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Abstract
Purpose To develop a CT-based radiomic signature to predict biochemical recurrence (BCR) in prostate cancer patients after 
sRT guided by positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET).
Material and methods Consecutive patients, who underwent 68Ga-PSMA11-PET/CT-guided sRT from three high-volume 
centers in Germany, were included in this retrospective multicenter study. Patients had PET-positive local recurrences and 
were treated with intensity-modulated sRT. Radiomic features were extracted from volumes of interests on CT guided by focal 
PSMA-PET uptakes. After preprocessing, clinical, radiomics, and combined clinical-radiomic models were developed com-
bining different feature reduction techniques and Cox proportional hazard models within a nested cross validation approach.
Results Among 99 patients, median interval until BCR was the radiomic models outperformed clinical models and combined 
clinical-radiomic models for prediction of BCR with a C-index of 0.71 compared to 0.53 and 0.63 in the test sets, respec-
tively. In contrast to the other models, the radiomic model achieved significantly improved patient stratification in Kaplan-
Meier analysis. The radiomic and clinical-radiomic model achieved a significantly better time-dependent net reclassification 
improvement index (0.392 and 0.762, respectively) compared to the clinical model. Decision curve analysis demonstrated 
a clinical net benefit for both models. Mean intensity was the most predictive radiomic feature.
Conclusion This is the first study to develop a PSMA-PET-guided CT-based radiomic model to predict BCR after sRT. The 
radiomic models outperformed clinical models and might contribute to guide personalized treatment decisions.

Keywords PSMA-PET/CT · Salvage radiotherapy · Prostate cancer · Radiomics · Outcome prediction · Personalization

Introduction

Patients who undergo radical prostatectomy (RPE) for local-
ized prostate cancer (PCa) as initial treatment experience bio-
chemical recurrence (BCR) in up to 50% within 5 years after 
treatment [1]. Adverse pathological features are associated 
with higher rates of BCR [2]. Salvage radiotherapy (sRT) with 
or without androgen deprivation therapy (ADT) provides the 

only curative treatment options for these patients and should 
be initiated at low PSA levels [3]. Since response rates are 
heterogeneous [4], tools for improved risk stratifications are 
warranted in order to identify patients who are at higher or 
lower risk for relapse after sRT and thus might be candidates 
for therapy intensification or de-intensification.

Positron-emission tomography targeting prostate-specific 
membrane antigen (PSMA-PET) combined with computer 
tomography (CT) significantly improved detection rates of 
local (LR) and nodal recurrence (NR) RPE [5] and altered 
treatment management [6], but prospective evidence of puta-
tive beneficial effects on outcomes are pending.

Despite the great diagnostic value of modern imaging tech-
nologies, the computer-based extraction and analysis of image 
features (radiomics) offers new opportunities for improved 
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image analysis to provide additional information about tumor 
characteristics as shown for multiple cancer entities [7–10]. 
Various studies have reported on improvements for PCa detec-
tion, prediction of ISUP, ECE, and BCR in primary PCa 
patients but no data exists in the setting of sRT [11].

In order to identify novel markers for personalized risk 
stratification, this retrospective multicenter study aims to 
evaluate the impact of PSMA-PET-guided CT-based radi-
omic features (RF) derived from PSMA-PET/CT scans on 
BCR-free survival (BRFS) in patients who receive sRT due 
to recurrent or persistent PCa cancer after RPE.

Material and methods

Patients and treatment

This retrospective multicenter study pooled patients from three 
high-volume centers in Germany (University Medical Centre 
Freiburg (UKF), Klinikum Rechts der Isar Technical Univer-
sity Munich (TUM), University Hospital of the Ludwig-Max-
imillian’s-University Munich (LMU)). Each center received 
an institutional review board approval for this study (Freiburg 
No.: 15/18; TUM:466/16 S; LMU: 17-765). Written informed 
consent was waived due to the retrospective nature of the study.

Data from patients who received radical surgery and 
underwent 68Ga-PSMA11-PET/CT due to PSA persistence 
(PSA after surgery ≥ 0.1 ng/ml) or recurrence (PSA ≥ 0.2 
as nadir after surgery) and were subsequently treated with 
PSMA-PET-guided sRT were collected. From the total 
cohort, only patients who received a contrast-enhanced CT 
were included in this analysis. Patients with distant metas-
tases (lymph nodes above the iliac bifurcation, bone metas-
tases, or visceral metastases) present in PSMA-PET/CT 
and if ADT was given prior to PSMA-PET/CT scans were 
excluded. Treatment decisions were taken locally at the dis-
cretion of the treating physicians according to standards of 
care at the time of treatment [3] and based on PSMA-PET/
CT findings. See Supplemental Methods Table S1 for details 
on salvage RT concepts for each center. ADT was adminis-
tered at the discretion of the treating physician. In total, 99 
patients with PET-positive local recurrence treated with sRT 
between 2014 and 2020 met the inclusion criteria.

Data collection and follow‑up

The following clinical data were collected: age at sRT, Inter-
national Society of Urologic Pathology Grading (ISUP), 
pathological T-stage and N-stage, initial PSA and PSA prior 
to sRT, presence of nodal recurrence, administration and 
duration of ADT, and sRT doses. Follow-up assessments 
included serum PSA testing at regular intervals based on 
institutional clinical standards.

68Ga‑PSMA11 PET/CT

68Ga-PSMA11 was synthesized according to good manufac-
ture practice in all centers and in accordance with interna-
tional procedural guidelines [12]. Acquisition protocols and 
scanner types are provided in the Supplemental Methods.

All scanners fulfilled the requirements indicated in the 
European Association of Nuclear Medicine (EANM) imag-
ing guidelines and obtained EANM Research Ltd. (EARL1) 
accreditation during acquisition.

See [13] for details on PSMA image acquisition and 
reconstruction algorithms.

All PSMA-PET/CT images were reviewed locally prior to 
data sharing according to reporting international guidelines 
[14] by two nuclear medicine physicians with experience on 
PCa imaging. Disagreements were resolved by consensus.

Segmentation

Further image processing was performed using the 3D Slicer 
v4.10.0 [23]. Two separate segmentation strategies were fol-
lowed: First, considering the local nuclear medicine report, 
PSMA-PET-positive PCa lesions were manually contoured 
within the CT image by one reader (SS) with  >3 years’ 
experience in PSMA-PET/CT segmentation guided by the 
PSMA-PET signal using validated segmentation approach 
levels [15]. Second, 20% of the maximal standard uptake 
value (SUVmax) of the lesions was used as a threshold for 
PET-based semi-automatic segmentations.

Radiomic feature extraction

Radiomic feature and preprocessing were performed using the 
pyradiomics package (version 3.0.1) in Python (version 3.7.9) 
[16]. For preprocessing, a fixed bin width of 5 HU was used 
for image discretization [17]. Isotropic resampling was per-
formed to a voxel size of 1 × 1 × 1 mm using Bspline interpo-
lation. Shape, first-order, and texture features were computed 
from the original image according to the “image biomarker 
standardization initiative” guidelines [18]. Texture matrices 
were aggregated averaged over 3D directions for GLCM and 
GLRLM, or 3D for GLSZM, NGTDM, and GLDM features. 
See Supplemental Table S2 for a list of the total 104 features.

Modeling strategy and statistical analyses

The modeling steps were performed using the familiar package 
(0.0.0.53) in R (version 4.1.2, R core team, Vienne, Austria) 
(https:// github. com/ alexz wanen burg/ famil iar). For signature 
building, a recently published approach was chosen [19]. See 
Supplemental Methods for a detailed description. In brief, the 
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radiomic feature space was reduced by excluding features sus-
ceptible (intraclass correlation coefficient (ICC 3.1)  <0.8) to 
small differences in the segmentation type (manual vs. PET 
threshold-based) and of features highly correlated with clini-
cal variables (PSA initial, ISUP, rcN, max PSA) (Spearman 
coefficient  ≤0.6). Third, we performed hierarchical clustering 
with complete linkage and Spearman correlation as a distance 
metric keeping one representative feature from each cluster.

Finally, Cox proportional hazard models were calculated 
in 10 iterations of fivefold nested cross validation with dif-
ferent feature selection methods (Spearman correlation 
(spearman), concordance index (concordance), minimum 
redundancy maximum relevance (mrmr), mutual informa-
tion feature selection (mifs), and random selection as control) 
(see Supplemental Figure S1 for a detailed graphical depic-
tion). The manual segmentation was used. Prior to analysis, 
Yeo-Johnson transformation and z-transformation to mean 
zero and standard deviation of one were performed. For each 
iteration of the outer folds, the internal cross validation folds 
were repeated 11 times to select the median signature size 
and the top ranking features. The predictive performance in 
the outer folds was aggregated over all 10 iterations.

We developed models comprising of clinical features 
(Clinical, including the following variables: age, ISUP grade 
after surgery, initial PSA, maximum PSA prior sRT and rcN 
status) and radiomic features (Radiomics). Finally, a com-
bined clinical-radiomic model was generated by using clini-
cal and radiomic features as input into the same pipeline.

Statistical analysis

Descriptive statistics were performed with Excel 2016 
(Microsoft Cooperation, USA). Statistical analysis and 
model building were performed using R (version 4.1.2, R 
core team, Vienna, Austria). The primary endpoint of the 

study was BRFS, defined as time to serum PSA  >0.2 ng/
ml above the post-sRT nadir without initiation of additional 
salvage therapies or death of any cause.

In order to compare the predictive value of the devel-
oped models in the test sets within the nested cross vali-
dation approach, the following methods were used: time-
dependent receiver-operating characteristic (ROC) curves 
[20], calibration curves (see Supplemental Figure S2) [21], 
time-dependent discrimination improvement index (tdIDI), 
time-dependent net reclassification improvement index 
(tdNRI) (see Supplemental Methods) [22], and a decision 
curve analysis (DCA) [23]. The median predictor over all 
10 × 5 outer testing sets was determined for each patient. 
Kaplan-Meier analysis [24] was conducted by recording 
the median value of the predictions in each training set 
and by applying it as a cut-off value for classification in the 
respective test sets for all patients. The final classification 
was determined by majority voting over all 10 iterations.

The C-index and ROC area under the curve (AUC) were cal-
culated as a performance metric. The Wilcoxon rank-sum test 
was used for comparison of values at a significance level of 0.05.

Decision curve analysis was performed according to 
Vickers et al. to compare the clinical net benefit of the devel-
oped models [25]. Decision curves for “treating no patient” 
and “treating all patients” were depicted as reference.

Results

Patient characteristics

Ninety-nine patients with a median follow-up of 29 months 
(range 3–79 months) were included in this analysis (Fig. 1). 
No patient died during FU. See Table 1 for details about 
patient characteristics.

Fig. 1  Consort flow diagram. 
Abbreviations: PSMA-PET/
CT = positron-emission tomog-
raphy targeting prostate-specific 
membrane antigen combined 
with computer tomography
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Radiomic models outperform clinical models 
for prediction of biochemical failure

The developed clinical signatures achieved low to moderate 
performance for prediction of BRFS with a C-index rang-
ing between 0.51 and 0.61 in the test sets. The radiomic 
signature achieved superior prediction of BRFS with good 
performance in both training and test set with a C-index 
ranging between 0.66 and 0.71 in the test set. Combined 
clinical-radiomic models achieved only moderate perfor-
mance in the test set with a C-index of 0.60–0.65. The mod-
els based on random feature selection performed worse for 
the radiomic models and similar to other clinical models. 
See Table 2 for details. Feature reduction with mrmr was 
chosen for further analyses of all models due to its perfor-
mance close to the median overall training performance and 

narrow 95% confidence interval for the clinical and radiomic 
models (excluding random). For consistency, mrmr was also 
selected for the combined model.

We further stratified patients into low or high probabil-
ity of BRFS based on predictions of the respective models. 
Only the radiomic models resulted in significantly differ-
ent survival probabilities (p < 0.001). Time-dependent ROC 
analysis showed consistent AUC values over time of up to 
0.8 for the radiomic signatures up to 60 months of follow-
up. Combination of clinical and radiomic signatures showed 
lower AUCs than the radiomic signature alone. See Fig. 2 
for details.

At 24-month FU, the clinical signatures, radiomic sig-
natures, and combined clinical and radiomic signatures 
achieved an AUC of 0.53, 0.73, and 0.63, respectively. See 
Fig. 3 for details.

Table 1  Patient characteristics Site 1 Site 2 Site 3 Overall

(N = 33) (N = 41) (N = 25) (N = 99)

Age
Median [min, max] 74 [49, 83] 68 [50, 82] 78 [58, 87] 72 [49, 87]
ISUP grade after surgery
  1 4 (12.1%) 0 (0%) 2 (8%) 6 (6.1%)
  2 10 (30.3%) 2 (4.9%) 8 (32%) 20 (20.2%)
  3 6 (18.2%) 24 (58.5%) 9 (36%) 39 (39.4%)
  4 7 (21.2%) 6 (14.6%) 4 (16%) 17 (17.2%)
  5 6 (18.2%) 9 (22%) 2 (8%) 17 (17.2%)

rcN status
  0 22 (66.7%) 15 (36.6%) 19 (76%) 56 (56.6%)
  1 11 (33.3%) 26 (63.4%) 6 (24%) 43 (43.4%)

PSA initial
  Median [min, max] 10 [3.56, 190] 9.73 [1.01, 80] 8.9 [4.24, 43] 9.73 [1.01, 190]

Max PSA before sRT
  Median [min, max] 1.47 [0.26, 10.1] 0.54 [0, 7.74] 2.1 [0.21, 14.8] 1.07 [0, 14.8]

RT dose to prostatic fossa/local recurrence (α/β = 1.6 Gy)
 < 0 Gy 9 (27.3%) 16 (39.0%) 19 (76.0%) 44 (44.4%)
 ≥70 Gy 22 (66.7%) 3 (7.3%) 1 (4.0%) 26 (26.3%)
 ≥72 Gy 2 (6.1%) 19 (46.3%) 5 (20%) 26 (26.3%)
 Missing 3 (7.3%) 3 (3.0%)

ADT
  Yes 24 (72.7%) 17 (41.5%) 6 (24%) 47 (47.5%)
  No 9 (27.3%) 24 (58.5%) 19 (76%) 52 (52.5%)

Duration of ADT  >12 months
  Yes 6 (18.2%) 8 (19.5%) 1 (4%) 15 (15.2%)
  No 18 (54.5%) 9 (22%) 5 (20%) 32 (32.3%)
  Missing 9 (27.3%) 24 (58.5%) 19 (76%) 52 (52.5%)

Time to biochemical recurrence in months
  Median [min, max] 20 [3, 54] 21 [4, 64] 25 [6, 56] 22 [3, 64]

Biochemical recurrence
  Yes 10 (30.3%) 9 (22%) 7 (28%) 26 (26.3%)
  No 23 (69.7%) 32 (78%) 18 (72%) 73 (73.7%)
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Table 2  Performance of 
clinical, radiomic, and 
clinical-radiomic signatures 
for prediction of biochemical 
failure after salvage 
radiotherapy. Results of various 
feature selection methods are 
shown

Feature selection method C-index train (95% CI) C-index test (95% CI) Median signa-
ture size (min-
max)

Clinical signature
  mifs 0.71 (0.60–0.80) 0.51 (0.37–0.64) 1 (1–2)
  mrm 0.70 (0.59–0.80) 0.53 (0.40–0.67) 1 (1–2)
  spearman 0.64 (0.51–0.77) 0.61 (0.48–0.71) 5 (2–8)
  concordance 0.71 (0.62–0.80) 0.51 (0.38–0.62) 1 (1–4)
  random 0.68 (0.58–0.78) 0.57 (0.46–0.69) 1 (1–5)

Radiomic signature
  mifs 0.72 (0.61–0.81) 0.71 (0.60–0.81) 1 (1–2)
  mrm 0.72 (0.62–0.82) 0.71 (0.57–0.80) 1 (1–2)
  spearman 0.81 (0.71–0.88) 0.66 (0.57–0.77) 5 (2–8)
  concordance 0.72 (0.59–0.80) 0.71 (0.58–0.81) 1 (1–4)
  random 0.82 (0.72–0.89) 0.62 (0.51–0.72) 5 (2–12)

Clinical-radiomic signature
  mifs 0.78 (0.70–0.85) 0.61 (0.48–0.71) 2 (2–6)
  mrm 0.78 (0.71–0.85) 0.63 (0.52–0.75) 2 (2–3)
  spearman 0.84 (0.78–0.90) 0.65 (0.52–0.75) 5 (1–8)
  concordance 0.79 (0.70–0.85) 0.60 (0.47–0.71) 3 (2–5)

Fig. 2  The Kaplan–Meier survival curves and time-dependent area-under-the-curve (AUC) results for the clinical (A), radiomic, (B) and com-
bined clinical and radiomic (C) signatures obtained from repeated nested cross validation
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Clinical relevance of the radiomic signature

Decision curve analysis reflects the highest clinical net ben-
efit for the radiomic signatures compared to the two alterna-
tive signatures while the combined model also performed 
better than the clinical model. See Fig. 4 for details.

Despite lower AUC values, the combined clinical-radi-
omic signatures achieved higher improvements in sensitivity 
as the radiomic signatures alone compared to the clinical sig-
natures in the test sets of the outer folds (0.78 vs. 0.26). The 
clinical-radiomic signatures also demonstrated improved 
tdIDI over the clinical signatures (0.766, p = 0.027). The 
radiomic and clinical-radiomic models achieved a signifi-
cantly better tdNRI (0.392 and 0.762, respectively) com-
pared to the clinical model (p < 0.005) (Table 3).

CT mean intensity and PSA initial as most important 
features

For the radiomic signature, the feature “firstorder_mean,” 
i.e., the mean CT intensity value, was selected as predictive 
feature for all feature reduction methods with a frequency 
of 98% in the case for mrmr (see Supplemental Material 
Table S3 for selected features). For the clinical model, PSA 
initial was predominantly selected with a frequency of 
40% for mrmr. The same two features were the most often 
selected features in the clinical-radiomic model (40% and 
23%, respectively). See Table 4 for intensity values strati-
fied by BCR.

The maximally selected rank statistics on the complete 
dataset revealed a mean intensity of 19.7 Hounsfield units 
(HU) as optimal cut point. A univariate Cox proportional 
hazard model for CT mean intensity (HR 0.99, p = 0.012, 
Fig. 5) and the respective nomogram is provided in the sup-
plement (Supplemental Material Table S4 and Figure S3). An 
exemplary patient case is provided in Fig. 6. In a multivariate 
Cox model including PSA initial (HR 1.01, p = 0.052) and 
CT mean intensity (HR 0.99, p = 0.012), only the latter was 
significant.

Discussion

In this study, we have developed PSMA-PET-guided CT-
based radiomic signatures for prediction of BRFS after sRT 
due to PCa recurrence using a multicenter cohort from three 
high-volume centers. We designed the model as a pre-thera-
peutic tool to guide treatment decision and to identify patients 
who are at higher or lower risk of relapse and might thus be 
candidates for treatment intensification or de-intensification. 
Consequently, treatment-specific parameters, such as deliv-
ered radiation dose, were not considered for model building. 
The developed radiomic signatures yielded good predictive 
performances and outperformed clinical signatures based on 
classical histological and clinical parameters. The radiomic 
model achieved significant patient stratification and demon-
strated durable prediction of BRFS in time-dependent ROC 
analysis. To the best of our knowledge, this is the first study 

Fig. 3  Results of the receiver operator characteristic analysis for the 
clinical signatures, radiomic signatures, and clinical-radiomic signa-
ture at 24 months of follow-up based on repeated nested cross valida-
tion (test results in the outer fold) results

Fig. 4  Decision curves for clinical, radiomic, and clinical-radiomic 
signatures based on repeated nested cross validation results (test sets 
within the outer folds). Decision curves for “treating no patient” and 
“treating all patients” were depicted as reference
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assessing CT-based radiomics in patients who underwent 
PSMA-PET-based sRT and thus provides novel insights into 
this field of research.

Analyses of RFs have extensively been performed in pri-
mary prostate cancer patients [11]. Most of these studies are 
based on MRI and demonstrated the ability of radiomics to 
non-invasively characterize and detect clinically significant 
PCa and extracapsular extension or predict BCR [26–28].

Fewer studies reported on CT-based radiomics and all of 
these were performed in the primary setting. Three studies 
developed CT-based radiomic classifiers with good performance 
to predict Gleason score and risk groups (AUC 0.70–0.83) 
[29–31].

Based on PSMA-PET/CT scans, Peeken et al. developed a 
CT-based model to detect lymph node metastases, which out-
performed conventional CT parameters with an AUC of 0.95 in 
external testing [32], addressing the limited ability of conven-
tional imaging to detect PCa-positive lymph nodes. Acar et al. 
used CT-based RFs to differentiate between bone metastases and 
sclerotic areas with good accuracy (AUC 0.76) [33].

Since patients with BCR after surgery experience hetero-
geneous response rates [4, 34], our study aims to improve 
risk stratification with commonly available diagnostics for 
patients receiving sRT based on state-of-the-art diagnostics 
and to identify patients who might benefit from treatment de-
intensification or intensification.

In our study, clinical signatures showed insufficient 
prognostic value for BRFS after sRT in the test sets, which 
reflects the deficiency of classical clinical and pathological 
parameters for prognostication demonstrated by retrospec-
tive and prospective studies. However, the developed radi-
omic signatures outperformed the clinical models with good 
prognostic values in the test sets. Radiomic signatures and 
particularly various feature selection methods outperformed 
clinical models, which demonstrates a certain robustness of 

these signatures. The inferior performance of the combined 
clinical and radiomic signatures might be explainable due 
to the poor prognostic value of clinical parameters and the 
low patient number for effective model building.

Since no other studies evaluated CT-based radiomics to 
predict BCR, we cannot directly compare our signatures 
with other CT-based models. Nevertheless, in comparison 
with mpMRI-derived RF, the radiomic models in our study 
performed similarly well with a C-index of  >0.7, consid-
ering different clinical scenarios between these studies. 
DCA demonstrates a net benefit of the radiomic signatures, 
suggesting that clinical utilization of radiomics can help to 
identify patients who are at higher risk of BCR after sRT. 
Whether these patients benefit from intensified treatments 
and if which kind of treatment intensification is optimal 
need to be evaluated in future studies.

CT-based radiomics might in future play an even more 
important role, since technical advantages such as dual-
energy CTs provide more image information and may thus 
allow for more differentiated radiomic analyses. In addition, 
the prognostic capability of PSMA-based radiomic signa-
tures needs to be evaluated in future studies.

Due to the small patient number, we were not able to 
separate an external testing cohort, but rather obtained high 
statistical robustness by applying a nested cross validation 
approach. Future studies should focus on external validation 
to demonstrate transferability of models.

The mean intensity within the VOI was selected as the 
most important RF. Lower intensity values were associated 
with decreased BRFS. To provide a simple cut-off metric, 
we applied the maximally selected rank statistics. A cut-
off of 19.7 HU was determined as optimal cut-off point for 
BCR. However, unlimited reduction of HU values is not 
plausible, since we expect local recurrence to have HU val-
ues greater than fat tissue. Thus, this cut-off value should 

Table 3  shows results of time-dependent reclassification analysis for the clinical, radiomics, and combined clinical-radiomic model based on 
repeated nested cross validation results (test sets within the outer folds)

Models to compare Improvement in 
sensitivitiy

Improvement in 
specificity

Integrated discrimination 
improvement index

p-value Net reclassification 
improvement index

p-value

M0: clinical signature
M1: radiomic signature

0.263 0.083 0.346 0.221 0.397  <0.005

M0: clinical signature
M1: clinical-radiomic signature

0.778  −0.012 0.766 0.027 0.726  <0.005

M0: clinical-radiomic signature
M1: radiomic signature

 −0.515 0.095  −0.420 0.074  −0.315  <0.005

Table 4  CT intensity values in 
Hounsfield units stratified by 
biochemical recurrence (BCR) 
are shown

Minimum 1st quartile Median Mean 3rd quartile Max

BCR  −76.54 2.11 18.29 19.82 42.31 86.17
No BCR  −129.38 29.87 46.10 39.39 59.93 110.16
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be validated in further studies. Moreover, we provide a uni-
variate Cox model and nomogram trained on the complete 
cohort for future external validation.

There are several limitations in our study. First we want 
to mention the retrospective character and possible selection 

bias. Secondly, we have included patients with LR and NR 
in this analysis, who experience different outcomes. Sepa-
ration of both cohorts would have resulted in an insuffi-
cient sample size. Nevertheless, development of CT-based 
radiomic signatures might be influenced to a lesser extent 
through this heterogeneity in comparison to functional 
imaging methods. Thirdly, we used an internal validation 
due to the low number of patients within each institution. 
However, we applied a sophisticated nested cross validation 
approach to overcome methodological disadvantages. The 
inclusion of patients that received ADT may have biased 
optimal outcome predictions. Again, exclusion of these 
patients would have significantly reduced the sample num-
ber. Finally, the FU in our cohorts is relatively short with a 
median FU of 29 months.

Summary

The developed CT-based radiomic signatures outperform clini-
cal/clinical-radiomic signatures for prediction of BCR after sRT 
and demonstrated durable prediction of biochemical recurrence 
in time-dependent ROC analysis. Decision curve analysis dem-
onstrates a net benefit for clinical utilization of the radiomic sig-
nature. Future studies need to evaluate whether these improved 
prognostications can be transferred into personalized treatments.

Fig. 5  Kaplan-Maier curve for biochemical recurrence free sur-
vival (BRFS) stratified after mean intensity of Hounsfield units  <20 
and  >20

Fig. 6  Exemplary patient case: 
A shows the PET-positive local 
recurrence in the prostatic 
fossa/seminal vesicle fossa 
(segmentation green. B shows 
the respective segmentation in 
the CT scan (segmentation in 
green). Mean intensity of the 
segmentation was 15.8 and 
radiomic majority vote was high 
risk. C shows an axial slide of 
the radiotherapy plan in color-
wash with dose escalation in the 
area of the local recurrence. D 
shows the prostate-specific anti-
gen (PSA) values of time. Time 
point of radical prostatectomy 
(RPE), biochemical recurrence 
BCR), and salvage radiotherapy 
(sRT) are highlighted
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