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Bispecific proteins, such as bispecific antibodies (BsAbs), 
represent a promising class of biologics for the treatment 
of various diseases [1]. They are designed to target two dif-
ferent proteins/antigens simultaneously, allowing for more 
specific and effective targeting of the cells or molecules 
of interest [2]. Since tumor cells often express multiple 
antigens, BsAbs are more useful than monospecific anti-
bodies particularly in cancer theranostic applications [3]. 
BsAbs can also redirect immune cells against tumor cells. 
For example, blinatumomab, a bispecific T-cell engager 
(BiTE), promotes T-cell-mediated cytotoxicity by directing 
CD3+ T cells toward CD19+ cancer cells [4–6]. In addition, 
BsAbs can overcome the limitations of monoclonal anti-
bodies (mAbs), such as poor solubility, possible off-target 
effects, and rapid clearance from the body [7, 8]. Since the 
first development of BsAbs in 1961 [9], a burst of research 
activity surrounding this agent type has been seen over the 
years [10–12]. With two such therapies already approved 
by the FDA (emicizumab and blinatumomab) [13, 14], and 
many more undergoing clinical trials, they will soon become 
widespread in the fight against many diseases [15].

BsAbs can be classified into two main categories, namely, 
those with an Fc region (similar to IgG antibodies) and those 
without an Fc region (such as diabodies and nanobodies) 
[16]. The structure of IgG-like BsAbs is similar to that of 

traditional mAbs. They typically contain a complete Fc 
fragment and weigh over 100 kDa [17]. The Fc fragment 
prolongs the half-life of BsAbs, is responsible for antigen 
binding, and is involved in several processes, including cell-
mediated cytotoxicity, complement-dependent cytotoxicity, 
and antibody-dependent cell-mediated phagocytosis [18]. 
Moreover, IgG-like BsAbs can be easily purified and are 
stable in nature. However, they have low permeability in 
tumor tissues, and their complex structures may result in 
chain mispairing during assembly.

Non-IgG-like BsAbs, on the other hand, lack an Fc region 
and possess only antigen-binding domains, thus avoiding 
chain-association problems [19]. They have a relatively sim-
ple structure and small molecular weight and can be highly 
expressed in cells. Owing to their small size, they exhibit strong 
tissue-penetrating ability and better delivery efficiency, mak-
ing them highly effective in cancer therapy. Diabodies consist 
of two antigen-binding domains and have a molecular weight 
of approximately 50 kDa [20]. In addition, nanobodies [21], 
which are derived from camelid antibodies, are roughly one-
tenth of the size of traditional antibodies and have good tissue-
penetrating ability. Overall, non-IgG-like BsAbs offer several 
advantages over traditional IgG-like BsAbs and have demon-
strated great promise particularly in the field of cancer therapy 
[16, 22–25]. Continued research in these areas may ultimately 
lead to improved treatment for widespread diseases [26].

Pancreatic ductal adenocarcinoma (PDAC) has long been 
a challenging disease to treat successfully. Highly specific 
mAbs have been evaluated as potential mono-targeted drugs 
for the treatment of PDAC, but they have failed to improve 
patient survival due to low intrinsic efficacy [27, 28]. The 
reasons for the treatment failures have been widely attrib-
uted to the high degree of molecular heterogeneity of PDAC 
cells, as well as the dense desmoplastic tumor stroma that 
is nearly impenetrable by traditional antibodies due to their 
large size [29]. Therefore, the development of highly multi-
specific, small-sized therapeutic agents is urgently needed to 
provide an effective targeted therapy for PDAC.
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In this issue of the European Journal of Nuclear Medi-
cine and Molecular Imaging, Wang et al. reported a superb 
treatment method for PDAC using an ultra-small bispecific 
fusion protein, Bi-fp50, labeled with fluorescent dyes [30]. 
By targeting both vascular endothelial growth factor (VEGF) 
and epidermal growth factor receptor (EGFR), Bi-fp50 rep-
resents a promising new strategy for more effective targeted 
pathway therapy for PDAC. Bi-fp50 has demonstrated 
increased binding affinity for Bxpc3 PDAC cells compared 
to anti-VEGF scFv and anti-EGFR scFv alone. It has also 
significantly inhibited the proliferation and growth of Bxpc3 
and Aspc1 PDAC cells, even at a relatively low concentra-
tion (0.3 µM).

One of the most notable features of Bi-fp50 is its ultra-
small size, which measures approximately 50  kDa in 
molecular weight or 5–6 nm in hydrodynamic diameter. 
This uniquely designed characteristic enables effective 
penetration through the dense tumor barrier and allows for 
accumulation deep within the tumor tissue. In fact, after 
intravenous injection, Bi-fp50 was found to be widely dis-
tributed throughout the entire tissue and primarily enriched 
in the tumor, with nearly twice the accumulation compared 
to scFv2 in an orthotopic PDAC tumor model. The broad 
distribution and deep tissue penetration of Bi-fp50 led to 
apoptosis in the whole tumor. These exciting results pro-
vide guidance for further development of novel therapeutic 
approaches for PDAC.

Bi-fp50’s high bispecificity and ultra-small size also make 
it an ideal candidate for combination therapy with other 
treatment modalities. For example, it could be combined 
with immunotherapy or radiotherapy to further enhance its 
therapeutic effects. While safety and off-target toxicity are 
potential concerns with immunotherapy, previous studies 
have shown that bispecific antibodies and their derivatives 
can significantly reduce the risk of off-target side effects 
because they can selectively bind to T cells and cancer cells 
at two terminals [31]. Without posing a safety risk, Bi-fp50 
provides great prospect for dual-targeted immunotherapy 
of PDAC. In addition, the design of Bi-fp50 allows for the 
attachment of other molecular agents, such as drugs used in 
radiotherapy and chemotherapy, to achieve synergistic thera-
peutic effects. Thus, the emergence of ultra-small bispecific 
proteins, such as Bi-fp50, has opened up new opportuni-
ties for combination therapies and created a new frontier for 
improved cancer treatment strategies.

The applicability of bispecific proteins in nuclear medi-
cine has been increasingly investigated in recent years [32, 
33]. For instance, Stergiou et  al. evaluated 89Zr-labeled 
mAbAdu-scFab8D3 (Adu-8D3) for amyloid-β imaging and 
targeting in a preclinical Alzheimer’s disease (AD) mouse 
model [34]. Adu-8D3 is a BsAb consisting of aducanumab 
with bivalent binding to human Aβ plaques and with a single-
chain Fab (scFab) of the 8D3 mAb targeting murine TfR1 

attached to the heavy c-terminal. Their study demonstrated 
the highly specific uptake of Adu-8D3 in the brain, which 
was seven times higher than that of Adu with single-target 
specificity. This indicates that Adu-8D3 utilizes the brain 
shuttle mechanism through TfR1 to enhance brain uptake. 
Adu-8D3 could serve as a powerful tool in reducing the risk 
of constructing novel brain shuttle antibodies and developing 
biopharmaceuticals for neurological diseases. Another study 
reported the use of 89Zr-IBI322 (anti-CD47 and PD-L1) to 
evaluate the safe and effective therapeutic dose of a BsAb 
[35]. Preliminary pharmacodynamics studies suggested that 
dose-escalation PET imaging using 89Zr-BsAbs is a suitable 
strategy for PK/PD modeling as well as safety prediction. 
This approach allows for the determination of rational dos-
ing of BsAbs in preclinical and clinical trials. Furthermore, 
the effectiveness of using an anti-carcinoembryonic anti-
gen (CEA) recombinant bispecific monoclonal antibody 
(TF2) and 68 Ga-HSG for pre-targeted immunological PET 
(or immuno-PET) was assessed in patients with metastatic 
colorectal carcinoma [36]. In this pilot study, the use of pre-
targeted immuno-PET with anti-CEA/anti-IMP288 BsAbs 
and 68 Ga-haptens demonstrated positive results in 9 out of 
11 patients with good diagnostic performance. After analyz-
ing lesions on a per-lesion basis, immuno-PET demonstrated 
higher sensitivity, specificity, positive predictive value, and 
negative predictive value compared to the combined diagno-
sis of EUS/CT/MRI and FDG-PET. It further demonstrated 
its excellent diagnostic performance.

In addition to the imaging functions, the therapeutic 
potential of bispecific proteins in combination therapies 
have been shown in a number of studies. For example, 
90Y-CHX-A″-C6.5 diabody (with specificity toward HER2/
neu) can be used for targeted cancer therapy by inhibiting 
the growth of established MDA-361/DYT2 tumor xenografts 
in immunodeficient mice [37]. This suggests that diabody 
molecules having excellent antitumor properties can serve as 
effective therapeutic agents for radioimmunotherapy. Cheal 
et al. recently reported that 177Lu-DOTA-BsAb (anti-HER2-
C825) is beneficial for treating mice with human solid tumor 
xenografts (GPA33 and GD2) [38]. The agent demonstrated 
great treatment outcome, with 62.5% histological cure (5/8) 
and 37.5% microscopic residual disease (3/8) at 85 days, 
while avoiding severe radiotoxicity in critical organs. From 
these studies, BsAbs are both active for immuno-PET 
imaging and also provide targeted therapy, indicating their 
suitability for cancer theranostic applications. Moreover, a 
novel three-step pretargeted radioimmunotherapy strategy 
utilizing a glycoprotein A33 (GPA33)-targeting BsAb and a 
small-molecule radioactive hapten (177Lu-DOTA-Bn) dem-
onstrated excellent tumor-to-background ratios [39]. In the 
GPA33-positive human colorectal cancer xenograft mouse 
model, this approach led to a 100% histological cure without 
any discernible radiation damage to crucial organs. These 
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findings highlight the potential of utilizing bispecific anti-
bodies in pretargeted radioimmunotherapy.

Most BsAbs used in current diagnostic and therapeutic stud-
ies are generally large in size with very limited tumor-penetrat-
ing capability. The lack of intratumoral enrichment and deep 
penetration may affect their clinical relevance [40]. To improve 
the outlook of BsAbs, the recent work done by Wang et al., 
which is highlighted herein, is of great importance. The devel-
opment of ultra-small-sized multispecific proteins presents a 
new strategy for more effective targeted pathway therapy and 
represents a paradigm-shifting treatment regimen for a broad 
spectrum of hard-to-treat solid tumors. Nonetheless, future 
research should focus on identifying more specific molecu-
lar targets in tumor cells and other relevant constituents, and 
designing rational conjugation or combination with other drugs. 
These improvements will further increase the significance of 
ultra-small BsAbs in clinical applications.

In conclusion, the recent advances in BsAbs design and 
production hold immense promise for the future of cancer 
theranostics. While there are still challenges to overcome, 
the potential of these multispecific therapeutic proteins to 
revolutionize cancer treatment and nuclear medicine is clear, 
and continued research and development will pave the path 
for newly improved diagnostic and therapeutic methods for 
a wide range of diseases.
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