
Vol:.(1234567890)

European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:2140–2151
https://doi.org/10.1007/s00259-023-06145-z

1 3

ORIGINAL ARTICLE

A machine learning tool to improve prediction of mediastinal lymph 
node metastases in non‑small cell lung cancer using routinely 
obtainable  [18F]FDG‑PET/CT parameters

Julian M. M. Rogasch1,2  · Liza Michaels1,3 · Georg L. Baumgärtner3 · Nikolaj Frost4 · Jens‑Carsten Rückert5 · 
Jens Neudecker5 · Sebastian Ochsenreither6,7 · Manuela Gerhold8 · Bernd Schmidt9 · Paul Schneider10 · 
Holger Amthauer1 · Christian Furth1 · Tobias Penzkofer3

Received: 19 November 2022 / Accepted: 8 February 2023 / Published online: 23 February 2023 
© The Author(s) 2023

Abstract
Background In patients with non-small cell lung cancer (NSCLC), accuracy of  [18F]FDG-PET/CT for pretherapeutic lymph 
node (LN) staging is limited by false positive findings. Our aim was to evaluate machine learning with routinely obtainable 
variables to improve accuracy over standard visual image assessment.
Methods Monocentric retrospective analysis of pretherapeutic  [18F]FDG-PET/CT in 491 consecutive patients with NSCLC using 
an analog PET/CT scanner (training + test cohort, n = 385) or digital scanner (validation, n = 106). Forty clinical variables, tumor 
characteristics, and image variables (e.g., primary tumor and LN SUVmax and size) were collected. Different combinations of 
machine learning methods for feature selection and classification of N0/1 vs. N2/3 disease were compared. Ten-fold nested cross-
validation was used to derive the mean area under the ROC curve of the ten test folds (“test AUC”) and AUC in the validation 
cohort. Reference standard was the final N stage from interdisciplinary consensus (histological results for N2/3 LNs in 96%).
Results N2/3 disease was present in 190 patients (39%; training + test, 37%; validation, 46%; p = 0.09). A gradient boosting classifier 
(GBM) with 10 features was selected as the final model based on test AUC of 0.91 (95% confidence interval, 0.87–0.94). Validation 
AUC was 0.94 (0.89–0.98). At a target sensitivity of approx. 90%, test/validation accuracy of the GBM was 0.78/0.87. This was 
significantly higher than the accuracy based on “mediastinal LN uptake > mediastinum” (0.7/0.75; each p < 0.05) or combined 
PET/CT criteria (PET positive and/or LN short axis diameter > 10 mm; 0.68/0.75; each p < 0.001). Harmonization of PET images 
between the two scanners affected SUVmax and visual assessment of the LNs but did not diminish the AUC of the GBM.
Conclusions A machine learning model based on routinely available variables from  [18F]FDG-PET/CT improved accuracy 
in mediastinal LN staging compared to established visual assessment criteria. A web application implementing this model 
was made available.
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Introduction

In patients with non-small cell lung cancer (NSCLC), accu-
rate pretherapeutic imaging-based assessment of thoracic 
lymph node (LN) metastases is essential for treatment 

planning. Most importantly, identification of metastatic 
spread to LNs in the N2 or N3 region is critical because 
patients with N0/1 disease are usually referred to surgery 
while those with N2/3 disease require multimodal treat-
ment [1]. Positron emission tomography/computed tomog-
raphy (PET/CT) with  [18F]fluorodeoxyglucose (FDG) is 
the most accurate imaging modality for LN assessment in 
NSCLC. LNs are most commonly regarded as positive in 
 [18F]FDG-PET/CT if their uptake is higher than the medi-
astinal background activity [2] or if their short axis diameter 
is > 10 mm [3–6]. However, when using these criteria, the 
desired high sensitivity comes with unacceptably low speci-
ficity. Gunluoglu et al. reported that > 90% of patients who 
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were candidates for surgery required invasive confirmation 
of suspicious mediastinal LNs in  [18F]FDG-PET/CT while 
only 26% of those cases were confirmed to be pN2/3 [7].

Several authors have employed machine learning meth-
ods to improve diagnostic accuracy. These have been based 
either on manually defined features such as LN size or on 
standardized uptake value (SUV) [8, 9], radiomic features 
[10, 11], or deep learning from segmented images [12]. In 
these reports, machine learning methods achieved an accu-
racy similar or superior to experienced physicians in deter-
mining LN status at the patient level [8, 12] or LN level [10, 
11]. However, none of the models has been validated with 
a separate PET/CT scanner, none of these studies has com-
pared accuracy with previously published models from other 
groups, and none of the models developed has been distrib-
uted as a ready-to-use diagnostic tool. Notably, if textural 
features such as radiomics or deep learning-derived features 
are employed, it is crucial to demonstrate the transferability 
of the model to other scanners. Furthermore, feature extrac-
tion or image segmentation may not be practicable in routine 
clinical care.

The aim of the current analysis was therefore to develop 
a diagnostic machine learning model to differentiate the 
clinically relevant categories N0/1 and N2/3 using variables 
from  [18F]FDG-PET/CT images and clinical/pathologi-
cal data that can be obtained in any patient with routinely 
available tools. Furthermore, the performance of our model 
was compared to that of one developed by Toney et al. [8] 
which achieved exceptionably high accuracy of 99.2% in 
differentiating NSCLC patients with N0/1 from N2/3 using 
simple primary tumor and LN metrics but which has not 
been validated externally. To facilitate further validation of 
our machine learning model, all variables and the machine 
learning code have been published as Open Data, and a 
user-friendly web application for use of our model is avail-
able online.

Methods

Patients

A flow diagram of patients is provided in Supplementary 
material #1 together with the Standards for the Reporting 
of Diagnostic Accuracy Studies (STARD) 2015 checklist.

One thousand and twenty-five consecutive patients with 
newly diagnosed NSCLC or with suspected lung cancer but 
unsuccessful biopsy attempts underwent  [18F]FDG-PET/CT 
as part of routine clinical care at the same tertiary hospital 
between February 2013 and September 2020. Those ful-
filling the following inclusion criteria were retrospectively 
identified for analysis: (i) histologically proven NSCLC, 
(ii)  [18F]FDG-PET/CT performed before initiation of any 

treatment, (iii) blood glucose level ≤ 190 mg/dl, and (iv) his-
tology of thoracic lymph node stations available between 
6 weeks before to 8 weeks after  [18F]FDG-PET/CT (but not 
necessarily including histology of N2/3 lymph nodes).

The 491 patients included in the analysis were divided 
into two separate cohorts based on two different PET/CT 
scanners which had been used to examine the patients. The 
training + test cohort, comprising 385 patients, was exam-
ined with a Philips Gemini TF scanner equipped with con-
ventional photomultiplier tubes and time of flight (TOF) 
capability [13] between February 2013 and August 2020. 
The validation cohort, consisting of 106 patients, was 
scanned between February 2018 and September 2020 with 
a GE Discovery MI PET/CT with silicon photomultipliers 
(SiPM) and TOF capability [14].

All procedures were carried out in accordance with the 
local ethics commission (protocol #EA2/100/21).

[18F]FDG‑PET/CT protocol

Supplementary material #2 provides details on the  [18F]
FDG-PET/CT imaging and image reconstruction protocol. 
Briefly, PET/CT imaging in the training + test cohort was 
performed with a median injected  [18F]FDG activity of 
267 MBq and a median uptake time of 70 min. PET images 
were reconstructed iteratively with ordered subset expec-
tation maximization and TOF. In the validation cohort, a 
median activity of 261 MBq  [18F]FDG was administered, 
and the median uptake time was 65 min. PET raw data were 
reconstructed with a Bayesian penalized likelihood recon-
struction algorithm (GE “Q.Clear,” beta = 450) [15].

PET: visual assessment

Intensity of the lymph node  [18F]FDG uptake was rated 
with a 4-step score as previously described [16]. The score 
was defined as follows: (1) LN uptake appears ≤ medias-
tinal background, (2) LN uptake > mediastinal background 
but < liver, (3) LN uptake ≥ liver but not “black,” and (4) 
LN appears “black.” PET window was usually set to a mean 
of 2.5 and a width of 5.0 (SUV). Visual assessment was 
conducted by one experienced nuclear medicine physician 
(JMMR, approx. 12 years of experience in  [18F]FDG-PET/
CT in lung cancer) using the Visage 7.1 viewer (version 
7.1.17, Visage Imaging, Inc., San Diego, CA, USA). The 
reader was fully blinded to the results of the reference 
standard.

PET: SUV measurements

The highest SUVmax (corrected for total body mass) in each 
LN region (N1, N2, N3) was measured using a 3D volume 
of interest (VOI) using the Visage 7.1 viewer. In addition, 
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based on the methodology of Toney et al. [8], lung back-
ground SUVmean was calculated as the average SUVmean 
of circular 2D regions of interest (ROIs) placed in three 
subsequent images slices in the normal lung parenchyma 
contralateral to the primary tumor (Supplementary mate-
rial #2). Similarly, the mediastinal background SUVmean 
was determined using 2D ROIs in three subsequent image 
slices in the right pulmonary artery (below the carina). As 
described by Toney et al. [8], SUV ratios were derived for 
each LN region. LN SUVmax was either divided by the 
lung background SUVmean (N1) or mediastinal back-
ground SUVmean (N2, N3). If a LN region was considered 
PET negative (uptake ≤ mediastinal background; i.e., visual 
score = 1), the background SUVmean was used instead of 
the aforementioned SUV ratio. Again, lung background 
SUVmean was used for the N1 region and the mediastinum 
background SUVmean for N2 and N3. In line with [8], LN 
SUVs were not corrected for partial volume effect.

Primary tumor SUVmax was measured with a 3D VOI 
using the Visage 7 software. In line with Toney et al. [8] and 
as previously reported by those authors [17], partial volume 
correction was performed here (Supplementary material #2).

CT assessment

LN short axis diameters and primary tumor diameter (larg-
est tumor diameter in transaxial plane in the lung window) 
were measured using contrast-enhanced CT data if avail-
able (obtained as part of the  [18F]FDG-PET/CT or within 
6 weeks of  [18F]FDG-PET/CT). In 66 patients (13%), only 
non-enhanced CT data were available. One LN short axis 
diameter was measured for the N1, N2, and N3 regions, 
respectively. In each region, the LN with the highest short 
axis diameter was taken as decisive, irrespective of its  [18F]
FDG accumulation.

Clinical and pathological data

Clinical and pathological data were collected retrospectively 
from the hospital information system and tumor documen-
tation system. This included demographic data (age, sex), 
tumor characteristics (affected side and lobe, central vs. 
peripheral growth, c/pT stage), histological data (NSCLC 
subtype, grade of differentiation), smoking behavior (never 
vs. former vs. current, pack years), work-related exposure 
to inhalable toxins, acute inflammatory pulmonary dis-
ease (e.g., pneumonia), structural pulmonary disease (e.g., 
emphysema or fibrosis), and use of immunosuppressive 
medication or presence of immunosuppressive disease.

A full list of features from  [18F]FDG-PET/CT and clini-
cal/pathological data can be found in Supplementary mate-
rial #3. More detailed descriptions of each feature and its 

categories are provided in the Open Data repository zenodo 
(10.5281/zenodo.7094287).

Reference standard

The reference standard used to evaluate model performance 
was the final N stage determined by interdisciplinary con-
sensus as part of the tumor board decision. In 351 of the 
491 patients analyzed (71%), this was based on surgery 
with systematic hilar and mediastinal lymph node resec-
tion. The remaining 140 patients (29%) did not undergo 
surgery of the primary tumor. In these patients, N stage 
was either determined through LN biopsy (usually EBUS-
guided transbronchial needle biopsy with punch cylinders 
that enabled histological examination) in 122 patients (25%) 
or based on EBUS-TBNA of the N1 station (in 18 patients 
(4%) with extensive locoregional or metastatic disease where 
biopsy confirmation of unequivocal imaging results regard-
ing N2/3 LNs was deemed unnecessary). Patients without 
surgery were not excluded because the ideal machine learn-
ing model should be applicable to all patients with NSCLC 
who undergo  [18F]FDG-PET/CT prior to potentially curative 
treatment.

Machine learning

All scripts that were used for the following steps of fea-
ture preprocessing and machine learning are provided in the 
Open Data repository zenodo (10.5281/zenodo.7094287).

Feature preprocessing

Missing values were present in 6 of the 40 variables with a 
percentage of missing values between 0.4% (T stage) and 
21% (histological grade of differentiation). These missing 
values were imputed (details in Supplementary material #3). 
Categorical variables were subsequently one-hot encoded, 
resulting in a final list of 80 (dummy) variables (full list in 
Supplementary material #3).

Model training, testing, and validation

Five different machine learning methods were used for 
training with tenfold nested cross-validation: a random for-
est classifier (RF), support vector classifier (SVC), gradi-
ent boosting classifier (GBM), XGBoost classifier (XGB), 
and a multi-layer perceptron classifier (MLP). The train-
ing + test cohort was split into training and test sets using 
10 folds (“outer loop”). Within each training set (“inner 
loop”), an sklearn pipeline was created to integrate robust 
scaling, feature selection, and hyperparameter tuning (grid 
search) in 10 folds.
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In this pipeline, feature selection used one of the follow-
ing five methods (mutual information classifier, RF, linear 
SVC, GBM, and an AdaBoost classifier). The maximum 
number of variables to remain after feature selection was 
set at n = 30. To evaluate whether a lower number of features 
would yield similar model performance in the test folds, 
n = 25, n = 20, n = 15, n = 10, n = 5, and n = 1 features were 
also investigated. In total, this resulted in 5 * 7 = 35 different 
sets of selected features.

Details of the grid of hyperparameters searched for each 
model can be found in Supplementary material #3.

The aim of the training was maximizing the AUC in 
receiver operating characteristics (ROC) analysis for the 
binary classification into N0/1 vs. N2/3. The highest mean 
AUC of all 10 test folds was used to identify the best model. 
In addition, all trained models were fitted to the whole train-
ing + test dataset and validated using the validation cohort, 
which was set aside as a hold-out dataset.

Having identified the best combination of feature selec-
tion (GBM, n = 10 features) and estimator/classifier (GBM), 
it was investigated if random oversampling of the minority 
class (N2/3) would further improve the AUC by adjusting 
the imbalance in the dataset. The RandomOverSampler 
from the Imbalanced-Learn package for python was used 
for this task. The full hyperparameter space for the GBM 
was searched.

Alternative model design (Toney et al.)

Based on the publication of Toney et al. [8], a feed-forward 
multilayer ANN with three layers (input, hidden layer, out-
put) was constructed with the nnet package in R × 64 4.2.1 
(The R Project for Statistical Computing) and the follow-
ing parameters: maxit = 1000; size = 8; skip = True; soft-
max = False; decay = 0; rang = 0. Like the aforementioned 
models, the ANN was used for binary classification into 
N0/1 vs. N2/3. This was done to ensure that the model per-
formances in the current analysis could be compared (Toney 
et al. also reported results for N0 vs. N1 vs. N2 vs. N3).

Model training used the training + test cohort, which 
was randomly split into two equally sized sets, as described 
by Toney et al. [8]. One set was used for model training, 
the second for testing (AUC). This procedure of data split-
ting and model training was repeated 100 times to obtain a 
mean test AUC. For each of the 100 training sets, the model 
weights were also used to calculate a mean AUC for the 
hold-out validation set.

Validation cohort: retrospective smoothing of PET 
data

Both visual assessment and SUV measurements from PET 
images are potentially affected by image reconstruction. 

Robustness of the results from the visual assessment and the 
machine learning model regarding different image charac-
teristics was therefore investigated in the validation cohort. 
For this purpose, the originally reconstructed PET data were 
smoothed with an additional Gaussian filter [18], which 
resulted in a reconstructed spatial resolution similar to that 
of the training + test cohort scanner (details in Supplemen-
tary material #2). SUVmax of the primary tumor and the 
N1, N2, and N3 LN region were measured again—blinded 
to the results of the original measurements and to the ref-
erence standard. Furthermore, the visual PET score of the 
mediastinal LNs was obtained again. Background SUVmean 
were assumed to be equal to the original PET data [19] and 
therefore not re-analyzed. Using these values, validation of 
the final machine learning model was performed again to 
assess the impact of smoothing the PET data on model per-
formance in the validation cohort (model training and testing 
were not affected).

Statistical analysis

Data collection was performed with SPSS 28 (IBM, 
Armonk, NY, USA). Non-parametric data distribution was 
assumed, based on the Shapiro–Wilk test, and median val-
ues with interquartile range (IQR) and range were used for 
descriptive analysis. Patient characteristics were compared 
between the two cohorts with the two-sided Fisher’s exact 
test or Wilcoxon rank-sum test. Model performance was 
evaluated with AUCs and corresponding 95% confidence 
intervals (95% CI) from ROC analysis in SPSS.

To calculate the AUC ± SD of the final model, the pre-
dicted probabilities for all patients in the training + test 
cohort were calculated from the 10 test folds during cross-
validation (cross_val_predict function from sklearn). Pre-
dicted probabilities for the validation cohort were calculated 
after refitting the final model to the entire training + test 
cohort.

Likewise, the AUC ± SD of the ANN by Toney et al. was 
derived from the predicted probabilities. However, in line 
with Toney et al. who originally proposed a 1:1 split of train-
ing and test data with 100 repeats, predicted probabilities 
for the training + test cohort were the mean probabilities of 
these 100 repeats. Validation AUC ± SD was again obtained 
from the refitted model.

The method by DeLong et  al. [20] was used for the 
pairwise comparison of these model AUCs and the visual 
PET score (MedCalc version 15.8, MedCalc Software Ltd, 
Ostend, Belgium). AUC was chosen as the primary param-
eter to evaluate model performance to avoid bias from imbal-
anced data arising from the fact that cases with N2/3 were 
less frequent than N0/1 cases. Diagnostic accuracy was com-
pared using McNemar’s test in SPSS.
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In the validation cohort, SUVmax of original and 
smoothed PET data were compared with the Wilcoxon 
signed-rank test. Visual PET scores were compared with 
the McNemar-Bowker test. AUCs were compared using 
the method by DeLong et al. Statistical significance was 
assumed at α = 0.05.

Results

Reference standard

In the training + test cohort, 141 of 385 patients (37%) were 
N2/3. This was slightly lower than the percentage of patients 

with N2/3 (46%) in the validation cohort (Fisher’s exact test, 
p = 0.09). Other patient characteristics are shown in Table 1.

Diagnostic performance: machine learning models

A GBM showed the highest mean test AUC at 0.91 (95% CI, 
0.87 to 0.94; Table 2) and the highest validation AUC at 0.94 
(0.89 to 0.98; Table 3). It contained n = 10 features (Table 4), 
which were identified during feature selection with a preced-
ing GBM. Increasing the number of features did not further 
improve the AUC (Fig. 1). Other models achieved a similar 
test AUC but required a higher feature count and were there-
fore rejected (Supplementary material #4).

Table 1  Patient characteristics

Results are given as count (%) or median (IQR), respectively. P-values are either from two-sided Fisher’s 
exact test or Wilcoxon rank-sum test. Significant results (i.e., p < 0.05) are highlighted in bold
ADC adenocarcinoma, SCC squamous cell carcinoma, NOS not otherwise specified, LNs, lymph nodes

Parameter Total Training + test Validation p-value

Patient count 491 385 106 –-
Age (years) 68 (60–75) 68 (60–75) 68 (60–75) 0.85
Sex: male 300 (61) 247 (64) 53 (50) 0.01
T stage 0.55
  T1 165 (34) 133 (35) 32 (30)
  T2 166 (34) 125 (32) 41 (39)
  T3 97 (20) 79 (21) 18 (17)
  T4 63 (13) 48 (10) 15 (14)

N stage 0.19
  N0 248 (51) 200 (52) 48 (45)
  N1 53 (11) 44 (11) 9 (8)
  N2 129 (26) 99 (26) 30 (28)
  N3 61 (12) 42 (9) 19 (18)
  N2/3 190 (39) 141 (37) 49 (46) 0.09

Type of reference standard 0.11
  Surgery 351 (71) 283 (74) 68 (64)
  EBUS-TBNA including N2/3 LNs 122 (25) 90 (23) 32 (30)
  EBUS-TBNA of N1 LNs + une-

quivocal imaging
18 (4) 12 (3) 6 (6)

Primary tumor size (mm) 32 (21–51) 34 (22–52) 30 (20–46) 0.088
Primary tumor SUVmax 12.2 (7.7–17.1) 12.1 (7.5–17.3) 12.8 (8.3–16.6) 0.42
NSCLC subtype 0.19
  ADC 281 (57) 217 (56) 64 (60)
  SCC 165 (34) 136 (35) 29 (27)
  Others/NOS 45 (9) 32 (8) 13 (12)

Smoking behavior 0.88
  Never 43 (9) 35 (9) 8 (8)
  Former 223 (45) 173 (44) 50 (47)
  Current 225 (46) 177 (46) 48 (45)

Acute inflammatory lung disease 1.0
  Absent 467 (95) 366 (95) 101 (95)
  Present 24 (5) 19 (5) 5 (5)
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The mean test AUC of 0.91 for the GBM was compa-
rable to that of the ANN by Toney et al. which achieved a 
test AUC of 0.9 (DeLong test, p = 0.45). In the validation 
cohort, the AUC of the GBM was significantly higher 
than that of the ANN (0.94 vs. 0.78; p < 0.0001).

Random oversampling of the N2/3 class did not 
improve the model performance of the GBM compared 
to the original dataset (test AUC, 0.9 (0.87–0.94); valida-
tion AUC, 0.91 (0.85–0.98)).

Diagnostic performance: standardized visual 
assessment

To assess the added value of machine learning, a comparison 
was made with standardized visual assessment using estab-
lished diagnostic criteria (Tables 2 and 3). The most com-
mon criterion for PET-positive LNs is uptake higher than the 
mediastinal background (i.e., a visual score ≥ 2 in the current 
analysis). A reader could rely on the mediastinal LNs alone 

Table 2  Diagnostic 
performance of different models 
in the training + test cohort

Results in parentheses are 95% confidence intervals. PET score ≥ 2 indicates that uptake by the LN is 
higher than the mediastinal background. LN size was the short axis diameter

Model Test AUC Sensitivity Specificity Accuracy

Machine learning
Final model: GBM 0.91 (0.87–0.94) –- –- –-
  Probability > 0.5 –- 0.73 (0.65–0.8) 0.95 (0.91–0.97) 0.87 (0.83–0.9)
  Probability > 0.19 –- 0.9 (0.84–0.94) 0.7 (0.64–0.76) 0.78 (0.73–0.82)

ANN (Toney et al.) 0.9 (0.86–0.93) –- –- –-
  Probability > 0.5 –- 0.73 (0.65–0.8) 0.94 (0.91–0.97) 0.86 (0.83–0.9)
  Probability > 0.12 –- 0.9 (0.84–0.94) 0.7 (0.63–0.75) 0.77 (0.73–0.81)

Visual assessment (only mediastinal LNs decisive)
Visual PET score 0.87 (0.83–0.91) –- –- –-
 ≥ 2 –- 0.89 (0.82–0.93) 0.59 (0.53–0.65) 0.7 (0.65–0.74)
PET score ≥ 2 and/or 

LN size > 10 mm
–- 0.92 (0.86–0.96) 0.53 (0.47–0.6) 0.68 (0.63–0.72)

Table 3  Diagnostic performance of different models in the validation cohort

Results in parentheses are 95% confidence intervals. PET score ≥2 means that uptake by the LN is higher than the mediastinal background. LN 
size was the short axis diameter. Results from the retrospectively smoothed PET data (lower segment of the table) were similar to those obtained 
from the original PET data.

Model Validation AUC Sensitivity Specificity Accuracy

Machine learning
Final model: GBM 0.94 (0.89-0.98) --- --- ---
  probability >0.5 --- 0.88 (0.75-0.95) 0.91 (0.81-0.97) 0.9 (0.82-0.95)
  probability >0.19 --- 0.92 (0.8-0.98) 0.82 (0.7-0.91) 0.87 (0.79-0.93)

ANN (Toney et al.) 0.78 (0.68-0.87) --- --- ---
  probability >0.5 --- 0.67 (0.52-0.8) 0.88 (0.76-0.95) 0.78 (0.69-0.86)
  probability >0.12 --- 0.67 (0.52-0.8) 0.88 (0.76-0.95) 0.78 (0.69-0.86)

Visual assessment (only mediastinal LNs decisive)
Visual PET score 0.91 (0.85-0.97) --- --- ---
    ≥2 --- 0.96 (0.86-1.0) 0.58 (0.44-0.71) 0.75 (0.66-0.83)
PET score ≥2 and/ or LN size >10 mm --- 0.96 (0.86-1.0) 0.58 (0.44-0.71) 0.75 (0.66-0.83)
Smoothed PET data
Final model: GBM 0.94 (0.89-0.99) --- --- ---
    probability >0.19 --- 0.9 (0.78-0.97) 0.84 (0.72-0.93) 0.87 (0.79-0.93)
PET score ≥2 and/ or LN size >10 mm --- 0.96 (0.86-1.0) 0.61 (0.48-0.74) 0.77 (0.68-0.85)
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(given that where only contralateral hilar LNs are suspicious, 
this is most likely to be a false positive) or contralateral hilar 
LNs could be taken as decisive as well. The latter approach 
would have been less specific (Supplementary material #4).

The GBM model showed significantly higher AUC than 
the visual PET score in the training + test cohort (0.91 vs. 
0.87; p = 0.003) and slightly higher AUC in the validation 
cohort (0.94 vs. 0.91; p = 0.23).

At a clinically useful sensitivity of approx. 90%, the 
accuracy of the GBM was significantly higher than that of 
a visual PET score ≥ 2 or a combined PET/CT approach 
(PET score ≥ 2 and/or LN size > 10 mm) in the training + test 
cohort and the validation cohort (McNemar’s test, each 

p < 0.05). Figure 2 shows a case example, and Supplemen-
tary material #4 contains three more cases with discordant 
results of visual assessment vs. the GBM.

Diagnostic performance: harmonized (smoothed) 
PET data

In the validation cohort, LN SUVmax (without background 
correction) in the smoothed PET data were significantly 
lower than with the original PET data by a median of 
approx. 23% (N1: median, − 22% (IQR, − 29 to − 16%); N2: 
23% (− 30 to − 18%); N3: − 23% (− 28 to − 18%); Wilcoxon 
signed-rank test, each p < 0.001). Scatterplots are shown in 
Supplementary material #4, Figure S4.8. Visual PET scores 
of the mediastinal LNs were lower in 12 of 106 patients 
(11%; Supplementary material #4, Table S4.9) and were 
unchanged in the remaining 94 patients (McNemar-Bowker 
test, p = 0.022).

Using these results, predicted probabilities of the GBM in 
the validation cohort were significantly lower with a small 
median absolute difference of − 0.0015 (IQR, − 0.03 to 0.0; 
Wilcoxon signed-rank test, p < 0.001; Supplementary mate-
rial #4, Figure S4.10). However, the AUC of the GBM in 
the validation cohort (AUC, 0.94; 95% confidence inter-
val, 0.89–0.99) remained unchanged compared to the AUC 
from the original PET data (0.94 (0.89–0.98); DeLong test, 
p = 0.96; Table 3). Compared to the original data, two of 106 
patients (2%) were classified discordantly by the GBM when 
applying the threshold > 0.19 (McNemar’s test, p = 0.5). 
Of these two patients, one patient with pN0 was classified 
correctly based on the smoothed PET data (true negative), 
while one patient with pN2 was classified incorrectly (false 
negative).

Illustrative case examples of the original vs. smoothed 
PET data are shown in the case examples in the Supplemen-
tary material #4.

Web application

An openly accessible web application was programmed and 
published at GitHub (https:// baumg agl. github. io/ PET_ LN_ 
calcu lator/). It takes user input of 10 features to calculate 
the predicted probability of N2/3 disease based on the final 
GBM model.

Discussion

This analysis shows that machine learning can improve diag-
nostic accuracy in pretherapeutic LN staging of patients with 
NSCLC. Our GBM model was superior to LN uptake above 
the mediastinum (i.e., a visual PET score ≥ 2), which is the 
most common and validated diagnostic threshold in visual 

Table 4  List of the 10 features in the final GBM model

These variables were selected through tenfold nested cross-validation 
(= 100 folds in total) using a separate GBM for the feature selection 
step. Frequency was calculated as the sum of all folds in which the 
variable ranked among the top 10 most important features. Hence, 
this frequency reflects relative feature importance (optimum: 100)

Feature (or dummy variable) Frequency (%)

N1 LN SUVmax (non-corrected) 100
N2 LN SUVmax (non-corrected) 100
Toney et al.: N1 LN short axis diameter (mm) 100
Toney et al.: N2 LN short axis diameter (mm) 98
Visual PET score (mediastinal LNs) = 4: yes vs. no 95
Age (years) 90
Toney et al.: Primary tumor diameter (mm) 88
Toney et al.: N1 LN SUVmax (background-cor-

rected)
71

Toney et al.: N2 LN SUVmax (background-cor-
rected)

68

Toney et al.: N3 LN SUVmax (background-cor-
rected)

66

Fig. 1  Relationship between feature count and test AUC. Mean test 
AUC of the GBM among all the 10 test folds is displayed with its 
standard deviation highlighted in gray

https://baumgagl.github.io/PET_LN_calculator/
https://baumgagl.github.io/PET_LN_calculator/
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 [18F]FDG-PET/CT assessment [2]. An important clinical 
goal is to achieve a sensitivity of 0.9. In its 2014 guidelines 
for preoperative LN staging in NSCLC, the European Soci-
ety of Thoracic Surgeons (ESTS) states that—while aim-
ing for optimal accuracy—a 10% rate of unforeseen pN2 
could be considered acceptable, given that preoperatively 
undetected pN2 is usually single-level and resectable. [21]. 
At this sensitivity level, the GBM was more accurate than 
visual PET or PET/CT assessment based on the mediastinum 
threshold.

An expert might have achieved higher specificity than 
such rigid criteria by recognizing conditions or patterns of 
false positive imaging findings (e.g., multiple LNs with sym-
metrically increased FDG uptake). However, this formalized 
approach was chosen to ensure transparency and reproduc-
ibility of the diagnostic criteria and threshold. This visual 
PET score has proven to be of high diagnostic accuracy on 
the level of individual LN stations [16, 22, 23]. Moreover, 
in a previous study, inter-reader agreement in assigning the 
standardized visual PET score was high with kappa > 0.9 
between unexperienced and experienced readers [16]. Appli-
cation of the full machine learning model might also be pos-
sible with the sufficient inter-reader agreement—although 
this requires confirmation.

It may be noted that the visual PET score is subject to 
inter-scanner differences. PET scanners or image reconstruc-
tion algorithms with better reconstructed spatial resolution 
will tend to show more intense focal uptake of LNs and 
therefore a potentially higher visual PET score. Likewise, 

and probably to a larger extent, SUVmax are higher if the 
reconstructed spatial resolution is better [24, 25]. In the 
current analysis, we retrospectively smoothed the PET data 
from the validation cohort scanner to simulate how SUVmax 
and visual PET scores would have been if the reconstructed 
spatial resolution in the validation cohort had been similar to 
that of the training + test cohort scanner. It has been shown 
before that this approach effectively harmonizes SUVmax 
between scanners [25] and facilitates the application of prog-
nostic SUVmax thresholds in multicentre settings [26]. In 
the present analysis, smoothing the PET data significantly 
decreased LN SUVmax and visual PET scores. However, 
although this decreased predicted probabilities of the GBM 
on average, this did not affect the performance of the model 
at the threshold of > 0.19. This suggests that its performance 
is relatively robust against different PET image character-
istics. This observation may be explained by the variety of 
features that are part of the model, four of which are not 
affected by visual or SUV analysis of the PET images.

Among the ten features in the final GBM (Table 4), LN 
SUVmax and short axis diameters as well as the visual PET 
score are best supported by previous studies [2, 16, 22]. 
Background-corrected LN SUVmax could provide added 
value because they may decrease inter-patient SUV variabil-
ity and accentuate SUV differences between visually unre-
markable LNs and those with increased  [18F]FDG uptake. 
The uptake (SUVmax) of N1 LNs seems to be important to 
increase diagnostic sensitivity for N2/3 disease because all 
true positive cases with the GBM that were false negative by 

Fig. 2  Case example #1. 
Fifty-four-year-old woman 
from the training + test cohort 
with a G2 adenocarcinoma of 
the right upper lobe (44 mm). 
Several hilar and mediastinal 
lymph nodes (LN) showed 
higher  [18F]FDG uptake than 
the normal liver (= PET score 
of 3).The blue arrow depicts an 
N2 paratracheal LN with 7 mm 
short axis and SUVmax of 3.5. 
Based on visual assessment, 
N2 disease would be suspected 
in this case. According to the 
GBM model, probability of 
N2/3 is only 0.17 (= negative). 
The patient was confirmed to 
be N0 by ultrasound-guided 
transbronchial needle biopsy of 
the ipsilateral hilar, paratracheal 
and subcarinal LNs
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visual assessment showed high N1 LN uptake (visual PET 
score = 4). The association between primary tumor size and 
the risk of undetected N2/3 disease has been demonstrated 
before [27]. Our observation that the probability of N2/3 
decreases with higher age is in line with an analysis of the 
Surveillance, Epidemiology, and End Results (SEER) data-
base [28].

The model developed here is intended for use in routine 
clinical care to estimate the probability of N2/3 disease 
based on  [18F]FDG-PET/CT findings and to form a basis 
for interdisciplinary decisions on the need for further inva-
sive diagnostic procedures. If a target sensitivity of 90% is 
deemed adequate, patients with a model-based predicted 
probability of ≤ 0.19 would not require pretherapeutic inva-
sive staging. To facilitate the usage of the model, a user-
friendly online tool can be accessed (https:// baumg agl. 
github. io/ PET_ LN_ calcu lator/).

Performance levels did not greatly differ between multiple 
feature selection methods and different models, and only 
a limited number of features n < 10 considerably affected 
model AUC (Supplementary material #4, Table S4.3). This 
is due to the exceptionally high feature importance of the top 
10 variables (Table 4). Other parameters that were included 
with the aim of increasing specificity, such as smoking 
behavior, structural pulmonary disease, or acute inflamma-
tory lung disease, did not contribute to model performance.

Performance of the GBM and the visual PET criteria 
were slightly better in the validation cohort than in the train-
ing + test cohort. Diagnostic sensitivity is potentially higher 
with the newer PET/CT scanner and image reconstruction 
algorithm used in the validation cohort, especially in smaller 
lesions [29].

Among previous reports on the use of machine learning 
models for LN staging in NSCLC, only the methodology 
set out by Toney et al. [8] can be reproduced in a different 
cohort with relative ease, as all the variables are routinely 
obtainable. Minor deviations in the current methodology 
compared to the authors’ original publication should be 
noted. Toney et al. determined the highest short axis LN 
diameter for each region from the “hottest” LN in PET 
whereas, in the current analysis, the highest short axis LN 
diameter was determined independently from the  [18F]FDG 
uptake. To accelerate measurements, we measured only one 
transaxial primary tumor diameter instead of taking the aver-
age of all three lesion diameters. Furthermore, Toney et al. 
measured the mediastinum SUVmean “a few mm below the 
carina.” As this localization is prone to high interindividual 
differences in tissue composition (blood pool vs. pericardial 
fat tissue vs. subcarinal LN tissue), we decided to determine 
this SUVmean uniformly from the blood pool in the right 
pulmonary artery.

In both cohorts studied here, the ANN by Toney et al. 
was inferior to the GBM and to the results in their original 

publication [8]. Notably, the originally reported accuracy of 
99.2% in 133 patients was exceptionally high considering 
that in sufficiently large cohorts, accuracy of  [18F]FDG-PET/
CT for LN staging in NSCLC rarely exceeds 90% [2]. Possi-
ble explanations for these deviating results are the lack of an 
external/independent validation cohort in the original publi-
cation and the fact that the model was first developed based 
on stand-alone  [18F]FDG-PET images with image recon-
struction using transmission scan-based attenuation correc-
tion and filtered back projection. SUV from such image data 
are not comparable with current scanners.

Although the results analyzed here came from two very 
different PET/CT scanners, all patients were examined and 
treated at the same hospital. The use of two types of scanner 
will have served to increase the generalizability of the image 
features that were part of the final model. This is underlined 
by the observation that the performance of the GBM in the 
validation cohort was unaffected by smoothing that was ret-
rospectively applied to the PET data. The fact that histologi-
cal proof of the N2/3 status was not available in all patients 
should have prevented selection bias from thr exclusion of 
patients with advanced disease. External validation of our 
findings is pending. It could also be worth investigating the 
SUVpeak as an alternative to the SUVmax, given that the 
SUVpeak is more comparable between different reconstruc-
tion algorithms [30], and its test–retest repeatability is better 
[31].

Conclusion

The machine learning model that was developed in this 
work improved accuracy in pretherapeutic mediastinal LN 
staging for NSCLC compared to established visual  [18F]
FDG-PET/CT assessment criteria. It is based on routinely 
available variables, the majority of which are already part 
of  [18F]FDG-PET/CT reporting in routine clinical care. To 
facilitate its use, a web application implementing this model 
was made available. The observation of a high AUC in the 
validation cohort and that smoothing of PET images in the 
validation cohort did not diminish the performance of the 
model suggests that it could provide good generalizability to 
other PET scanners. However, external validation and proof 
of its validity in an interventional trial are pending.
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