the 
inflammatory activity in certain patients [5, 23].

Moreover, the GO-Net model has good interpretability. 
The true positive case shown in Fig. 3a illustrates a strong 
agreement between the model’s focus area and the area with 
thickened EOMs and increased DTPA uptake. In particular, 
the inferior and medial rectus have been investigated more 
attention than other recti. In the true negative cases [Fig. 3b], 
the classification model has the same attention for the four 
EOMs, which is consistent with the negative results of the 
SPECT/CT images. These results indicated that GO-Net 
could automatically focus on the pathological changes in the 
four EOMs and provide different levels of attention during 
staging. Notably, the false positive case shown in Fig. 3c was 
observed in a region in the adjacent nasal sinuses with avid 
DPTA uptake. However, the patient was not clinically rated 
as inactive, and the judgment of the model was wrong due to 
the inflammation caused by sinusitis (Supplementary Fig. 6). 
Moreover, we found that CAS and SPECT/CT findings were 
not always consistent, as shown in Fig. 3d: according to the 
CAS (CAS = 4), this case should be diagnosed as active GO, 
while no significant morphological or functional changes 
were found in the SPECT/CT images, resulting in a negative 
result. Although previous studies have shown a significant 
positive correlation between the CAS and DTPA uptake [5], 
some individuals with CASs > 3 had low DTPA uptake and 
did not respond favorably to anti-inflammatory treatment 
[24]. In line with these results, the Grad-CAM derived from 
our model failed to identify suspicious lesions, further indi-
cating that the CAS has limitations for GO staging.

Limitations

This work has several limitations. First, our patient popula-
tion was from a single medical center. Although SPECT/CT 
enables more accurate and objective staging of GO activity 
than other approaches, we were unable to obtain sufficiently 
large samples from other medical centers due to cost and 
technical issues, which may lead to selection bias. Never-
theless, this technology is being utilized by an increasing 
number of nuclear medicine laboratories, and we hope to 
validate this model with multicenter cohorts in the future. 
Second, the proposed model predicts the diagnosis based 
on only SPECT/CT scans. In practice, clinicians combine 
other clinical assessments and follow-up data to make the 
final decision. We believe that our model can achieve better 
results if other clinical assessments are added to the model 
training process. Thirdly, since the number of patients who 
underwent SPECT/CT pre- and post-treatment is too small, 
future studies will prioritize a larger cohort with comprehen-
sive treatment data to validate the model's predictive efficacy 
for treatment response. In addition, this study is limited to 
staging the activity of GO, and diagnostic and prognostic 
results should be combined to build an improved intelligent 
medical system.
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Conclusions

We propose a deep learning-based approach known as GO-
Net that automatically detects GO activity by using SPECT/
CT images. The GO-Net-assisted strategy could effectively dif-
ferentiate active and inactive GO, thus potentially improving the 
efficiency and reproducibility of GO staging in clinical settings.
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tary material available at https:// doi. org/ 10. 1007/ s00259- 023- 06312-2.
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