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Abstract

Purpose To develop a CT-based radiomic signature to predict biochemical recurrence (BCR) in prostate cancer patients after
sRT guided by positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET).

Material and methods Consecutive patients, who underwent ®®Ga-PSMA 11-PET/CT-guided sRT from three high-volume
centers in Germany, were included in this retrospective multicenter study. Patients had PET-positive local recurrences and
were treated with intensity-modulated sRT. Radiomic features were extracted from volumes of interests on CT guided by focal
PSMA-PET uptakes. After preprocessing, clinical, radiomics, and combined clinical-radiomic models were developed com-
bining different feature reduction techniques and Cox proportional hazard models within a nested cross validation approach.
Results Among 99 patients, median interval until BCR was the radiomic models outperformed clinical models and combined
clinical-radiomic models for prediction of BCR with a C-index of 0.71 compared to 0.53 and 0.63 in the test sets, respec-
tively. In contrast to the other models, the radiomic model achieved significantly improved patient stratification in Kaplan-
Meier analysis. The radiomic and clinical-radiomic model achieved a significantly better time-dependent net reclassification
improvement index (0.392 and 0.762, respectively) compared to the clinical model. Decision curve analysis demonstrated
a clinical net benefit for both models. Mean intensity was the most predictive radiomic feature.

Conclusion This is the first study to develop a PSMA-PET-guided CT-based radiomic model to predict BCR after sRT. The
radiomic models outperformed clinical models and might contribute to guide personalized treatment decisions.

Keywords PSMA-PET/CT - Salvage radiotherapy - Prostate cancer - Radiomics - Outcome prediction - Personalization

Introduction

Patients who undergo radical prostatectomy (RPE) for local-
ized prostate cancer (PCa) as initial treatment experience bio-
chemical recurrence (BCR) in up to 50% within 5 years after
treatment [1]. Adverse pathological features are associated
with higher rates of BCR [2]. Salvage radiotherapy (sRT) with
or without androgen deprivation therapy (ADT) provides the
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only curative treatment options for these patients and should
be initiated at low PSA levels [3]. Since response rates are
heterogeneous [4], tools for improved risk stratifications are
warranted in order to identify patients who are at higher or
lower risk for relapse after SRT and thus might be candidates
for therapy intensification or de-intensification.

Positron-emission tomography targeting prostate-specific
membrane antigen (PSMA-PET) combined with computer
tomography (CT) significantly improved detection rates of
local (LR) and nodal recurrence (NR) RPE [5] and altered
treatment management [6], but prospective evidence of puta-
tive beneficial effects on outcomes are pending.

Despite the great diagnostic value of modern imaging tech-
nologies, the computer-based extraction and analysis of image
features (radiomics) offers new opportunities for improved
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image analysis to provide additional information about tumor
characteristics as shown for multiple cancer entities [7-10].
Various studies have reported on improvements for PCa detec-
tion, prediction of ISUP, ECE, and BCR in primary PCa
patients but no data exists in the setting of sRT [11].

In order to identify novel markers for personalized risk
stratification, this retrospective multicenter study aims to
evaluate the impact of PSMA-PET-guided CT-based radi-
omic features (RF) derived from PSMA-PET/CT scans on
BCR-free survival (BRFS) in patients who receive sRT due
to recurrent or persistent PCa cancer after RPE.

Material and methods
Patients and treatment

This retrospective multicenter study pooled patients from three
high-volume centers in Germany (University Medical Centre
Freiburg (UKF), Klinikum Rechts der Isar Technical Univer-
sity Munich (TUM), University Hospital of the Ludwig-Max-
imillian’s-University Munich (LMU)). Each center received
an institutional review board approval for this study (Freiburg
No.: 15/18; TUM:466/16 S; LMU: 17-765). Written informed
consent was waived due to the retrospective nature of the study.

Data from patients who received radical surgery and
underwent ®*Ga-PSMA11-PET/CT due to PSA persistence
(PSA after surgery > 0.1 ng/ml) or recurrence (PSA>0.2
as nadir after surgery) and were subsequently treated with
PSMA-PET-guided sRT were collected. From the total
cohort, only patients who received a contrast-enhanced CT
were included in this analysis. Patients with distant metas-
tases (lymph nodes above the iliac bifurcation, bone metas-
tases, or visceral metastases) present in PSMA-PET/CT
and if ADT was given prior to PSMA-PET/CT scans were
excluded. Treatment decisions were taken locally at the dis-
cretion of the treating physicians according to standards of
care at the time of treatment [3] and based on PSMA-PET/
CT findings. See Supplemental Methods Table S1 for details
on salvage RT concepts for each center. ADT was adminis-
tered at the discretion of the treating physician. In total, 99
patients with PET-positive local recurrence treated with sRT
between 2014 and 2020 met the inclusion criteria.

Data collection and follow-up

The following clinical data were collected: age at SRT, Inter-
national Society of Urologic Pathology Grading (ISUP),
pathological T-stage and N-stage, initial PSA and PSA prior
to sRT, presence of nodal recurrence, administration and
duration of ADT, and sRT doses. Follow-up assessments
included serum PSA testing at regular intervals based on
institutional clinical standards.
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58Ga-PSMA11 PET/CT

%8Ga-PSMA 11 was synthesized according to good manufac-
ture practice in all centers and in accordance with interna-
tional procedural guidelines [12]. Acquisition protocols and
scanner types are provided in the Supplemental Methods.

All scanners fulfilled the requirements indicated in the
European Association of Nuclear Medicine (EANM) imag-
ing guidelines and obtained EANM Research Ltd. (EARL1)
accreditation during acquisition.

See [13] for details on PSMA image acquisition and
reconstruction algorithms.

All PSMA-PET/CT images were reviewed locally prior to
data sharing according to reporting international guidelines
[14] by two nuclear medicine physicians with experience on
PCa imaging. Disagreements were resolved by consensus.

Segmentation

Further image processing was performed using the 3D Slicer
v4.10.0 [23]. Two separate segmentation strategies were fol-
lowed: First, considering the local nuclear medicine report,
PSMA-PET-positive PCa lesions were manually contoured
within the CT image by one reader (SS) with >3 years’
experience in PSMA-PET/CT segmentation guided by the
PSMA-PET signal using validated segmentation approach
levels [15]. Second, 20% of the maximal standard uptake
value (SUVmax) of the lesions was used as a threshold for
PET-based semi-automatic segmentations.

Radiomic feature extraction

Radiomic feature and preprocessing were performed using the
pyradiomics package (version 3.0.1) in Python (version 3.7.9)
[16]. For preprocessing, a fixed bin width of 5 HU was used
for image discretization [17]. Isotropic resampling was per-
formed to a voxel size of 1 X 1 X 1 mm using Bspline interpo-
lation. Shape, first-order, and texture features were computed
from the original image according to the “image biomarker
standardization initiative” guidelines [18]. Texture matrices
were aggregated averaged over 3D directions for GLCM and
GLRLM, or 3D for GLSZM, NGTDM, and GLDM features.
See Supplemental Table S2 for a list of the total 104 features.

Modeling strategy and statistical analyses

The modeling steps were performed using the familiar package
(0.0.0.53) in R (version 4.1.2, R core team, Vienne, Austria)
(https://github.com/alexzwanenburg/familiar). For signature
building, a recently published approach was chosen [19]. See
Supplemental Methods for a detailed description. In brief, the
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radiomic feature space was reduced by excluding features sus-
ceptible (intraclass correlation coefficient (ICC 3.1) <0.8) to
small differences in the segmentation type (manual vs. PET
threshold-based) and of features highly correlated with clini-
cal variables (PSA initial, ISUP, rcN, max PSA) (Spearman
coefficient <0.6). Third, we performed hierarchical clustering
with complete linkage and Spearman correlation as a distance
metric keeping one representative feature from each cluster.

Finally, Cox proportional hazard models were calculated
in 10 iterations of fivefold nested cross validation with dif-
ferent feature selection methods (Spearman correlation
(spearman), concordance index (concordance), minimum
redundancy maximum relevance (mrmr), mutual informa-
tion feature selection (mifs), and random selection as control)
(see Supplemental Figure S1 for a detailed graphical depic-
tion). The manual segmentation was used. Prior to analysis,
Yeo-Johnson transformation and z-transformation to mean
zero and standard deviation of one were performed. For each
iteration of the outer folds, the internal cross validation folds
were repeated 11 times to select the median signature size
and the top ranking features. The predictive performance in
the outer folds was aggregated over all 10 iterations.

We developed models comprising of clinical features
(Clinical, including the following variables: age, ISUP grade
after surgery, initial PSA, maximum PSA prior sRT and rcN
status) and radiomic features (Radiomics). Finally, a com-
bined clinical-radiomic model was generated by using clini-
cal and radiomic features as input into the same pipeline.

Statistical analysis
Descriptive statistics were performed with Excel 2016
(Microsoft Cooperation, USA). Statistical analysis and

model building were performed using R (version 4.1.2, R
core team, Vienna, Austria). The primary endpoint of the

Fig.1 Consort flow diagram.

study was BRFS, defined as time to serum PSA >0.2 ng/
ml above the post-sRT nadir without initiation of additional
salvage therapies or death of any cause.

In order to compare the predictive value of the devel-
oped models in the test sets within the nested cross vali-
dation approach, the following methods were used: time-
dependent receiver-operating characteristic (ROC) curves
[20], calibration curves (see Supplemental Figure S2) [21],
time-dependent discrimination improvement index (tdIDI),
time-dependent net reclassification improvement index
(tdNRI) (see Supplemental Methods) [22], and a decision
curve analysis (DCA) [23]. The median predictor over all
10 x5 outer testing sets was determined for each patient.
Kaplan-Meier analysis [24] was conducted by recording
the median value of the predictions in each training set
and by applying it as a cut-off value for classification in the
respective test sets for all patients. The final classification
was determined by majority voting over all 10 iterations.

The C-index and ROC area under the curve (AUC) were cal-
culated as a performance metric. The Wilcoxon rank-sum test
was used for comparison of values at a significance level of 0.05.

Decision curve analysis was performed according to
Vickers et al. to compare the clinical net benefit of the devel-
oped models [25]. Decision curves for “treating no patient”
and “treating all patients” were depicted as reference.

Results

Patient characteristics

Ninety-nine patients with a median follow-up of 29 months
(range 3—79 months) were included in this analysis (Fig. 1).

No patient died during FU. See Table 1 for details about
patient characteristics.

Abbreviations: PSMA-PET/
CT =positron-emission tomog- (i)
raphy targeting prostate-specific
membrane antigen combined (ii)
with computer tomography

Patients with

positive findings in PSMA-
PET/CT
contrastenhanced CTs
(iii) salvage radiotherapy

Assessed for eligibility (n=175) ‘

Excluded
Nodal or distant recurrence (n=76)

’ Included (n=99)
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Table 1 Patient characteristics

Site 1 Site 2 Site 3 Overall
(N=33) (N=41) (N=25) (N=99)

Age
Median [min, max] 74 [49, 83] 68 [50, 82] 78 [58, 871 72 [49, 87]
ISUP grade after surgery

1 4 12.1%) 0 0%) 2 (8%) 6 6.1%)

2 10 (30.3%) 2 4.9%) 8 (32%) 20 (20.2%)

3 6 (18.2%) 24 (58.5%) 9 (36%) 39 (39.4%)

4 7 21.2%) 6 (14.6%) 4 (16%) 17 17.2%)

5 6 (18.2%) 9 (22%) 2 8%) 17 17.2%)
rcN status

0 22 (66.7%) 15 (36.6%) 19  (76%) 56 (56.6%)

1 11 (33.3%) 26 (63.4%) 6 (24%) 43 (43.4%)
PSA initial

Median [min, max] 10 [3.56,190] 9.73 [1.01,80] 8.9 [4.24,43] 9.73  [1.01, 190]
Max PSA before sRT

Median [min, max] 1.47 [0.26,10.1] 0.54 [0, 7.74] 2.1 [0.21,14.8] 1.07 [0, 14.8]
RT dose to prostatic fossa/local recurrence (a/ff=1.6 Gy)
<0Gy 9 27.3%) 16 (39.0%) 19 (76.0%) 44 (44.4%)
>70 Gy 22 (66.7%) 3 (7.3%) (4.0%) 26 (26.3%)
>72 Gy 2 (6.1%) 19 (46.3%) 5 (20%) 26 (26.3%)

Missing 3 (7.3%) 3 (3.0%)
ADT

Yes 24 (72.7%) 17 (41.5%) 6 (24%) 47 (47.5%)

No 9 (27.3%) 24 (58.5%) 19  (76%) 52 (52.5%)
Duration of ADT >12 months

Yes 6 (18.2%) 8 (19.5%) 1 (4%) 15 (15.2%)

No 18 (54.5%) (22%) 5 (20%) 32 (32.3%)

Missing 9 (27.3%) 24 (58.5%) 19  (76%) 52 (52.5%)
Time to biochemical recurrence in months

Median [min, max] 20 [3, 54] 21 [4, 64] 25 [6, 56] 22 [3, 64]
Biochemical recurrence

Yes 10 (30.3%) 9 (22%) 7 (28%) 26 (26.3%)

No 23 (69.7%) 32 (78%) 18  (72%) 73 (73.7%)

Radiomic models outperform clinical models
for prediction of biochemical failure

The developed clinical signatures achieved low to moderate
performance for prediction of BRFS with a C-index rang-
ing between 0.51 and 0.61 in the test sets. The radiomic
signature achieved superior prediction of BRFS with good
performance in both training and test set with a C-index
ranging between 0.66 and 0.71 in the test set. Combined
clinical-radiomic models achieved only moderate perfor-
mance in the test set with a C-index of 0.60-0.65. The mod-
els based on random feature selection performed worse for
the radiomic models and similar to other clinical models.
See Table 2 for details. Feature reduction with mrmr was
chosen for further analyses of all models due to its perfor-
mance close to the median overall training performance and
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narrow 95% confidence interval for the clinical and radiomic
models (excluding random). For consistency, mrmr was also
selected for the combined model.

We further stratified patients into low or high probabil-
ity of BRFS based on predictions of the respective models.
Only the radiomic models resulted in significantly differ-
ent survival probabilities (p <0.001). Time-dependent ROC
analysis showed consistent AUC values over time of up to
0.8 for the radiomic signatures up to 60 months of follow-
up. Combination of clinical and radiomic signatures showed
lower AUCs than the radiomic signature alone. See Fig. 2
for details.

At 24-month FU, the clinical signatures, radiomic sig-
natures, and combined clinical and radiomic signatures
achieved an AUC of 0.53, 0.73, and 0.63, respectively. See
Fig. 3 for details.
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Table 2 Performance of
clinical, radiomic, and
clinical-radiomic signatures

Feature selection method

C-index train (95% CI)

C-index test (95% CI)

Median signa-
ture size (min-

Lo . . max)

for prediction of biochemical

failure after salvage Clinical signature

radiotherapy. Results of various mifs 0.71 (0.60-0.80) 0.51 (0.37-0.64) 1(1-2)

feature selection methods are

shown mrm 0.70 (0.59-0.80) 0.53 (0.40-0.67) 1(1-2)
spearman 0.64 (0.51-0.77) 0.61 (0.48-0.71) 5(2-8)
concordance 0.71 (0.62-0.80) 0.51 (0.38-0.62) 1(1-4)
random 0.68 (0.58-0.78) 0.57 (0.46-0.69) 1(1-5)

Radiomic signature
mifs 0.72 (0.61-0.81) 0.71 (0.60-0.81) 1(1-2)
mrm 0.72 (0.62-0.82) 0.71 (0.57-0.80) 1(1-2)
spearman 0.81 (0.71-0.88) 0.66 (0.57-0.77) 5(2-8)
concordance 0.72 (0.59-0.80) 0.71 (0.58-0.81) 1(1-4)
random 0.82 (0.72-0.89) 0.62 (0.51-0.72) 5(2-12)
Clinical-radiomic signature

mifs 0.78 (0.70-0.85) 0.61 (0.48-0.71) 2 (2-6)
mrm 0.78 (0.71-0.85) 0.63 (0.52-0.75) 2(2-3)
spearman 0.84 (0.78-0.90) 0.65 (0.52-0.75) 5(1-8)
concordance 0.79 (0.70-0.85) 0.60 (0.47-0.71) 3 (2-5)

A Clinical signature

Kaplan-Meier Survival Curves

B Radiomic signature

Kaplan-Meier Survival Curves

o ol
- iy . DO T
‘e 5, L—  1ow-risk aroup
3 M @
> f o > i
= '—-L.——-‘ = O
¥} [— 3
§ g- high-1iSK group § g : b
a 8 -
< - e amecaecnceee
g S § ol high-risk group
- >
w w
o o
o o
© | p-value = 0.68 © | p-value < 0.001
o T T T T T © T T T T
0 10 20 8 40 50 60 0O 10 20 3 40 50 60
Months Montns
t | 0|12 24|36]|48]63 t | o0]|12|24|36]|48 63
lowrisk |50 40 22 (12| 5] 0 lowrisk | 50|42 |27 [17[8 0
highrisk | 49| 37 24 |14 | 8 1 highrisk |49 (35|19 | 9 5 1
Time-dependent AUC, NNE Time-dependent AUC, NNE
o | < |
o] - o | B N
= -"\ © /\f\‘/—a' S o
TN . mmmmemmme- - f P
o ~N\ i | o] - o a Aaaas -
8 o B "\ 8 o \,‘ s
— »
=4 = E4
g ® o o 8
=] i o (=] ;
o~ ' o~
o o
= - 95% Clfor AUC Ql — 95% CI for AUC
© T T T U T T o T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Months Months

C Clinical +

radiomic signature

Kaplan-Meier Survival Curves

0.6

Survival probability
0.4

02
1

S | p-value=0.15
c

L low-risk group

]

i r'ugli;n.sk group

0 10 20 30 10 50 60
Months
t | o0|12]|2a]|36|48]63
lowrisk | 53|44 (26 (15| 5| 0
highrisk |46 33|20 | 11| 8 | 1

o ]
o | ke
= —————
A s
s I\
© — /S \
8| F
< = - a——
A 4 '
3 - d
N
o
o | -—- 95% Clfor AUC
© T T T T T
Q 10 20 30 40 50 60
Months

Fig.2 The Kaplan—Meier survival curves and time-dependent area-under-the-curve (AUC) results for the clinical (A), radiomic, (B) and com-
bined clinical and radiomic (C) signatures obtained from repeated nested cross validation
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Fig.3 Results of the receiver operator characteristic analysis for the
clinical signatures, radiomic signatures, and clinical-radiomic signa-
ture at 24 months of follow-up based on repeated nested cross valida-
tion (test results in the outer fold) results

Clinical relevance of the radiomic signature

Decision curve analysis reflects the highest clinical net ben-
efit for the radiomic signatures compared to the two alterna-
tive signatures while the combined model also performed
better than the clinical model. See Fig. 4 for details.

Despite lower AUC values, the combined clinical-radi-
omic signatures achieved higher improvements in sensitivity
as the radiomic signatures alone compared to the clinical sig-
natures in the test sets of the outer folds (0.78 vs. 0.26). The
clinical-radiomic signatures also demonstrated improved
tdIDI over the clinical signatures (0.766, p=0.027). The
radiomic and clinical-radiomic models achieved a signifi-
cantly better tdNRI (0.392 and 0.762, respectively) com-
pared to the clinical model (p <0.005) (Table 3).

CT mean intensity and PSA initial as most important
features

For the radiomic signature, the feature “firstorder_mean,”
i.e., the mean CT intensity value, was selected as predictive
feature for all feature reduction methods with a frequency
of 98% in the case for mrmr (see Supplemental Material
Table S3 for selected features). For the clinical model, PSA
initial was predominantly selected with a frequency of
40% for mrmr. The same two features were the most often
selected features in the clinical-radiomic model (40% and
23%, respectively). See Table 4 for intensity values strati-
fied by BCR.
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The maximally selected rank statistics on the complete
dataset revealed a mean intensity of 19.7 Hounsfield units
(HU) as optimal cut point. A univariate Cox proportional
hazard model for CT mean intensity (HR 0.99, p=0.012,
Fig. 5) and the respective nomogram is provided in the sup-
plement (Supplemental Material Table S4 and Figure S3). An
exemplary patient case is provided in Fig. 6. In a multivariate
Cox model including PSA initial (HR 1.01, p=0.052) and
CT mean intensity (HR 0.99, p=0.012), only the latter was
significant.

Discussion

In this study, we have developed PSMA-PET-guided CT-
based radiomic signatures for prediction of BRFS after sRT
due to PCa recurrence using a multicenter cohort from three
high-volume centers. We designed the model as a pre-thera-
peutic tool to guide treatment decision and to identify patients
who are at higher or lower risk of relapse and might thus be
candidates for treatment intensification or de-intensification.
Consequently, treatment-specific parameters, such as deliv-
ered radiation dose, were not considered for model building.
The developed radiomic signatures yielded good predictive
performances and outperformed clinical signatures based on
classical histological and clinical parameters. The radiomic
model achieved significant patient stratification and demon-
strated durable prediction of BRFS in time-dependent ROC
analysis. To the best of our knowledge, this is the first study

Decision curves

—— Intervention for none
= Intervention for all
—— Radiomic signature
== Clinical-radiomic signature
»»»»»» Clinical singature

Net benefit

0.05
1

0.00
1

-0.05

T T T g T T T
0.0 0.1 02 03 0.4 05

Threshold probability

Fig.4 Decision curves for clinical, radiomic, and clinical-radiomic
signatures based on repeated nested cross validation results (test sets
within the outer folds). Decision curves for “treating no patient” and
“treating all patients” were depicted as reference
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Table 3 shows results of time-dependent reclassification analysis for the clinical, radiomics, and combined clinical-radiomic model based on

repeated nested cross validation results (test sets within the outer folds)

Models to compare Improvement in Improvement in Integrated discrimination p-value Net reclassification p-value
sensitivitiy specificity improvement index improvement index

MO: clinical signature 0.263 0.083 0.346 0.221 0.397 <0.005

M1: radiomic signature

MO: clinical signature 0.778 —0.012 0.766 0.027 0.726 <0.005

M1: clinical-radiomic signature

MO: clinical-radiomic signature —0.515 0.095 —0.420 0.074 —0.315 <0.005

M1: radiomic signature

assessing CT-based radiomics in patients who underwent
PSMA-PET-based sRT and thus provides novel insights into
this field of research.

Analyses of RFs have extensively been performed in pri-
mary prostate cancer patients [11]. Most of these studies are
based on MRI and demonstrated the ability of radiomics to
non-invasively characterize and detect clinically significant
PCa and extracapsular extension or predict BCR [26-28].

Fewer studies reported on CT-based radiomics and all of
these were performed in the primary setting. Three studies
developed CT-based radiomic classifiers with good performance
to predict Gleason score and risk groups (AUC 0.70-0.83)
[29-31].

Based on PSMA-PET/CT scans, Peeken et al. developed a
CT-based model to detect lymph node metastases, which out-
performed conventional CT parameters with an AUC of 0.95 in
external testing [32], addressing the limited ability of conven-
tional imaging to detect PCa-positive lymph nodes. Acar et al.
used CT-based RFs to differentiate between bone metastases and
sclerotic areas with good accuracy (AUC 0.76) [33].

Since patients with BCR after surgery experience hetero-
geneous response rates [4, 34], our study aims to improve
risk stratification with commonly available diagnostics for
patients receiving sRT based on state-of-the-art diagnostics
and to identify patients who might benefit from treatment de-
intensification or intensification.

In our study, clinical signatures showed insufficient
prognostic value for BRFS after sRT in the test sets, which
reflects the deficiency of classical clinical and pathological
parameters for prognostication demonstrated by retrospec-
tive and prospective studies. However, the developed radi-
omic signatures outperformed the clinical models with good
prognostic values in the test sets. Radiomic signatures and
particularly various feature selection methods outperformed
clinical models, which demonstrates a certain robustness of

these signatures. The inferior performance of the combined
clinical and radiomic signatures might be explainable due
to the poor prognostic value of clinical parameters and the
low patient number for effective model building.

Since no other studies evaluated CT-based radiomics to
predict BCR, we cannot directly compare our signatures
with other CT-based models. Nevertheless, in comparison
with mpMRI-derived RF, the radiomic models in our study
performed similarly well with a C-index of >0.7, consid-
ering different clinical scenarios between these studies.
DCA demonstrates a net benefit of the radiomic signatures,
suggesting that clinical utilization of radiomics can help to
identify patients who are at higher risk of BCR after sRT.
Whether these patients benefit from intensified treatments
and if which kind of treatment intensification is optimal
need to be evaluated in future studies.

CT-based radiomics might in future play an even more
important role, since technical advantages such as dual-
energy CTs provide more image information and may thus
allow for more differentiated radiomic analyses. In addition,
the prognostic capability of PSMA-based radiomic signa-
tures needs to be evaluated in future studies.

Due to the small patient number, we were not able to
separate an external testing cohort, but rather obtained high
statistical robustness by applying a nested cross validation
approach. Future studies should focus on external validation
to demonstrate transferability of models.

The mean intensity within the VOI was selected as the
most important RF. Lower intensity values were associated
with decreased BRFS. To provide a simple cut-off metric,
we applied the maximally selected rank statistics. A cut-
off of 19.7 HU was determined as optimal cut-off point for
BCR. However, unlimited reduction of HU values is not
plausible, since we expect local recurrence to have HU val-
ues greater than fat tissue. Thus, this cut-off value should

Table 4 CT intensity values in

. . Minimum Ist quartile Median Mean 3rd quartile Max
Hounsfield units stratified by
biochemical recurrence (BCR) BCR —76.54 2.11 18.29 19.82 4231 86.17
are shown No BCR ~129.38 29.87 46.10 39.39 59.93 110.16
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1.001

0.751
s
o 0.501
w
14 .
o 00 Risk group

' = Mean intensity >20
<
0.00 p < 0.0001 = Mean intensity < 20

9 18 27 36 45 54 63
Time-to—event (months)

o

Mean intensity >20 HU 73 65 50 38 23 12 4 1
Mean intensity <20HU 26 19 10 4 3 2 1 0

Numbers at risk

Fig.5 Kaplan-Maier curve for biochemical recurrence free sur-
vival (BRFS) stratified after mean intensity of Hounsfield units <20
and >20

be validated in further studies. Moreover, we provide a uni-
variate Cox model and nomogram trained on the complete
cohort for future external validation.

There are several limitations in our study. First we want
to mention the retrospective character and possible selection

Fig.6 Exemplary patient case: A
A shows the PET-positive local
recurrence in the prostatic
fossa/seminal vesicle fossa
(segmentation green. B shows
the respective segmentation in
the CT scan (segmentation in
green). Mean intensity of the
segmentation was 15.8 and
radiomic majority vote was high
risk. C shows an axial slide of
the radiotherapy plan in color-
wash with dose escalation in the
area of the local recurrence. D
shows the prostate-specific anti-
gen (PSA) values of time. Time
point of radical prostatectomy
(RPE), biochemical recurrence
BCR), and salvage radiotherapy
(sRT) are highlighted

\ V n
Mean Intensity:15.80——
Radiomics Majority Vote: high risk

@ Springer

bias. Secondly, we have included patients with LR and NR
in this analysis, who experience different outcomes. Sepa-
ration of both cohorts would have resulted in an insuffi-
cient sample size. Nevertheless, development of CT-based
radiomic signatures might be influenced to a lesser extent
through this heterogeneity in comparison to functional
imaging methods. Thirdly, we used an internal validation
due to the low number of patients within each institution.
However, we applied a sophisticated nested cross validation
approach to overcome methodological disadvantages. The
inclusion of patients that received ADT may have biased
optimal outcome predictions. Again, exclusion of these
patients would have significantly reduced the sample num-
ber. Finally, the FU in our cohorts is relatively short with a
median FU of 29 months.

Summary

The developed CT-based radiomic signatures outperform clini-
cal/clinical-radiomic signatures for prediction of BCR after sRT
and demonstrated durable prediction of biochemical recurrence
in time-dependent ROC analysis. Decision curve analysis dem-
onstrates a net benefit for clinical utilization of the radiomic sig-
nature. Future studies need to evaluate whether these improved
prognostications can be transferred into personalized treatments.

o

RPE BCR sRT BCR

PSA values in ng/ml

03/2014 07/2015 06/2016 05/2017
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