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Abstract
Purpose  PET-derived metabolic tumor volume (MTV) and total lesion glycolysis of the primary tumor are known to be 
prognostic of clinical outcome in head and neck cancer (HNC). Including evaluation of lymph node metastases can further 
increase the prognostic value of PET but accurate manual delineation and classification of all lesions is time-consuming 
and prone to interobserver variability. Our goal, therefore, was development and evaluation of an automated tool for MTV 
delineation/classification of primary tumor and lymph node metastases in PET/CT investigations of HNC patients.
Methods  Automated lesion delineation was performed with a residual 3D U-Net convolutional neural network (CNN) 
incorporating a multi-head self-attention block. 698 [18F]FDG PET/CT scans from 3 different sites and 5 public databases 
were used for network training and testing. An external dataset of 181 [18F]FDG PET/CT scans from 2 additional sites was 
employed to assess the generalizability of the network. In these data, primary tumor and lymph node (LN) metastases were 
interactively delineated and labeled by two experienced physicians. Performance of the trained network models was assessed 
by 5-fold cross-validation in the main dataset and by pooling results from the 5 developed models in the external dataset. The 
Dice similarity coefficient (DSC) for individual delineation tasks and the primary tumor/metastasis classification accuracy 
were used as evaluation metrics. Additionally, a survival analysis using univariate Cox regression was performed comparing 
achieved group separation for manual and automated delineation, respectively.
Results  In the cross-validation experiment, delineation of all malignant lesions with the trained U-Net models achieves 
DSC of 0.885, 0.805, and 0.870 for primary tumor, LN metastases, and the union of both, respectively. In external testing, 
the DSC reaches 0.850, 0.724, and 0.823 for primary tumor, LN metastases, and the union of both, respectively. The voxel 
classification accuracy was 98.0% and 97.9% in cross-validation and external data, respectively. Univariate Cox analysis 
in the cross-validation and the external testing reveals that manually and automatically derived total MTVs are both highly 
prognostic with respect to overall survival, yielding essentially identical hazard ratios (HR) ( HR

man
= 1.9 ; p < 0.001 vs. 

HR
cnn

= 1.8 ; p < 0.001 in cross-validation and HR
man

= 1.8 ; p = 0.011 vs. HR
cnn

= 1.9 ; p = 0.004 in external testing).
Conclusion  To the best of our knowledge, this work presents the first CNN model for successful MTV delineation and lesion 
classification in HNC. In the vast majority of patients, the network performs satisfactory delineation and classification of primary 
tumor and lymph node metastases and only rarely requires more than minimal manual correction. It is thus able to massively 
facilitate study data evaluation in large patient groups and also does have clear potential for supervised clinical application.
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Introduction

Primary treatment approaches for localized head and neck 
cancer (HNC) include either definitive radiochemotherapy 
or surgery. The latter is often followed by adjuvant radio-
therapy or radiochemotherapy. Treatment related side effects 
are considerable and differ between both primary treatment 
approaches, as shown by the randomized ORATOR trial in 
oropharyngeal carcinomas [1]. For primary radiochemother-
apy, radiosensitivity differs considerably between individual 
patients and local tumor recurrences remain an important 
clinical issue. Biomarkers for an improved personalized 
treatment include quantitative PET parameters, notably 
metabolic tumor volume (MTV), total lesion glycolysis, and 
SUVmax of the primary tumor which have been shown to be 
prognostic of clinical outcome in patients with HNC [2–6]. 
Evaluation of lymph node (LN) metastases in addition to the 
primary tumor has potential to further increase the prognostic  
value of PET [7]. Such analysis requires, however, accurate 
delineation and classification of all lesions which is very 
time-consuming when performed manually. Additionally, 
the tumor volumes can be prone to interobserver variability 
which hampers reproducibility of the results. The problem of 
accelerating tumor delineation in PET has previously been 
addressed by several groups using semi-automated methods 
such as fixed or adaptive thresholding, fuzzy locally adap-
tive Bayesian segmentation, region growing method, etc. [8]. 
Such approaches provide satisfactory results at sufficiently 
high target to background contrast but become increasingly 
more inaccurate with decreasing contrast which makes man-
ual intervention regularly necessary. Consequently, notable 
time demands are imposed on the user, especially for LN 
delineation.

The recent emergence of deep learning-based methods 
for medical image analysis [9–13] allowed for significant 
progress in the tasks of therapy response [14–19] and 
clinical outcome [20–28] prediction, image registration 
[29–34], exam and object classification [35–46], object 
detection [47–54], and, finally, object delineation [55–68]. 
More specifically, the approaches to HNC cancer lesion 
delineation mostly rely on similar U-Net-like architectures 
but differ regarding the choice of target volume defini-
tion, considered patient population, and employed imaging 
modalities. Some researchers have exclusively considered 
the morphological modalities, i.e. CT [69–74] and MRI 
[75–79] or a combination of both [80], with Dice similar-
ity coefficients (DSCs) reaching 0.74 for primary tumor 
and 0.66 for LN metastases in CT and 0.65 for primary 

tumor and 0.58 for LN metastases in MRI. For the spe-
cial case of MRI in nasopharyngeal cancer a much higher 
DSC of up to 0.90 has been reported [78]. Furthermore, 
many studies report that combining CT or MRI with 
PET improves the network’s performance considerably 
[70–74, 81] compared to usage of only a single modality. 
The majority of state-of-the art designs utilizes PET/CT 
which has been shown to be slightly superior to PET/MR 
[80] and also is much more widely available. Examples 
include primary tumor delineation in oropharyngeal cancer  
[72, 82, 83] (DSC = 0.61), primary tumor + LN metas-
tases delineation in squamous cell carcinoma of the oral 
cavity, oropharynx, hypopharynx and larynx [73, 74, 80] 
(DSC = 0.75), and primary + LN metastases delineation in 
a non-specified HNC [70, 71, 81] (DSC = 0.82). The num-
ber of proposed solutions to the problem at hand increased 
drastically with creation of the HECKTOR challenge aim-
ing on primary gross tumor volume (GTV) delineation in 
oropharyngeal cancer using a substantial PET/CT database 
[82]. The most recent challenge included contributions 
from 20 teams scoring DSCs of [0.63−0.78] [84]. Inter-
estingly, despite a large variety of proposed solutions, the 
winning contribution relied on the well known 3D U-Net 
architecture with only minimal modifications [85].

It is important to emphasize that the above-mentioned 
studies aimed at GTV rather than MTV delineation and 
that these two volumes are not identical in general. MTV 
is mainly used in a diagnostic context and for therapy 
response assessment. Therefore, sensitivity and specificity 
should be well balanced to avoid overdiagnosis. In contrast, 
GTV is mainly utilized in radiotherapy planning where a 
higher sensitivity might be preferred at the expense of a 
lower specificity to reduce the risks of underdosage of 
malignant lesions. As a consequence, MTV might possess 
higher prognostic power compared to GTV [86]. So far, 
only a single study investigated the CNN-based fully auto-
mated MTV (PET-based GTV) delineation in HNC [87]. 
The authors considered multiple CNN architectures and 
loss functions in a population of 470 patients achieving 
DSC = 0.87, demonstrating generally comparable perfor-
mance with different configurations. However, to the best 
of our knowledge the possibility of automated differentia-
tion between primary tumors and LN metastases has not 
been thoroughly investigated so far. Therefore, our goal 
was development of an automated tool for MTV delinea-
tion and classification of primary tumor and lymph node 
metastases in HNC in PET/CT. Additionally, our aim was 
to compare the manually and CNN derived PET parameters 
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regarding outcome prediction of patients in an independent 
external cohort of patients.

Methods

Patients and data acquisition

1133 patients available from a retrospective cohort of an 
ongoing clinical multicenter investigation [4] were consid-
ered for inclusion in the present study. Exclusion occurred 
as follows:

–	 no CT data sets: N = 165

–	 severe metal artifacts in the CT data sets: N = 45

–	 no sizable [18F]FDG uptake, lesion identification/deline-
ation in PET thus impossible: N = 44

Ultimately, 879 patients could thus be included in the cur-
rent study.

The data were split into a main dataset used for train-
ing, validation, and testing and a dataset for external testing 
using only data from sites which were not included in net-
work model generation. The main dataset consisted of 698 
[18F]FDG PET/CT scans of head and neck squamous cell 
carcinoma (HNSCC) patients (535 men and 163 women, 
mean age 61 years, range 25–87) from three clinical sites 
(Berlin, Germany ( N = 175 ), Dresden, Germany ( N = 24 ), 
Poznan, Poland ( N = 22 )) and 5 public databases (Data from 
Head-Neck-PET-CT [88] ( N = 269 ), Data from Head-Neck-
Radiomics-HN1 [89] ( N = 34 ), Imaging and clinical data 
archive for head and neck squamous cell carcinoma patients 
treated with radiotherapy [90] ( N = 32 ), Radiology Data 
from The Cancer Genome Atlas Head-Neck Squamous Cell 
Carcinoma [TCGA-HNSC] collection [91] ( N = 11 ), Data 
From QIN-HEADNECK [92] ( N = 131)). The dataset for 
external testing included N = 15 patients from Limassol, 
Cyprus and N = 166 patients from Munich, Germany (138 
men and 43 women, mean age 63 years, range 28–89).

The main dataset included 643 primary tumors and 
1078 LN metastases with mean (median) volumes of 
13.21 (8.16) ml and 5.45 (2.74) ml, respectively. The exter-
nal dataset contained 175 primary tumors and 397 LN 
metastases with mean (median) volumes of 15.62 (8.05) ml 
and 4.30 (0.70) ml, respectively. The most frequent locali-
zations of primary tumor in the two datasets (main/exter-
nal, respectively) were oropharynx (63%/41%), larynx 
(17%/17%), oral cavity (6%/19%), hypopharynx (6%/14%), 
and nasopharynx (6%/6%). The majority of the patients were 
staged UICC IV (69%/67%). Details on the respectively uti-
lized PET/CT systems, data acquisition, and image recon-
struction can be found in Supplementary Materials as well 
as in [4] and citations therein.

Ground truth definition

The interactive lesion delineations performed in the context 
of the above-mentioned multicenter investigation served as 
ground truth for network training and evaluation. For this 
delineation, the metabolically active areas of, both, primary 
tumor and lymph node metastases were identified in the 
PET data by a semi-automatic algorithm based on adap-
tive thresholding considering the local background [93, 94] 
using the ROVER software (version 3.0.41; ABX GmbH, 
Radeberg, Germany). Each proposed region of interest 
(ROI) delineation was individually verified by one of two 
experienced observers and manually corrected (also using 
the ROVER software) where this was deemed necessary. For 
the primary tumor manual correction was required in 41 
out of 879 patients. Manual correction was necessary more 
frequently in lymph nodes (716 out of 1475 lesions). The 
majority of corrections concerned lesions with diffuse low 
tracer accumulation. Furthermore, in a few patients where 
tumor and lymph nodes were in close vicinity, the ROVER 
algorithm was not able to generate separate ROIs and erro-
neously fused the neighboring lesions in a single ROI.

Network architecture, data preprocessing, 
and training procedure

Automated lesion delineation was performed with a residual 
3D U-Net CNN modified by inclusion of a Multi-Head Self-
Attention (MHSA) block [95] at the bottom of the U-Net 
in order to improve global context awareness during lesion 
classification. More details on the CNN design are provided 
in Supplementary Materials. The proposed architecture was 
implemented using the Apache MXNet (version 1.9.0) 
package for the R language and environment for 
statistical computing (version 4.2.0) [96].

The network was trained using pairs of PET and CT 
volumes as input. The data were pre-processed as follows. 
First, all image volumes were resampled to a common voxel 
size of 2.5 × 2.5 × 2.5 mm and centrally cropped to a matrix 
size of 128 × 128 in the transaxial plane (corresponding to 
32 × 32 cm field coverage). A further variable axial crop 
was performed preserving the head and neck region of the 
respective PET/CT image volume. In the next step, image 
patches of size 128 × 128 × 32 were extracted with a partial 
overlap of at least 75% in axial direction. After windowing 
the CT intensity values to a range of [−150, 150] HU, PET 
and CT volumes were individually normalized to the range 
[0, 1]. The ground truth delineations were encoded into 
one-hot format for the three classes — background, primary 
tumor, and LN — using a voxel grid matching the one hold-
ing the PET/CT data as described above. The whole process 
results in a total of 9535 data samples in the main dataset.
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A 5-fold cross-validation scheme with 5 equally sized 
folds was employed in order to assess the network perfor-
mance in all data in the main dataset. For each of the 5 train-
ing runs, 64% of the data were assigned for training, 16% 
for validation, and 20% for testing, respectively. Network 
training was performed for 200 epochs with the Adadelta 
optimizer (batch size = 16) using Dice + Cross-Entropy as 
loss function. The training process was monitored by calcu-
lating the soft DSC in the validation data. More details on 
the loss function and evaluation metric as well as the train-
ing logs are provided in Supplementary Materials. Training 
was stopped if no improvement in the evaluation metric was 
recorded for 30 epochs. The 5 models achieving the highest 
scores in the respective validation data were selected for 
further evaluation.

Network evaluation

Each of the five resulting CNN models was used to predict 
primary tumor and LN metastases probability maps in its 
respective test subset of the main dataset. Since the net-
work does not directly predict the probability for the whole 
image but only for image patches, the predictions for the 
entire image volume was derived from the predictions in 
the separate patches by calculating the output probability 
in the overlap areas as a weighted sum of probabilities. The 
weights were chosen to be 3D Gaussian with the respec-
tive full-widths at half-maximum equal to the patch side 
lengths. Such weighting is based on our empirical finding 
that the CNN predictions are more reliable in the center of 
the patch. Each voxel was assigned to a class (background: 
0, primary tumor: 1, LN metastases: 2) according to the 
highest probability in the derived maps. Accordingly, the 
union of all voxels with class 1 (class 2) defines the primary 
tumor (LN metastases) ROI. ROIs with volumes < 0.1 ml 
(both, manually and automatically delineated) were excluded 
from further analysis. Finally, the predictions obtained in 
the disjunct test data of the different folds were pooled, i.e., 
the complete available data set was considered for further 
analysis of network performance rather than analyzing in 
turn each of the folds separately. The complete data analysis 
for the present investigation was performed on the above-
mentioned image volumes resampled to cubic (2.5 mm)3 
voxels that were processed by the CNN. It should be noted 
that for possible applications of the network beyond MTV 
determination (notably in the context of radiation treatment 
planning), it would be necessary to transform the CNN out-
puts back to the original voxel grid prior to the voxel class 
assignment.

The evaluation was additionally performed in an external 
test dataset to assess the capability of the network to general-
ize to data from so far unseen sources. Separate runs were 
performed with all 5 CNN models and class membership 

was determined using probability maps obtained by averag-
ing of the individual model outputs.

Spatial concordance

The spatial concordance between manual and automatic 
delineations was quantified using the DSC for primary 
tumor, LN metastases, and the union of all lesions repre-
senting the total tumor burden (TTB), respectively. We cal-
culated, both, cohort DSC (determined for the union of all 
delineations across all patients) as well as individual DSC 
(determined for each patient) together with mean and median 
values of the corresponding distributions. Furthermore, the 
mean absolute difference between manual and automated 
TTB delineations as well as the corresponding correlation 
coefficient were computed. In these calculations, 1% of the 
data exhibiting the highest absolute TTB differences were 
rejected to reduce the influence of outliers.

Classification capabilities

The network’s capability to distinguish between primary 
tumor and LN metastases was assessed by considering the 
subset of voxels included in both manual and CNN delinea-
tions. Voxels of primary tumor and LN metastases (as defined 
in manual delineation) which were correctly classified by the 
CNN were counted as true primary tumor ( TPT ) and true LN 
( TLN ), respectively. Primary tumor voxels classified as LN 
metastases and LN metastases voxels classified as primary 
tumor were counted as false LN ( FLN ) and false primary 
( FPT ), respectively. Classification performance was quan-
tified by the true positive rate of “primary tumor” labeled 
voxels TPRPT = TPT∕(TPT + FLN) , the corresponding true 
positive rate TPRLN = TLN∕(TLN + FPT) of “lymph node 
metastasis” labeled voxels, and the classification accuracy 
ACC = (TPT + TLN)∕(TPT + FPT + TLN + FLN).

The analysis was performed with the R language 
and environment for statistical comput-
ing (version 4.2.0) [96].

Structure‑wise analysis

The ability of the network to identify and classify indi-
vidual lesions was assessed via structure-wise analysis as 
proposed in [74]. Shortly, for each lesion in the ground truth 
and CNN delineation, a coverage fraction by the comple-
mentary delineation was calculated. A ground truth lesion 
was considered as identified (true positive with respect to 
manual delineation, TP

man
 ) if it was at least 50% covered 

by the CNN delineation and as missed by the CNN (false 
negative, FN) if coverage was below 50%. CNN delineated 
structures with coverage over 50% were considered true 
positive with respect to CNN delineation ( TP

cnn
 ) and the 
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remaining CNN delineations were not corresponding to 
a ground truth lesion and were therefore considered false 
positives (FP). Based on this classification, true positive rate 
TPRstr = TP

man
∕(TP

man
+ FN) and positive predictive value 

PPVstr = TP
cnn

∕(TP
cnn

+ FP) were calculated.

Survival analysis

We also investigated the impact of the differences between 
manual and automated delineation on a survival analysis 
of the patient data. The full survival analysis of these data 
is the objective of the above mentioned still ongoing clini-
cal study. In the present investigation, we therefore only 
have exemplary considered the prognostic value of TTB for 
overall survival (OS). All patients satisfying the following 
criteria were included into this analysis: primary chemora-
diotherapy, [18F]FDG PET/CT prior to therapy, minimum 
follow up time of 6 months, no distant metastases, and no 
surgery ( N = 585 patients from 10 institutions in main 
dataset; N = 142 patients from 2 institutions in external test 
dataset). The median TTB of the manual delineation in the 
cross-validation data was used as cutoff value for differen-
tiating high and low risk groups in, both, manual as well as 
CNN delineated lesions ( TTBman and TTBcnn , respectively). 
The same cutoff was also used in analysis of the external 
data. For all delineations, an univariate Cox regression 
and a Kaplan-Meier analysis was performed. Results with 
p < 0.05 were considered significant.

Results

Spatial concordance

A summary of the delineation performance is given in 
Table 1. In the cross-validation experiment, delineation of 
all malignant lesions with the proposed network achieves 
a cohort DSC of 0.870 when not discriminating between 
primary tumor and lymph nodes. Treating primary tumor 
and lymph node metastases as distinct classes yields cohort 
DSCs of 0.885 and 0.805, respectively. In the external test 
data, cohort DSC reaches 0.850, 0.724, and 0.823 for pri-
mary tumor, LN metastases and their union, respectively. 
The frequency distributions of the individual respective 
DSCs obtained in different patients is given in Fig. 1. The 
delineation failed (DSC = 0) in 5 cases (0.7%) when not 
discriminating between primary tumor and lymph nodes. 
When treating primary tumor and LN metastases as dis-
tinct, delineation failed in 48 (6.9%) and 65 (9.3%) cases, 
respectively. In the external dataset, the delineation failed 
in 9 (5.0%) and 27 (14.9%) cases when treating primary 
tumor and LN metastases as distinct, respectively, and it 
never failed for the union.

Figure 2 demonstrates the degree of correlation between 
the manually and automatically derived TTB in, both, cross-
validation and external testing experiments ( R2 = 0.95 and 
R
2 = 0.85 , respectively, excluding the outliers). The mean 

absolute TTB difference was 2.62 ml and 4.29 ml in cross-
validation and external testing data, respectively.

Classification capabilities

In cross-validation data, the overall classification accuracy 
was 98.0%. 640 of the scans (91.7%) did not exhibit any 
classification errors. In external data, the classification accu-
racy was 97.9% with 147 of the scans (81.2%) free of any 
classification errors. The corresponding true positive rates 
for primary and LN metastases classification and the full 
contingency tables are given in Table 2.

Structure‑wise analysis

In cross-validation data, in 44/252 cases non-pathological 
uptake was delineated and marked as primary tumor/LN 
metastases (false positives). 65 primaries and 229 LNs were 
not recognized by the network (false negatives). In external 
data (primary/LN), 10/53 false positive delineations were 
produced and 11/204 lesions were missed by the CNN. The 
complete statistics as well as the network’s PPVstr and TPRstr 
is provided in Table 3.

Examples

Figure 3 shows exemplary delineations of four patients 
(A-D) from the cross-validation test subset. Patient A 
demonstrates that the trained CNN is able to accurately 
determine the contours of both primary tumor and LN 
metastasis and to correctly classify them as such. Patient B 

Table 1   Delineation performance with respect to the target volume in 
cross-validation and external testing

Target volume DSC N failed 
( DSC = 0)

Cohort Mean Median 50% CI

Cross-validation ( N = 698)
Primary tumor 0.885 0.815 0.924 [0.856, 0.948] 48
LN metastases 0.805 0.750 0.871 [0.688, 0.948] 65
Primary + 

metastases
0.870 0.840 0.894 [0.814, 0.929] 5

External testing ( N = 181)
Primary tumor 0.850 0.805 0.896 [0.827, 0.926] 9
LN metastases 0.724 0.622 0.756 [0.307, 0.930] 27
Primary + 

metastases
0.823 0.808 0.866 [0.803, 0.909] 0
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demonstrates the ability of the CNN to delineate relatively 
large lesions. Note that the human observer and the CNN 
consistently excluded the necrotic core of the tumor from 
MTV delineation. Patient C demonstrates that the CNN is 
able to delineate multiple structures exhibiting different rela-
tive contrast ( SUV

max
= 22.0 vs SUV

max
= 7.4 for primary 

tumor and LN metastases, respectively) simultaneously. 
Patient D illustrates the CNN’s capability to distinguish 
small lesions with low uptake ( SUV

max
= 4.0 ) from com-

parable physiological focal uptake in other regions of the 
same image.

Figure 4 shows example cases where CNN delineation 
failed for some lesions. In example A, the LN metastasis 

was misclassified as primary tumor. In example B, the CNN 
produced a spurious LN metastasis ROI. In examples C and 
D, the CNN missed the primary tumor and LN metastasis, 
respectively.

Survival analysis

Univariate Cox regression in the cross-validation data 
consistently revealed TTBman as well as TTBcnn as highly 
prognostic factors for OS with practically identical hazard 
ratios (HR) ( HR = 1.9 ; p < 0.001 and HR = 1.8 ; p < 0.001 , 
respectively). In 5.3% of the cases binarization led to a dif-
ferent classification, where classification was incorrect in 
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Fig. 1   Frequency distribution of the observed Dice coefficients 
(CNN vs. manual delineation/labeling) for primary tumor (left), 
LN metastases (middle), and the union of both (right) in cross-val-
idation (top, N = 698 patients) and external testing data (bottom, 
N = 181 patients). The dashed vertical line indicates the location of a 

DSC = 0.7 threshold, a value which might be considered acceptable 
for practical use. The numbers to the left and to the right of the line 
specify the percentage of cases yielding a DSC below and above that 
threshold, respectively



2757European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:2751–2766	

1 3

2.6% for TTBman and in 2.7% for TTBcnn . Both, TTBman 
and TTBcnn prognostic factors also reached significance in 
external data and exhibited virtually the same hazard ratios 
as in the cross-validation dataset ( HR = 1.8 ; p = 0.011 and 
HR = 1.9 ; p = 0.004 , respectively). The fraction of cases 
resulting in different classification was higher in the exter-
nal dataset than in the cross-validation one reaching 7.7%, 
where classification was incorrect in 5.6% for TTBman and in 
2.1% for TTBcnn . The corresponding Kaplan-Meier curves 
are shown in Fig. 5.

Discussion

In this investigation we have demonstrated that fully auto-
mated simultaneous delineation and classification of meta-
bolically active lesions in HNC, discriminating between 
primary tumor and lymph node metastases, is feasible with 
a suitable CNN architecture trained on combined PET/
CT patient data. The achieved cohort DSC of 0.870 indi-
cates state of the art performance of our network and is 
in line with the mean DSC of 0.87 reported in [87] for 
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Fig. 2   Correlation between manually and automatically derived total 
tumor burden (TTB: sum of primary tumor and LN metastases) in 
the cross-validation (left) and external testing (right) data. Note the 
difference in scale between the plots. Solid red points indicate outli-
ers, defined as data points where the deviation of CNN from manual 
delineation exceeds the 99% percentile (i.e., the top 1%). These outli-

ers were excluded from regression analysis. The red line represents 
the least squares fit of a straight line to the remaining data. The blue 
lines delineate the corresponding 95% prediction (tolerance) interval 
of expected scatter of individual data points around the regression 
line

Table 2   Classification 
performance in cross-
validation and external testing. 
The contingency tables are 
normalized so that the sum over 
the respective table’s elements 
equals 1 (100%)

Dataset Contingency table TPR
PT

TPR
LN

ACC​

T
PT

F
PT

T
LN

F
LN

Cross-validation (801384 voxels) 60.8% 1.5% 37.2% 0.5% 99.2% 96.1% 98.0%
External testing (229448 voxels) 67.0% 1.2% 30.9% 0.9% 98.7% 96.3% 97.9%

Table 3   Lesion detection 
performance with respect to 
the target volume in cross-
validation and external testing

Target volume TP
man

TP
cnn

FN FP TPR
str

PPV
str

Cross-validation ( N = 698)
Primary tumor 578 592 65 44 89.9% 93.1%
LN metastases 849 893 229 252 78.8% 78.0%
Primary + metastases 1427 1485 294 296 82.9% 83.4%
External testing ( N = 181)
Primary tumor 164 160 11 10 93.7% 94.1%
LN metastases 193 198 204 53 48.6% 78.9%
Primary + metastases 357 358 215 63 62.4% 85.0%
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Fig. 3   Manual and CNN-based delineations of primary tumor and 
lymph node metastases in 4 selected patients. Relevant transaxial 
PET/CT slices are shown (top: CT, bottom: PET). The dice coeffi- 
cients (in the presented plane) for primary tumor ( DSC
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 ), LN metas-
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 ), and their union ( DSC
All

 ) are indicated. Patient A:  

oropharyngeal cancer with LN metastasis; patient B: oropharyngeal 
cancer with necrotic core; patient C: hypopharyngeal cancer with 2 
LN metastases; patient D: cancer of oral cavity (not visible in this 
slice) exhibiting a low uptake LN metastasis
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Fig. 4   Examples of CNN delineation errors in 4 selected patients. 
Relevant transaxial PET/CT slices are shown (top: CT, bottom: PET). 
The dice coefficients (in the presented plane) for primary tumor 
( DSC

PT
 ), LN metastases ( DSC

LN
 ) and their union ( DSC

All
 ) are indi-

cated. Patient A with laryngeal cancer and multiple LN metastases 
(only one in plane): LN metastasis incorrectly classified as primary; 

patient B with oropharyngeal cancer and LN metastasis (both out of 
plane): CNN produced spurious LN metastasis ROI; patient C with 
nasopharyngeal cancer and LN metastases (out of plane): primary 
missed by CNN; patient D with oropharyngeal cancer and low and 
diffuse uptake LN metastasis: LN metastasis missed by CNN
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PET-based GTV delineation. However, differences in the 
used dataset and data preprocessing scheme do not allow 
for direct comparison between that study and our present 
investigation. Similarly, only indirect comparison in lesion 
detection performance is possible to [74] reporting mean 
patient-wise (TPR/PPV) of (0.86/0.33) for primary tumor 
+ LN metastases detection as compared to cohort (TPR/
PPV) of (0.83/0.83) in the present study.

As far as primary tumor delineation alone is concerned, 
one might validly ask whether there are practical advantages 
of a CNN-based delineation for tumor entities with usually 
high tumor to background uptake ratios such as HNC. In 
fact, much simpler approaches have previously been shown 
to work adequately in such circumstances. E.g., Ha et al. 
used interactively defined ellipsoidal ROIs and fixed SUV 
thresholds within those ROIs to successfully determine 

MTV and TLG in head and neck soft tissue sarcoma [86] 
and demonstrated the prognostic value of the such derived 
parameters. Regarding the data underlying the present 
investigation we, too, have previously resorted to a semi-
automatic adaptive threshold based method developed in our 
group [97] for delineation in the context of the previously 
published clinical study [4] and obtained adequate results in 
about 95% of the delineations.

However, when extending the task to delineation of 
lymph node metastases one faces the problem that many 
lymph nodes exhibit only modest [18F]FDG uptake with 
typical SUVs of about 3–4 (or lower). This is comparable 
to the level of the physiological [18F]FDG uptake of vari-
ous structures in the nasopharyngeal region, e.g., tonsils, 
minor salivary glands, brown adipose tissue, vocal cords 
or, in some cases, also muscles. In this situation, threshold 

Fig. 5   Kaplan-Meier curves 
with respect to OS in cross-vali-
dation (top) and external testing 
(bottom) data
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based methods tend to fail and manual intervention or fully 
manual delineation becomes frequently necessary which is 
very tedious and time-consuming.

It is exactly this context of delineation at low target to 
background ratios where the CNN-based approach proves 
to be distinctly superior. This has recently also been dem-
onstrated by Han and coworkers [98] in a different tumor 
entity (thymic epithelial tumor) which seems to pose a chal-
lenge comparable to the one encountered in the present study 
regarding the lymph node metastases.

However, the distinguishing advantage of the presently 
proposed approach is its ability to not only provide decent 
delineation for, both, high and low contrast structures but 
also to perform fully automated identification of primary 
tumor and LN metastases thus providing additional classifi-
cation information for inclusion into further analysis.

The level of concordance between CNN and the human 
observer provided ground truth in the present study is supe-
rior to typically encountered human interobserver concord-
ance which has, e.g., been reported in [99] as DSC = 0.69 
for GTV delineation in PET/CT. Although interobserver 
concordance might be expected to be somewhat higher for 
MTV delineation [100], experience tells that it generally will 
not exceed the degree of concordance between CNN and 
human observer reported in the present study. This can be 
rephrased as stating that our trained network overall is capa-
ble to perform mostly comparably to an experienced human 
reader (specifically, the reader(s) having provided the ground 
truth delineation used in training the network). While it is 
not able to replace said human observer (due to the remain-
ing sporadic incidences of failure), it is well suited to be uti-
lized as an efficient delineation assistance tool in clinical and 
research contexts. As has also been reported elsewhere, uti-
lizing such tools will considerably reduce (without manual 
intervention: eliminate) interobserver variability while also 
providing obvious speed benefits compared to fully manual 
or semi-automatic delineation [101]. We believe that the 
presently proposed CNN especially has potential to facili-
tate large-scale clinical study evaluations and in the next 
step could allow to utilize translation of findings from such 
studies to the clinical routine without imposing intolerable 
time demands on the clinician.

For example, in the present study the native CNN-based 
TTB determination yielded outcome predictions for HNC 
patients (regarding overall survival) of a quality fully com-
petitive to and concordant with prediction based on manu-
ally derived TTBs (Fig. 5). This observation can be traced 
back to the very decent correlation between manual and 
CNN-based TTB volumes ( R2 = 0.95 ) and the low number 
of definite outliers as demonstrated in Fig. 2. Further added 
value is provided by the network’s classification capabili-
ties allowing to derive metabolic volumes separately for 
primary tumor and lymph node metastases which provides 

the prerequisite to further tailor the decision support process 
for specific cancer types [102, 103].

A fundamental concern regarding adoption of deep learn-
ing approaches in diagnostic imaging and data evaluation is 
a possible inability of the trained network to generalize from 
training data to new, so far unseen data [104]. It is theoreti-
cally conceivable that the trained CNN actually has incorpo-
rated (“learned”) very specific inherent characteristics of the 
training data and requires their presence in any new input in 
order to perform successful delineation. A similar problem 
appears in the context of radiomics where it is addressed via 
data harmonization procedures [105, 106]. Consequently, it 
has been suggested to use data harmonization to tackle the 
generalization problem in CNN-based delineation as well 
[84]. However, there is currently not enough evidence sup-
porting the usefulness of this strategy. In the present study 
we have approached the problem from the opposite direc-
tion: rather than aiming at harmonization of the training 
data as well as any “new” data to which the trained net-
work should be applied, we intentionally included “hetero-
geneous” training data from as many varied sources and 
institutions as we found doable. Altogether, we were able 
to collect 698 scans from eight independent data sources. 
Our working hypothesis was that exposing the network to 
images with different image characteristics would force the 
CNN to learn common properties of the images and pro-
mote generalization. This hypothesis was then tested in an 
additional independent external dataset. Even though the 
overall DSC decreased from 0.870 in the cross-validation 
results  to 0.823 in  these external data, it remained high 
enough to prove good generalizability of the developed 
network. Survival analysis confirms this conclusion reveal-
ing that automatically derived TTB remains prognostic of 
overall survival in external data, too, with virtually identical 
hazard ratio to those observed in both manual delineation 
and cross-validation data. The main driver for reduction in 
overall DSC was reduced performance of LN metastases 
delineation ( DSC

LN
= 0.724 vs DSC

LN
= 0.805 in external 

and cross-validation data, respectively). This behavior can 
be potentially explained by the differences in the distribution 
of volumes of LN metastases across the datasets (median 
volume = 2.74 ml vs 0.70 ml, in main and external datasets, 
respectively) as smaller lesions are generally more difficult 
to detect and unambiguously delineate.

The representative examples shown in Fig. 3 demon-
strate that the trained CNN is principally able to provide 
fully satisfactory MTV delineation across a wide range of 
image characteristics regarding tumor and LN metastases 
location and target/background contrasts. As Fig. 3 B dem-
onstrates, the network also is able to correctly delineate 
diverse tumor shapes and to exclude necrotic tumor areas. 
Figure 3 D demonstrates the arguably most important 
capability of a CNN-based delineation approach, namely 
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the ability to differentiate elevated “physiological” uptake 
from malignant lesions.

However, despite satisfactory performance in the major-
ity of cases (obviating any need for manual correction), 
delineation and classification errors of different severity 
including occasional manifest failure were also observed. 
Figure 4 demonstrates some of the most common patterns.

Figure 4 A shows an instance of misclassification of LN 
metastasis and primary tumor which is reflected in corre-
spondingly reduced DSCs. Such partial misclassification 
does not affect the TTB parameter at all and can be rather 
easily corrected manually if deemed necessary. The latter 
is also true for a related type of error, namely misclassifi-
cation of physiological focal uptake (e.g., inflammation) 
as malignant lesion as shown in Fig. 4 B. Actually, this 
concerns a considerable fraction (22.0%) of the generated 
ROIs for LN metastases. This can intuitively be under-
stood as a consequence of the fact that inflamed and meta-
static LN cannot be discriminated unambiguously based 
on the image data alone. Discrimination between them by 
the clinician usually is based on additional clinical infor-
mation that is not accessible to the CNN. This type of 
error, too, is relatively easy to correct manually by deleting 
the spurious ROIs but it occurs in a notable fraction of all 
cases (25.6%) and will therefore contribute noticeably to 
the remaining time demands required for user intervention 
when performing CNN-assisted delineation.

Figure 4 C and D demonstrate instances of failure to 
identify the primary tumor (C) or LN metastases (D). For 
such cases, manual intervention/delineation would obvi-
ously be required. Such failures occurred in 9.3% (22.2%) 
of the patients for the primary tumor (LN metastases). 
However, the mean volume of the missed lesions was 
8.16 and 2.78 ml for primary tumor and LN metastases, 
respectively, which is almost a factor of two lower than 
the respective mean volumes of 13.21 and 5.45 ml of all 
lesions, suggesting that mainly small lesions were not 
detected. In the affected patients, the missed lesions con-
tributed on average 33.6% (median: 16.9%) of the ground 
truth TTB, indicating that their impact on the derived TTB 
values was limited in most of the cases, however large 
errors also occurred.

Due to the black box nature of neural networks, it is 
inherently difficult to identify specific image characteristics 
that tend to cause misdelineation/classification. What we 
have noticed is that sizable errors predominantly occurred 
for tumors of unusual composition (e.g., Fig. 4 A, where a 
seemingly singular lesion is in fact the primary tumor and 
the LN metastasis in direct vicinity of each other) or locali-
zation (Fig. 4 C, nasopharyngeal cancer contributed only 
6% of the cases in the main dataset). Furthermore, differ-
entiation between malignant and benign [18F]FDG-positive 
LNs is complicated even for experienced human observers, 

particularly in the cases of low (Fig. 4 B) or diffuse (Fig. 4 
D) uptake and small lesion size.

Consequently, in such circumstances the ground truth 
manual delineation and classification itself is not completely 
unambiguous which inherently limits the obtainable degree 
of concordance between different observers (either human 
or neural network). This is our tentative explanation for 
the observation that overall concordance between network 
and our ground truth delineation was better for the primary 
tumors than for lymph nodes. In this context, it has also to 
be noted, that ground truth definition was based on a single 
manual delineation per lesion which constitutes an obvious 
limitation of the present investigation.

In fact, it is quite likely that the increase of training 
data afforded by multiple independent delineations for 
each patient would further improve the performance of the 
resulting network. However, recruiting further experienced 
observers for the very time-intensive task of performing 
hundreds of delineations was not feasible within the limits 
of the present investigation.

Another potential limitation is the omission of data aug-
mentation frequently employed to prevent overfitting which 
turned out not to be doable due to limited capabilities of the 
utilized deep learning framework MXNet when dealing with 
3D image volumes (affine and warp transforms not availa-
ble). We compensated for this deficiency by heavy sampling 
of all 3D data sets with 75% overlap between patches which 
effectively functions as image shift augmentation. The com-
paratively large number of tomographic data sets available 
for network training within this study should further reduce 
the benefits of additional data augmentation.

Conclusion

To the best of our knowledge, this study presents the first 
CNN for simultaneous MTV delineation and lesion classifi-
cation for [18F]FDG PET/CT in HNC patients. Our network 
allows fast delineation and classification of primary tumor 
and lymph node metastases in HNC while rarely requiring 
more than minimal manual corrections. It thus is a capable 
tool able to massively accelerate and facilitate study data 
evaluation in large patient groups which also does have clear 
potential for supervised clinical application.
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