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Abstract
Background Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in disease
diagnosis, therapy planning, treatment monitoring, and medical research. The standardized uptake value (SUV) obtained at
a single time frame has been widely employed in clinical practice. Well beyond this simple static measure, more detailed
metabolic information can be recovered from dynamic PET scans, followed by the recovery of arterial input function and
application of appropriate tracer kinetic models.Many efforts have been devoted to the development of quantitative techniques
over the last couple of decades.
Challenges The advent of new-generation total-body PET scanners characterized by ultra-high sensitivity and long axial
field of view, i.e., uEXPLORER (United Imaging Healthcare), PennPET Explorer (University of Pennsylvania), and Biograph
Vision Quadra (Siemens Healthineers), further stimulates valuable inspiration to derive kinetics for multiple organs simulta-
neously. But some emerging issues also need to be addressed, e.g., the large-scale data size and organ-specific physiology. The
direct implementation of classical methods for total-body PET imaging without proper validation may lead to less accurate
results.
Conclusions In this contribution, the published dynamic total-body PET datasets are outlined, and several chal-
lenges/opportunities for quantitation of such types of studies are presented. An overview of the basic equation, calculation
of input function (based on blood sampling, image, population or mathematical model), and kinetic analysis encompass-
ing parametric (compartmental model, graphical plot and spectral analysis) and non-parametric (B-spline and piece-wise
basis elements) approaches is provided. The discussion mainly focuses on the feasibilities, recent developments, and future
perspectives of these methodologies for a diverse-tissue environment.

Keywords Total-body PET · Multiple organs · Arterial input function · Kinetic models · Parametric imaging

Introduction

In recent years, positron emission tomography (PET) has a
wide range of clinical and research applications in oncol-
ogy, cardiology, and neurology [1, 2]. It is a unique imaging
modality that enables the measurements of a diverse range of
functional and biological processes (e.g., tumor metabolism
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[3], proliferation [4], blood flow [5], and receptor-binding
[6]), dependingon the administrated radiotracer. In daily clin-
ical practice, PET imaging is obtained at a single time point
and assessed visually or using simple indices, e.g., standard-
ized uptake value (SUV) [7]. Although these are sufficient
for many diagnostic applications, dynamic scans with mul-
tiple time frames are implemented in some research avenues
for advanced diagnosis, response assessment, therapy man-
agement, and drug/tracer development [8, 9].

Since the 1950s, there have been great advances with
PET including the introduction of time-of-flight technolo-
gies [10], optimized detectors [11, 12], new radiotracers [13],
iterative reconstruction algorithms [14, 15], and novel quan-
titative methods [16, 17] by a variety of scientists in physics,
engineering, chemistry, mathematics, and statistics [18–20].
However, some constraints such as the limited axial coverage
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still exist [21]. Currently, the conventional PET/CT systems
have a short axial field of view (AFOV) of about 15 ∼ 30 cm
and typically only a specific organ such as the brain is imaged.
On these scanners, whole-body (even dynamic) scanning can
be performed by a multi-bed scenario, but pitfalls like the
missing early-phase data and low temporal resolution limit
its wide use [22].

The revolutionary total-body (TB) PET scanners (e.g.,
uEXPLORER [23], PennPET Explorer [24], and Siemens
Biograph Vision Quadra [25]) have been developed to over-
come these limitations. Such devices enable the simultaneous
image of entire human body or main organs using a single-
bed position. Given their ultra-high sensitivity (10∼40 fold),
extended field of view (1∼2m), and enhanced temporal
resolution (20∼200 time frames), the potential clinical appli-
cations of these innovative technologies have been exploited
in different ways to provide better image quality [25–28],
reduce scan time [29–34], lower the injected dose [35–38],
and develop new drugs; see [21, 39–44] for more descrip-
tions. Next to all the exciting opportunities that arise with
TB systems, there remain some challenges. The analysis of
large-scale data, especially for dynamic scanning, becomes
one.

Quantitation of dynamic PET studies could be able to
provide additional biological information, and the potential
benefits have been highlighted in precision medicine [45–
47]. A broad family of quantitative techniques with focus
on the recovery of arterial input function and the establish-
ment of tracer kinetic model has been proposed to estimate
the kinetic parameters of interest. The other procedures
including motion correction and denoising also have some
impacts on the estimated kinetics. Many different points
of view have been taken in extensive literature and more
comprehensive references [8, 16, 17, 48–52] are suggested
for further readings. The aim of this review is to provide
an overview of the basic principles and model formula-
tions of the most important strategies for PET quantitation,
along with their feasibilities and recent developments for the
emerging total-bodyPET imaging. The future perspectives to
further enhance quantitative accuracy are discussed as well.

Total-body PET studies

Since the first total-body human imagingwas obtained on the
uEXPLORERscanner inZhongshan hospital [23], the spread
of uEXPLORER with other long axial field of view (> 1m)
systems has become worldwide. Up to 2022, more than 10
total-body PET/CT scanners, including uEXPLORER, Pen-
nPET Explorer, and Biograph Vision Quadra, have been
installed in China [53], theUSA [24, 54], and Europe [25, 38,
55]. The use of such scanners in both clinical (static mode)
and research (dynamic mode) settings is emerging. Figure1
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Fig. 1 The number of publications (left y-axis) on the total-body (TB)
PET studies (blue) and dynamic TB scanning with the implementation
of kinetic analysis (red) for the period from 2019 to 2022. The percent-
age (right y-axis) of publications relevant to the kinetic model in TB
PET is shown as the black line. The data were collected from a search
on PubMed on 08/05/2023

shows the trend for the work in the area of total-body PET
from 2019 to 2022. The number of publications has a sig-
nificant increase and reached to approximate 200 over the
past 4 years. The proportion of dynamic studies with the
implementation of kinetic analysis in total-body PET also
steadily increases each year.

A list of reported dynamic total-body PET study cohorts
along with the specific details is provided in Table 1. Sev-
eral types of subjects were recruited: healthy volunteers and
patients diagnosed with cancer or infected with COVID-
19. While the most of scans were done exclusively with
the administration of fluorine-18 labeled fluorodeoxyglu-
cose (18F-FDG), there are other radiotracers of interest to be
employed, such as 68Ga-FAPI-04 [56–58], 15O-H2O [59],
89Zr-Df-Crefmirlimab [60, 61], 18F-Fluciclovine [62], and
[11C]methionine [63]. A range of scanning and reconstruc-
tion protocols have been applied by different hospitals/insti-
tutions, but the magnitude of image voxels is generally on
the order of ten million, and a more dense sequence is com-
monly performed at the early time. Although these dynamic
datasets may not be consistent, the data analysis should face
similar problems that will be discussed carefully in the next
section.

Opportunities and challenges in dynamic
total-body PET imaging

As summarized in Table 2, the unique characteristics of
total-body PET studies bring a series of new challenges and
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Table 2 Characteristics and challenges/opportunities of total-body
PET scanners

Characteristics Challenges/opportunities

Multiple organs/tissues • Tissue-specific kinetics

• Large blood pool in FOV

• Heterogeneity

• Delay correction

Higher temporal resolution • Capture fast kinetics

Higher spatial resolution • Better image quality

Huge data set • High computational cost

opportunities for improved quantitative accuracy. Details are
presented below:

(i) Improved image-derived input function: Due to the
long axial field of view of total-body PET scanners,
image-derived input functions can be measured from
multiple blood pools (e.g., heart ventricle, aorta, and
artery). Higher temporal resolution (e.g., 1 s even 0.1s
per early frame) also allows better temporal sampling of
the extracted input function [43, 64, 81].

(ii) Organ-dependent time delay: The arrival time of tracer
to different organs is significantly varied,which has been
an important factor for accurate total-body kinetics [54,
82–84].

(iii) Tissue-specific kinetics: Each kind of tissue has its own
physiological mechanism and some tissues such as the
liver, kidney, and bladder even exhibit more complex
kinetics. Thus, a single kineticmodelmaynot be feasible
for multiple organs, and appropriate model selection is
necessary [54, 84–86].

(iv) Capture fast kinetics: The high temporal sampling imag-
ing provides an opportunity for better investigation of
fast kinetics such as the blood volume or blood flow
(perfusion), which are potential biomarkers for the pre-
diction of therapy response or survival [87–90].

(v) High-quality dynamic PET images: The increased sen-
sitivity enables the generation of high signal-to-noise
(SNR) images, which is greatly beneficial to the quanti-
tation of dynamic imaging at the voxel level, e.g., noise
reduction and lesion enhancement. But we need to note
the sensitivity along the axial field of view shows the
reciprocal U shape (non-uniform) [28, 91, 92]. Thus,
images have higher variances towards the axial edge,
which needs to be considered carefully.

(vi) Huge data set: It is challenging to store and process
such enormous and complex datasets, which may be
addressed by some automation forms using more com-
prehensive approaches (e.g., segmentation) [93–98] or
artificial intelligence [40, 85, 99–101]

Overview of dynamic PET quantitation

Dynamic PET quantitation is not a single procedure and
involves several steps such as the recovery of input function
and application of tracer kinetic modeling. The overview
of this process is presented in Fig. 2. In the following
sections, we will introduce the basic principles and some
well-established methodologies, also their further develop-
ments for the emerging total-body PET imaging [43, 64, 78].

Basic equation

Understanding the targeted biochemical pathway is critical
for the interpretation of dynamic PET imaging data. It can
be approached using the indicator-dilution method built on
the seminal work of Meier and Zierler [102]. Assuming the
radiotracer’s interactionwith tissue is substantially linear and
time-invariant (LTI), the vascular network can be regarded
as an LTI system with an arterial input. Hence, the measured
tissue time activity curve (TAC) - CT can be expressed as
a convolution between the arterial input function (Cp) and
tissue residue, also called the impulse response function (R)
as in Eq.1.

CT (t) =
∫ t

0
R(t − s)Cp(s)ds ≡ R(t) ⊗ Cp(t) (1)

With the known input function, kinetic analysis is concerned
with the estimation of residue and associated kinetic param-
eters such as flow (K ), flux (Ki ) and volume of distribution
(VD).

K = R(0), Ki = lim
t→∞R(t), VD =

∫ ∞

0
R (t) dt (2)

When the model is applied to PET time-course data,
there is typically an adjustment for a biologically impor-
tant parameter—blood volume (VB). Moreover, the site to
recover the input function may be remote from the tissue,
introducing a time delay. The correction is generally accom-
plished by the inclusion of a delay term (�) in the modeling
procedure as Eq.3. The delay has been found to vary with
different voxels/organs/tissues and its correction is necessary
[54, 82–84].

CT (t) = VBCp(t−�)+(1−VB)

∫ t

0
R(t − s)Cp(s − �)ds

(3)

Some specific organs (e.g., liver) receive dual blood sup-
plies from the hepatic aorta and portal vein [103–106]. To
account for such an effect, the input function can be expressed
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Fig. 2 Overview of dynamic PET quantitation. Abbreviations: PET, positron emission tomography; IDIF, image-derived input function; PBIF,
population-based input function; ROI, region of interest; FA, factor analysis; SVD, singular value decomposition; PCA, principal component
analysis; MA, mixture analysis

as a weighted sum of both supplies [107–109].

Cp(t) = (1 − f A)CPV (t) + f ACA(t) (4)

where CPV is the portal vein input and CA(t) is the aortic
input. f A is the fraction of hepatic artery to the overall liver
blood flow.

Region of interest versus voxel-level analysis

The computation of kinetic parameters can be performed
either at the regional or voxel level. Due to the average of
the voxel information in a region of interest (ROI), the noise
can be reduced dramatically. ROI analysis leads to more
robust results, especially in the case of dynamic PET studies,
but also introduces some biases when defining ROIs from
a template, summed, or anatomic images [49]. An alternate
approach to regional estimates is performing analysis at the
voxel level and generated parametric images can reveal the
heterogeneity of tumors [16]. However, many issues need
to be considered carefully such as computational efficiency,
selection of appropriate models, and noise suppression [54].

Total-body PET scanners have the ability to image more
organs/tissues using the single-bed position, but the datasets
aremuchbigger and complex than conventional studies.Mul-
tivariate statistical methods including factor analysis (FA)
[95], singular value decomposition (SVD) [98], principal
component analysis (PCA) [94, 97], and mixture analysis
(MA) [93] express the dynamic PET data as a weighted sum
of image volumes. They enable to identify organs and struc-
tures with different kinetic patterns in a temporal sequence
and reduce the temporal and spatial variations of the noise
[110]. Once the segmentation process is completed, kinet-
ics for each segment TAC (sub-TAC) are calculated and then
mapped back to the original spatial space. These data-driven

approaches have the great potential to efficiently handle the
complexities and address variable noise issues in dynamic
total-body images [96].

Arterial input function

For standard PET quantitation, the knowledge of the tracer
arterial plasma concentration is required as an arterial input
function (AIF). The input function can be derived either from
(i) arterial blood samples, (ii) the time course of anROIdrawn
on the PET image, or (iii) based on the population. Here, we
provide a brief introduction to these commonly used and
model-based approaches together with their applications in
total-body PET studies. For more details, readers are referred
to two recent review papers [111, 112].

Blood sampling

Arterial blood sampling during dynamic acquisition has been
considered the standard for input function inmany references
[113–116]. But some concerns are also raised, for exam-
ple, the measured AIF may suffer from some effects (e.g.,
delay, dispersion, and metabolites), which need to be cor-
rected [112]. This invasive procedure also implies discomfort
for the patient (insertion of arterial lines and increased radia-
tion) and additional costs for the analysis of numerous blood
samples. Thus, it is typically used for research purposes and
not recommended for routine clinical practice.

Manual blood sampling or an automatic blood sampling
system (ABSS) [117] is generally used to collect arterial
blood. However, manual separation of plasma requires decay
correction [118, 119], while longer tubing in ABSS intro-
duces higher dispersion effects [120] and requires consider-
ation of the blood-to-plasma ratio [121, 122]. Another issue
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with AIF refers to the metabolite analysis. Although there
do not exist blood-based metabolites for some tracers such
as 18F-FDG and 15O-H2O, most tracers produce isotope-
labeled metabolites that contaminate the input function.
These metabolites can be corrected by some mathematical
models, e.g., hill model [123, 124], power model [125, 126],
and exponential models [127]. A review of the commonly
used metabolite-correction approaches is suggested to read
for further details [128].

In practice, it would be more difficult to get the blood
sampling for the total-body PET study. For example, both
the radial artery and antecubital vein are harder to access due
to the long axial field of view [40]. The long line from the
wrist to the sampling site also may cause more serious delay
and dispersion issues [112]. With so many challenges, the
first attempt was made by a Denmark group to get the arte-
rial blood sample for the total-body 15O-H2O scanning with
Quadra [59]. Such clinical trials are expected to be conducted
more in the future. On the other hand, some non-invasive
techniques (based on image/population/mathematical mod-
els) have also been developed as follows.

Image-derived input function

To obviate the need for blood sampling, input information
can be also derived from a region drawn at the blood pool
on PET images, referred to as image-derived input function
(IDIF). Due to the limited field of view of conventional PET
scanners, sometimes IDIF can only be measured from small
vessels such as carotids. However, total-body PET imaging
provides multiple choices encompassing the left ventricle,
aorta, and other big blood vessels [43, 64, 78]. So far, the
IDIF recovered from an ROI over descending aorta (DA) has
been themost popular one [17]. Furthermore, the high spatial
and temporal resolutions may also lead to more accurate and
less noisy IDIF.

However, the use of IDIF still needs to be investigated
carefully in the total-body setting. The whole blood activity
concentration can be derived, and plasma concentration is
impossible to obtain. Reliable results are only generated with
radiotracers that do not produce any metabolites, such as
18F-FDG [49]. Additional corrections to the IDIF are also
important for accurate kinetics [72].

Population-based input function

Assuming individuals have the same tracer injection pro-
tocol and similar physiological characteristics in a cohort,
the population-based input function is generally calculated
by averaging and scaling this set of input functions using
arterial catheterization invasively [129]. Such a method is
probably the most interesting approach for use in clinical
practicewithmany radiotracers, but currently, it has been val-

idated almost exclusively for 18F-FDG [130]. Several groups
have attempted to reduce the dynamic scanning time using
the PBIF on the total-body PET scanners [32, 55, 79].

Model-based input function

Model-based descriptions of the arterial samples are usu-
ally introduced to obtain continuous and noise-free input
functions, which may be helpful to further improve IDIF
or PBIF. The most famous models are Feng’s model [131]
and its variation, i.e., tri-exponential model [132], but they
both cannot describe the complex behavior of the AIF and
account for different injection protocols properly [133].
Simultaneous estimation of the input function (SIME) is
usually used to generate a specific input function by fit-
ting regional TACs simultaneously [134–136]. Recently, a
population-based projection model (PBPM) has been devel-
oped which combines population profiling (as in a PBIF
approach) with individual arterial input data modeling (as
in an IDIF approach). This model incorporates knowledge of
injection duration into the fit, allowing for varying injection
protocols [137]. Another promising model to be applied to
the emerging total-body PET imaging is the novel Markov
chain model for the representation of the whole-body tracer
circulation [138].

Kinetic model

Many kinetic models have been well-developed for quantita-
tivePETscanning, but theydiffer in termsof residue formand
produced information [49]. A summary is shown in Table 3.
Most of them (e.g., compartmental model, Patlak plot, and
spectral analysis) is a parametric model that generally relies
on the necessary assumptions. These are difficult to justify for
the heterogeneous tissue region, especially the diverse-tissue
study. The non-parametric method without the assumption
requirement should be more flexible and indeed have some
substantial advantages.

Here, we provide an overview of various parametric
and nonparametric strategies (see [88] for more details of
derivations) and summarize their recent developments for
total-body PET imaging [54, 64, 73, 78, 83, 84, 86, 139, 140].
The feasibility, challenge, and promise of these methodolo-
gies are also discussed.

Compartmental model

Compartmental modeling forms the basis for tracer kinet-
ics of dynamic PET data. There are two most important
models used to derive physiological information in abso-
lute measurement units as shown in Table 3 (A). One tissue
compartmental (1C) model with two rate constants (K1 in
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ml/min/cm3 and k2 in min−1) was developed by Kety [141]
for quantitative assessment of blood flow (perfusion). Two
tissue reversible compartmental (2Cr) model with four rate
constants (K1 in ml/min/cm3, k2, k3 and k4 in min−1) is
mainly used for quantifying receptor-ligand binding studies
[142]. While k4 equals 0 (irreversible), it becomes the most
famous Sokolov-Huang model (2Ci) generally employed for
the quantitation of metabolic rate for glucose [143–145]. For
more generalized compartmental models and detailed under-
lying biochemical mechanisms, see [48].

Thesemodels are describedby a systemoffirst-order time-
dependent differential equations, which can be solved by a
numerical procedure known as nonlinear least squares (NLS)
in order to appropriately estimate the residue function and
associated kinetics. The advantages of compartmental mod-
eling are the reliability and independency on the scanning
time. When dealing with very noisy data (e.g., voxel-level
analysis), this method has several shortcomings including
convergence issues, long computational time, and sensitivity
to initial estimates due to the nature of NLS [49].

1Cmodel

One tissue compartmental model is given by a differential
equation as Eq.5:

dC1(t)

dt
= K1Cp(t) − k2C1(t) (5)

whereC1 represents tissue compartment andCp is the plasma
compartment. Solved by the integrating factor method, the
solution is found to be as follows:

C1(t) =
∫ t

0
K1e

−k2(t−s)Cp(s)ds (6)

Related to the simple basic Eq.1, the residue function can be
expressed as

R(t) = K1e
−k2t (7)

Hence, the parameter of interest - blood flow (perfusion) =
R(0) = K1.

2Cmodel

Similar to the 1C model, two tissue compartmental model is
represented by a coupled system of differential equations as

Eq.8.

⎧⎨
⎩

dC1
dt = K1Cp(t) − (k2 + k3)C1(t) + k4C2(t)

dC2
dt = k3C1(t) − k4C2(t)

(8)

where C2 is the tissue compartment. By the Laplace
transform and its inversion [146], the final result is given
by the following:

CT (t) = C1(t) + C2(t) = K1(π1e
−θ1t + π2e

−θ2t ) ⊗ Cp(t)

(9)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π1 = k4−θ1+k3
θ2−θ1

, π2 = θ2−k4−k3
θ2−θ1

θ1 = k2+k3+k4−
√

(k2+k3+k4)2−4k2k4
2

θ2 = k2+k3+k4+
√

(k2+k3+k4)2−4k2k4
2

Again recall the fundamental Eq. 1, residue is a mixture of
exponentials as Eq.10.

R(t) = K1(π1e
−θ1t + π2e

−θ2t ) (10)

For the irreversible 2C model (k4 = 0), the metabolic
flux is focused, that is Ki = lim

t→∞R(t) = K1k3
k2+k3

. For the

reversible tracers, volume of distribution is calculated as:
VD = ∫ ∞

0 R(t)dt = K1
k2

(1 + k3
k4

).

Delay effect

In the routine PET image, IDIF is usually extracted from a
nearby arterial blood pool, so the time delay between IDIF
and the targeted tissue is very short and even negligible. The
total-body PET scanner provides several options for IDIF
location that may be far away from some tissues. The delay
time can be up to 50s and significantly varied to different tis-
sues, which has been an important factor to affect the kinetic
quantification [54, 82–84].

To correct this effect, the delay term is jointly estimated
with other parameters in compartmental models. Take 1C
model as an example, replacing the residue function in Eq.3
by Eq.7 gives:

CT (t)=VBCp(t−�)+(1−VB)

∫ t

0
K1e

−k2(t−s)Cp(s−�)ds

(11)

In this setting, (VB, K1, k2,�) are estimated. Similarly for
2C model, (VB, K1, k2, k3,�) or (VB, K1, k2, k3, k4,�)
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are derived, but the estimation procedure is more compu-
tationally expensive. Two schemes have been proposed to
determine the delay by only the first few minutes data using
1C model [82, 83] or full-time data in arbitrary models [54].
The former one has been initially demonstrated to be efficient
[84].

Model selection

The selection of compartmental models (1C, 2Ci, 2Cr) usu-
ally depends on the tracer property, the aim of study, and even
the organ or tissue of interest. For example, 1C is generally
adopted for 15O-H2O and 2Cr is used for 11C-Raclopride.
As the most commonly used tracer - 18F-FDG, the irre-
versible model (2Ci) is employed for many organs while its
uptake into the liver exhibits reversible characteristics [147].
Therefore, we must justify each case carefully for the use of
compartmental model.

The typical quantitation for dynamic PET study is apply-
ing a single model, which works well in organ-specific
imaging on conventional scanners. But it may not be appro-
priate for total-body imaging as a single model is hard to
be feasible for diverse tissues and organs. Wang et al. have
reported that voxel-levelmodel selection strategy based on an
Akaike information criterion (AIC) leads to improved total-
body parametric imaging [54]. But there is no doubt that it
brings more computation burden. Later on, a further exami-
nation of various compartmental models for multiple organs
is implemented at theROI level [84]. This study indicates that
the applicability of compartmental models for the bladder is
questionable.

Patlak plot

Graphical techniques provide simple ways to estimate the
specific kinetic parameters by appropriately transforming the
equations of compartmental modeling for irreversible and
reversible tracers [148–150]. Here, we just focus on the most
popular graphical method—Patlak model; for more details
about other approaches, we suggest a review article for fur-
ther reading [151]. Patlak analysis has been widely applied
to dynamic PET imaging due to its simplicity and robustness
[148], which is assumed that (i) the trapping of tracer in stud-
ied organs/tissues is completely irreversible; (ii) Patlak plot
results in a straight line after the time that steady-state con-
ditions between reversible tissue and plasma compartments
are reached. If both assumptions are satisfied, Ki can be esti-
mated easily as the slope of Patlak plot after the equilibrium
time (t∗) using linear regression. The Patlak plot is given by

the expression below:

CT (t)

Cp(t)
= Ki

∫ t
0 Cp(τ )dτ

Cp(t)
+ constant, t ≥ t∗ (12)

Ki is computed using a few late time frames of dynamic
scanning by a non-iterative strategy—ordinary least square
(OLS). Due to the nature of linearity, it should be much
faster and less sensitive to noise than NLS, and it is therefore
appropriate for applications at the voxel level [8]. On the
other hand, it must be noted that this approach does not
provide any insight regarding the complete profile of tracer
kinetics and only a reduced set of parameters (Ki ) is obtained.

When adopting the standard Patlak (sPatlak) method for
dynamic total-body imaging, many tissues and organs can be
studied simultaneously. Single t∗ may not be appropriate for
the diverse-tissue environment as the equilibrium conditions
probably achieve at different time points. The feasibility of
Patlak plot also needs to be justified for certain tissues like
the liver, kidney, and bladder. These limitations and possible
solutions are discussed in detail in the following.

Selection of t*

The improper t∗ may introduce additional errors in estimated
Ki [152]. A rich literature has explored the choice of t∗ for
single organ on short AFOV PET scanners, for example, 20
min for brain [153] and 10min for lung [154]. Total-bodyPat-
lak images are generated with various t∗, from 10 min [155],
15 min [29], 20 min [156] to 30 min [64]. But there are no
more details about the justifications in these studies.

Recently, an adaptive t∗ scheme has been proposed to
determine the optimal options for different ROIs or voxels
[139]. It is based on two criteria: max-error and R squared
(R2). Max-error is defined as the worst case error between
the predicted value and the true value for all observations
on Patlak plot. The selected t∗ is the earliest one so that
max-error is less than a threshold value. This criterion has
been employed in PMOD (Zürich, Swi zerland), and the
default setting of threshold is 10%. R2 is a common metric
to quantify the goodness of linear fit, and a value closer to
1 indicates a better fit, so optimal t∗ is determined by the
maximum R2. This procedure has the potential to improve
the accuracy of kinetic parameters. However, further investi-
gations in patient cohorts and more sophisticated techniques
need to be developed.

Generalized patlak

As described above, the standard Patlak analysis assumes an
irreversible 2C model. For total-body imaging, this assump-
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tion can be broken by some tissues (e.g., the liver where
18F-FDG may exhibit mild positive uptake reversibility and
bladder associatedwith the complex tracer excretion process)
[84, 139, 157] and tumors (e.g., hepatocellular carcinoma)
[158] so that the sPatlak plot is no longer linear.

To address these issues, a generalized Patlak (gPat-
lak) method Eq.13 based on the reversible 2C model was
proposed in 1985 [159], which introduced an additional
exponential term characterized by the net efflux (kloss) to
account for the effect of tracer dephosphorylation properly.

CT (t)

Cp(t)
= Ki

∫ t
0 e

−kloss (t−τ)Cp(τ )dτ

Cp(t)
+ constant, t ≥ t∗

(13)

Thismodel becomes non-linear due to the added exponen-
tial term, but it can be solved by applying a basis function to
linearize the estimation process [160].

The utility of gPatlak approach for diverse organs and
tissues is first examined by Karakatsanis et al. [160] in
multi-bed multi-pass whole-body PET imaging. Then, the
performance of both standard and generalized Patlak meth-
ods has been assessed for multiple organs at the ROI level
using a total-body PET study on uEXPLORER [86]. Results
show that gPatlak can bring benefits for the liver, kidney,
lung, and especially bladder. Thus, it would be also interest-
ing to explore the use of gPatlak plot for voxel-level analysis
in the future.

Spectral analysis

The residue function in the compartmental model is the sin-
gle exponential Eq. 7 or a mixture of exponentials Eq.10. It
may not have sufficient degrees of freedom to capture full
variability in total-body PET data. Spectral analysis (SA)
proposed by Cunningham and Jones in 1993 [161] assumes
the residue to be the sum of J + 1 exponential terms.

R(t) =
J∑

j=0

α j e
−β j t , α j ≥ 0, β j ≥ 0, β0 = 0 (14)

Thus, the tissue time course can be expressed as

CT (t) =
J∑

j=0

α j e
−β j t ⊗ Cp(t) ≡

J∑
j=0

α j g j (t) (15)

g j (t) are knownwith the pre-defined eigenvaluesβ j ,whereas
the amplitudes α j are estimated by the NLS algorithm. The
model structure (e.g., reversibility or irreversibility, number
of compartments) is derived from α j , also called spectrum

[8]. The information of macroparameters, such as K , Ki , and
VD is obtained as follows:

K =
J∑

j=0

α j , Ki = α0, VD =
J∑

j=1

α j

β j
(16)

Some relevant strategies such as rank-shaping spectral
analysis [162] and spectral analysis with iterative filter [163]
have also been developed in recent years. The main strength
of spectral analysis is its flexibility which can be applied to
reversible or irreversible tracers, single or multiple compart-
mental models, and homogeneous as well as heterogeneous
systems [50]. These characteristics make this method adapt-
able to various tracers and particularly suitable for total-body
PET imaging. But until now, it has not been implemented in
this area.

Non-parametric analysis

Typically, the tissue residue is a monotone decreasing func-
tion and approximated as nonnegative sums of exponential
terms in the compartmental framework. However, the strict
monotonicity (�R(t) < 0) is not always realistic[164] and
the assumed exponential form may not be reasonable to
represent data in which in vivo biochemistry is not clear
[165–168], especially for the emerging total-body PET imag-
ing [84, 86].

Unlike the methods discussed above, residue can be also
estimated by the non-parametric approaches [169–172] and
given by the following:

R(t) =
J∑

j=1

α j I j (t), α j ≥ 0 (17)

Although it has a similar structure as Eq.14, I here repre-
sents the basis elements, which can be B-spline [169, 172] or
piece-wise function [170, 171]. This procedure has the ability
to adapt to monotone (even exponential) and non-monotone
forms as no unrealistic parametric restrictions are imposed.

The non-parametric residue analysis can be implemented
rapidly by quadratic programming and has the advantage to
provide more accurate kinetic quantitation in multiple tis-
sues. An efficient application of this concept to generate
parametric imaging is described as follows.

Non-parametric residue mapping

The non-parametric residue mapping (NPRM) consists of
a fully automatic process incorporating data-adaptive seg-
mentation, non-parametric residue analysis of segment data
(sub-TAC), and voxel-level kinetic mapping scheme [173].
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Following the linear structure of mixture model [93], the
voxel-level time course (zi ) can be expressed as a non-
negative combination of sub-TACs (μl ). The mechanism
enables to address the heterogeneity of voxel-level data.

zi (t) =
L∑

l=1

πilμl(t), πil ≥ 0, i = 1, 2, ..., N (18)

where π is the coefficient and N is the number of voxels.
For each sub-TAC, the associated residue is estimated non-

parametrically, and the parameter of interest - θ (e.g., K , Ki

or VD) can be derived as a function (g) of residue.

μl(t) = Rl(t) ⊗ Cp(t − �) ⇒ θl = g(Rl)

The final parametric imaging is obtained as

θi =
L∑

l=1

πilθl , i = 1, 2, ..., N (19)

The NPRM approach has some important features like the
flexibility for diverse tissues and consideration of delays for
different parts and also the ability to address issueswith blad-
der or injection site [169, 171, 173], which make it feasible
to be applied to total-body PET studies.

Building on Eq.18, an image-domain bootstrap data gen-
eration process can be defined by the spatial and temporal
patterns of model residuals [174, 175]. It has been used to
assess the uncertainty (standard errors) of parametric imag-
ing [176]. The practicality of simultaneous segmentation,
kinetic parameter estimation, and uncertainty evaluation has
also been demonstrated for a total-body breast cancer patient
study on Biograph Vision Quadra [140].

Other approaches

All the aforementioned approaches are applied in the image
domain; however, they can be incorporated into the recon-
struction process to estimate kinetic parameters by modeling
projection data (sinogram or list-mode), known as the “direct
method” [177]. The ideas for direct estimation could date
back to the 1980s [178, 179], and since then, many sci-
entists made great contributions to the progression of this
technology for more accurate kinetics than the routine post-
reconstruction procedure [180–185]. We suggest a detailed
technical review for further reading [186]. It is remarkable
that direct Patlak has been adopted on commercial scanners
and applied to total-body PET studies [64, 78, 187]. But it
suffers from similar problems like the non-linearity for spe-
cific tissues as mentioned above [86, 139, 188].

Another research interest in future work is the implemen-
tation of artificial intelligence (AI) for the total-body PET
imaging [99, 189]. As a subcategory of AI, deep learning
(DL) techniques, e.g., convolutional neural network (CNN)
[190] and generative adversarial network (GAN) [101], have
been extensively used in PET for solving a wide variety of
problems involving image reconstruction [191–193], denois-
ing [194, 195], segmentation [196, 197], and quantitation
[198, 199]. A few initial attempts have been made to extract
the flux (Ki ) from total-body PET studies by DL methods
[71, 187, 200]. More opportunities and challenges facing the
adoption of DL in total-body PET quantitation are detailedly
discussed in a recent review paper [85].

There are a number of PET studies where dynamic scans
are used and main organs are included, e.g., whole-body
human and preclinical animal imaging. The data structures
and characteristics are similar to total-body human studies.
Therefore, it is natural to generalize the techniques developed
in these studies for quantifying dynamic total-body imag-
ing. For example, (i) generalized and direct Patlak methods
are both first examined for multiple organs in whole-body
scans [160, 201, 202], then applied to total-body imaging
[64, 78, 86]; (ii) the above-mentioned NPRM procedure is
demonstrated in the whole-body pregnant macaque studies
[203] before it is employed to generate total-body parametric
imaging [140]. Many other perspectives also have excellent
potential as tools in the future [22, 204].

Discussion

Outside of the quantitative procedures discussed in this
review, there are some basic challenges (e.g., motion,
spillover, and partial volume) in the pre-processing strat-
egy that may limit the reliability of estimated kinetics.
Patient movement, respiration motion, and cardiac motion
are unavoidable during the PET acquisition, particularly for
the dynamic scanning with longer time. Many methods to
correct motion have been proposed, and most of them are
based on image registration algorithms or hardware motion
tracking using an external device [49]. To the best of our
knowledge, there is no common approach to resolve this
issue for all organs even if it is well studied in the brain
images. But we are glad to see that it has been investigated
in the total-body studies by some researchers [205]. Another
measure, denoising, is sometimes taken to ensure accurate
results. Typically, one selected filter, e.g., Gaussian or non-
local mean, is applied to reduce the PET image noise before
the formal quantitation [206]. For amore comprehensive dis-
cussion on pre-processing procedures, we refer the reader to
a recent article [87].

Although the emergence of total-body PET scanners
brings a series of benefits, the concerns of the adoption of
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dynamic studies in clinical practice still remain, even more
serious. For example, more static scans can be completed
in a specific time interval (e.g.,1h) as they can be acquired
faster on uEXPLORER [30]. It may be argued that the cost
of dynamic studies would be substantially higher. Thus,
some protocol designs, e.g., dual-injection scheme [69], have
been explored to reduce the dynamic scanning time. At
the same time, parameter estimation procedures including
non-invasive input functions and improved kinetic models
are developed to make dynamic imaging more feasible and
valuable in routine use [177]. Regardless of these difficul-
ties, the additional information recovered from dynamic PET
scans has been demonstrated to be useful to predict therapy
response or survival [89, 90], which deserves to be appre-
ciated in precision medicine for improving individualized
treatment by maximizing the therapeutic effect and mini-
mizing toxicity [46]. From all these perspectives, the role
of dynamic PET imaging may not be changed in the short
run, but we are confident that it must have a bright future in
clinics.

During the past few years, many groups (>20) in nuclear
medicine, physics, biomedical engineering, and statistics
have been involved in the total-body PET data acquisition
and analysis. The early adopters have generously shared their
insights into this new technology. Hicks provided an instal-
lation guide including many aspects (e.g., financing, space,
and power) for total-body PET/CT beginners [207]. Vanden-
berghe et al. proposed a few design options to reduce the
cost for total-body PET [208]. Bern group shared their expe-
rience obtained from 7000 patient studies on Quadra [209].
An expert consensus was also proposed for the oncological
use of uEXPLORER with 18F-FDG based on the experience
of imaging 40,000 cases [210]. These reports greatly improve
our understanding of the clinical use of advanced total-body
systems. However, until now, these is no standardized frame-
work for data structure, storage, sharing, and reproducibility,
which may be similar to the Brain Imaging Data Structure
(BIDS) platform promoted by the brain imaging community
[211, 212]. The construction of such a platform needs the col-
laboration of multiple teams in diverse disciplines, but it is a
worthwhile endeavor to release the full potential and pave the
way for further developments of total-body PET scanners.

Conclusions

In the coming years, total-body PET technologies are
expected to have a more widespread impact. The review of
basic principles and recent advances in general quantitation
strategies may facilitate their use and validation in total-body
imaging and subsequently enhance the reliability of derived
kinetic information. The promise of some novel approaches
(either deep learning or multivariate statistical methods) to

improve quantitative accuracy is also pointed out. Overall,
there is still a long way to fully understand and handle the
complexities of total-body dynamics.
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