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EDITORIAL

“Fuzzy” radiomics: the way forward for nuclear medicine imaging 
applications?
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Since the early development of statistical measurements 
dedicated to quantifying tracer heterogeneity [1], to the 
first investigations of using textural features [2, 3] for the 
same goal, and the exponential rise of radiomics applied 
to nuclear medicine (NM) imaging [4, 5], partial volume 
effects (PVE) have been one of the many issues affecting 
the use of radiomics in positron emission tomography (PET) 
and single-photon emission computed tomography (SPECT) 
applications [6]. Despite improvements in spatial resolution 
and overall image quality over the last two decades, nuclear 
medicine devices still suffer from a relatively worse spatial 
resolution compared to computed tomography (CT) or mag-
netic resonance imaging (MRI), and it remains a limiting 
factor of an accurate quantification of the signal in recon-
structed images of small objects of interest, either organs or 
tumors. Even the characterization of large tumors is affected 
by PVE, since transitions between different levels of uptake 
in case of heterogeneous tracer distribution within the vol-
ume of interest can exhibit fuzzy values.

In the vast majority of studies investigating radiomics in 
NM imaging, objects of interest have been delineated (either 
manually or semi-automatically) in 2D or 3D in the images, 
and a binary mask has been considered for the calculation of 
features characterizing the object [5]. This means that vox-
els in the images are considered to be either part of lesions 
or not. As a result, the sensitivity of the typical features to 
changes in the binary mask can vary (some features are more 
robust than others), but the characterization of the object 
does not take into account the PVE occurring at the borders 
of the mask in the original uptake signal.

In their work focusing on real clinical radiomic datasets, 
Grahovac et al. [7] investigated an alternative, called “fuzzy 
radiomics,” previously introduced and evaluated in the context 
of phantom images [8]. The approach consists in weighting 
voxels contributions to the calculation of features instead of 
including lesion voxels with a binary yes/no decision. Except 
for these weights from the fuzzy mask, feature calculation is 
exactly the same as for the conventional one, based on the 
image biomarker standardization initiative (IBSI) [9]. This 
can potentially bring a few advantages over the conventional 
method: It can model and account for the actual PVE of any 
given scanner as long as the PSF is known, it enables encoding 
different delineations as a weighted mask, it can incorporate 
the object’s surroundings (i.e., tumor habitat) with specific 
weights, and finally, it can directly use masks derived from 
automated algorithms that are most often inherently probabil-
istic in nature, before being binarized for a final output.

Grahovac et al. thus evaluated the potential benefit of this 
approach according to two measurements: First, the level of 
redundancy amongst features and, second, the performance of 
machine learning (ML) models built using the features (conven-
tional vs. fuzzy). In order to avoid modeling biases, 4 different 
random forests and one multi-Gaussian classifiers were trained, 
and a majority voting of the 5 results models was used as the 
final prediction to compare fuzzy and conventional models.

Interestingly, they conducted the evaluation in 3 differ-
ent clinical settings with their own tracer, tumor target, and 
clinical endpoints: 11C-methionine (MET) PET in glioma 
(3-year survival), [18F]FDG PET/CT in lung (2-year sur-
vival), and [68 Ga]Ga-PSMA-11 PET/MRI in prostate (low- 
vs. high-risk classification).

Their findings suggest that relying on fuzzy radiomic 
features instead of conventional ones not only improves the 
redundancy (clusters of features with a Spearman rank cor-
relation value below 0.9 increased by about 20%), but also 
leads to better predictive performance of the ML models. 
The improvements were small (a few points of area under 
the ROC curve) but consistent across the 3 cohorts.
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Although recently published guidelines on radiomics for 
NM highlighted the potential benefit of considering alterna-
tive delineations (e.g., larger volumes encompassing the tumor 
surroundings) [10], future validations and comparisons should 
now be conducted in order to confirm whether fuzzy radiom-
ics instead of conventional calculations should be relied upon 
in NM imaging, at least when smaller lesions are concerned.
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