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Abstract
Pharmacokinetic modelling with arterial sampling is the gold standard for analysing dynamic PET data of the brain. How-
ever, the invasive character of arterial sampling prevents its widespread clinical application. Several methods have been 
developed to avoid arterial sampling, in particular reference region methods. Unfortunately, for some tracers or diseases, no 
suitable reference region can be defined. For these cases, other potentially non-invasive approaches have been proposed: (1) 
a population based input function (PBIF), (2) an image derived input function (IDIF), or (3) simultaneous estimation of the 
input function (SIME). This systematic review aims to assess the correspondence of these non-invasive methods with the 
gold standard. Studies comparing non-invasive pharmacokinetic modelling methods with the current gold standard methods 
using an input function derived from arterial blood samples were retrieved from PubMed/MEDLINE (until December 2021). 
Correlation measurements were extracted from the studies. The search yielded 30 studies that correlated outcome parameters 
(VT, DVR, or BPND for reversible tracers; Ki or CMRglu for irreversible tracers) from a potentially non-invasive method 
with those obtained from modelling using an arterial input function. Some studies provided similar results for PBIF, IDIF, 
and SIME-based methods as for modelling with an arterial input function (R2 = 0.59–1.00, R2 = 0.71–1.00, R2 = 0.56–0.96, 
respectively), if the non-invasive input curve was calibrated with arterial blood samples. Even when the non-invasive input 
curve was calibrated with venous blood samples or when no calibration was applied, moderate to good correlations were 
reported, especially for the IDIF and SIME (R2 = 0.71–1.00 and R2 = 0.36–0.96, respectively). Overall, this systematic review 
illustrates that non-invasive methods to generate an input function are still in their infancy. Yet, IDIF and SIME performed 
well, not only with arterial blood calibration, but also with venous or no blood calibration, especially for some tracers with-
out plasma metabolites, which would potentially make these methods better suited for clinical application. However, these 
methods should still be properly validated for each individual tracer and application before implementation.

Keywords  Positron emission tomography · Arterial input function · Image derived input function · Population-based input 
function · Simultaneous estimation of the input function
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ICA	� Independent component analysis
ICC	� Intraclass correlation coefficient
IDIF	� Image derived input function
Ki	� Net influx rate
LEGA	� Likelihood estimation in graphical 

analysis
MRI	� Magnetic resonance imaging
pAIF	� Predicted arterial input function
pAUC​	� Predicted area under the curve
PBIF	� Population-based input function
PET	� Positron emission tomography
PRISMA-DTA	� Preferred reporting items for a sys-

tematic review and meta-analysis for 
diagnostic test accuracy

PVC	� Partial volume correction
PWC	� Pairwise correlation
QUADAS-2 tool	� Quality Assessment of Diagnostic 

Accuracy Studies-2 tool
ROI	� Region of interest
SIME	� Simultaneous estimation of the input 

function
SUV	� Standardized uptake value
TAC​	� Time activity curve
TRV	� Test-rest variability
VT	� Volume of distribution
WM	� White matter

Introduction

PET quantification with kinetic modelling is considered to 
be the best approach for quantitatively assessing tracer bind-
ing, being able to capture the early changes in biomarkers 
at disease onset, and during disease progression and treat-
ment. The main parameters generated by kinetic modelling 
of PET data are net rate of influx (Ki), volume of distribu-
tion (VT) and/or binding potential (BPND). To measure these 
parameters, compartmental modelling with an arterial input 
function (AIF) is considered to be the gold standard, but 
graphical methods (e.g. Patlak [1] and Logan [2] graphical 
analyses) and basis function methods (e.g. spectral analy-
sis [3]) in combination with an AIF are also commonly 
used methods for PET quantification. However, all these 
approaches are quite labour intensive and invasive [4, 5], as 
arterial blood sampling and metabolite analysis are required 
to obtain an AIF.

In some cases, obtaining an AIF might be difficult from 
a practical point of view. For example, in a total body PET 
scanner, the long line from the wrist to the site of sampling 
might cause excessive dispersion and delay effects and 
increase the risk of blood clotting. To circumvent arterial 
sampling, alternative methods for estimating Ki, VT and 
BPND without the need for an AIF have been developed, such 

as kinetic modelling methods using a reference tissue [6]. 
However, a reference region may not always be available, or 
assumptions underlying reference tissue models may not but 
valid, for example, when the blood–brain barrier (BBB) is 
locally disrupted by the disease.

Several alternative approaches to generate an input func-
tion have been proposed: i.e. the use of a population based 
(PBIF) [7],  image derived (IDIF) [8] input function, and 
simultaneous estimation of the input function (SIME) [9]. 
These approaches are based on the non-invasive generation 
of an arterial input function rather than the identification of 
a reference region. The PBIF is based on a population based 
average of the AIF, while an IDIF is estimated from a region 
of interest (ROI) containing a vascular structure. SIME 
estimates the input function by extracting blood parameters 
from fitting time-activity curves (TACs) of multiple brain 
ROIs simultaneously.

The purpose of the present study was to provide an over-
view of published non-invasive alternatives to generate an 
input function and to assess their correlation and bias as 
compared with an (invasive) AIF. For simplicity purposes, 
the pharmacokinetic models applied are referred to as 1T2k 
for the reversible one-tissue compartment model and 2T3k 
and 2T4k for the irreversible and reversible two-tissue com-
partment models, respectively.

Methods

Search and selection procedure

Literature was screened according to the preferred report-
ing items for a systematic review and the meta-analysis for 
diagnostic test accuracy (PRISMA-DTA) statement using 
PubMed [10]. All relevant articles using either PBIF, IDIF 
or SIME for the analysis of human brain PET data until 
December 2021 were included without any language restric-
tions. The search string used is shown in the Supplementary 
information. Retrieved studies were assessed by two authors. 
Studies using a non-invasively generated input function for 
analysing cerebral PET data were only included if resulting 
kinetic parameters were compared with those obtained using 
an AIF. Studies that contained only in vitro, animal, phan-
tom or simulated data and studies that lacked quantitative 
outcome parameters were excluded. The publication bias 
assessment can be found in the supplementary information.

Assessment of the non‑invasive kinetic modelling 
approaches

Literature was thoroughly assessed for the kind of methodol-
ogy used (Supplementary information, Tables 1-3). The pri-
mary focus was on differences in the generation of the input 
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functions. The correspondence of the alternative (non-inva-
sive) input function was compared with the AIF generated 
after i.v. tracer injection by comparing the kinetic param-
eters (e.g. Ki, VT or BPND) obtained from compartment 
modelling (i.e. 1T2k, 2T3k, 2T4k), linearization methods 
(e.g. Logan, Patlak) or basis function methods (e.g. spectral 
analysis). All studies correlating non-invasive kinetic mod-
elling approaches with AIF-based kinetic modelling used 
either R or R2 values to describe the correspondence. For 
standardization purposes, R values were converted to R2. 
Bias was evaluated by assessing the slope and intercept of 
the correlation plot.

Results of literature search

Screening of the literature resulted in 3107 unique articles 
(Fig. 1) of which 30 were actually included. One study [11] 
assessed both PBIF and SIME. Of the 30 studies, 8 assessed 
PBIF [7, 11–17], 14 IDIF [8, 18–30] and 9 SIME (Supple-
mentary information, Table 4) [11, 31–40].

Blood calibrations and metabolite 
corrections

The concentration of intact tracer in arterial plasma rep-
resents the true input function for kinetic modelling of 
PET data, provided that labelled metabolites do not cross 
the BBB. Traditionally, the arterial whole blood curve is 
acquired using either manual sampling or an automated 
online sampling device (sampler). When a sampler is used, 
some additional manual arterial blood samples are needed 
to determine the blood/plasma ratio. Using this ratio, the 
whole blood curve can be converted into an arterial plasma 
curve, which represents the total radioactivity concentration 
in plasma. If the plasma/blood ratio is stable over time, the 
average ratio from the manual samples can be used. Other-
wise, the time course of the plasma/blood ratio can be fitted 
to a mathematical equation. Multiplying the whole blood 
curve with this equation provides the total plasma curve. 
Most PET tracers produce radioactive metabolites. Ideally, 
these metabolites do not cross the BBB, and, therefore, only 
the intact parent tracer should be considered the input func-
tion for modelling. In other words, the total plasma curve 

Fig. 1   Literature assessment 
strategy employed
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needs to be corrected for the presence of labelled metabo-
lites. In practice, the manual samples mentioned above are 
also used to estimate the fraction of intact tracer in plasma 
over time, which again can be fitted to a mathematical equa-
tion. Multiplying the total plasma curve with this equation 
results in the metabolite corrected plasma curve that can be 
used as AIF. While the AIF is used to determine the bio-
logical response function, a whole blood curve is used to 
calculate the contribution of the blood compartment to the 
PET signal.

Non-invasive methods to estimate the AIF from a whole 
blood curve also require corrections for plasma/blood ratios 
and/or corrections for the presence of radio-labelled metabo-
lites. This illustrates the main problem of non-invasive meth-
ods, as these corrections still require data from blood. As 
an alternative for arterial blood samples, both venous and 
arterialized venous blood samples have been proposed, in 
addition to using population based average data. Arterialized 
venous blood can be obtained by heating the extremity of 
the patient, resulting in venous blood being more similar to 
arterial blood [41–43]. Blood samples are generally obtained 
more than 10 min after tracer injection, when differences 
between arterial and venous blood should be small.

Population‑based input function

For PBIF-based quantification methods, blood data from a 
representative set of subjects (population) are used to cre-
ate an AIF, which in turn is used for kinetic modelling of 
PET data from an individual subject. Whole blood, plasma 
or metabolite corrected plasma TACs of multiple subjects 
can be used to generate a PBIF. The generation of a PBIF 
generally starts with shifting individual curves to align their 
peaks. These curves are then calibrated using, for example, 
injected dose, body surface area, body weight or lean body 
mass. Subsequently, the resulting curves are averaged pro-
viding a mean population based AIF, i.e. the PBIF. Finally, 
for each new individual subject, this PBIF is then calibrated 
using the same parameter(s) as mentioned above to obtain 
a normalised PBIF for that subject. In most studies, one or 
more manual blood samples are also used in the calibration 
process.

Correspondence of population based input function 
methods with the gold standard

[18F]FDG

The first article comparing PBIF and AIF based methods 
was published by Takikawa et al. in 1993 (Table 1 and 
Supplementary information Table 1) [7]. In this [18F]FDG 
study (n = 34), a good correlation (R2 = 0.98, slope = 0.99) 

was found between CMRglu estimated using an AIF and a 
PBIF with arterial blood calibration. A PBIF with arterial 
blood calibration was also used to evaluate [18F]FDG data 
in a study by Roccia et al. [11]. However, in this study on 
patients with Alzheimer’s disease (AD) and mild cognitive 
impairment (MCI), only a moderate correlation was found 
(R2 = 0.59, n = 49). Differences were observed in the num-
ber of arterial blood calibration samples. However, the main 
explanation for the discrepancy between studies might be the 
used validation method. Unfortunately, Roccia et al. did not 
report their validation strategy, while Takikawa et al. based 
their PBIF on 10 subjects and used 24 subjects to validate 
it. In addition, Roccia et al. also did not report the slope or 
intercept of the correlation plot, whereas Takikawa reported 
a slope of 0.99, indicating that modelling of [18F]FDG data 
with a PBIF using arterial blood samples for calibration can 
be performed with low bias. However, given the low number 
of studies, further validation studies are required.

Neuroinflammation tracers

The use of a PBIF has also been investigated for kinetic 
modelling of several neuroinflammation tracers that bind 
to the 18 kD translocator protein (TSPO; Table 1 and Sup-
plementary information Table 1). Lavisse et al. (2015) ana-
lysed the use of a PBIF with arterial blood calibration and 
metabolite correction for quantification of [18F]DPA714 
in 10 healthy controls (HC) and found a good correlation 
(R2 = 0.92) with the outcome parameters obtained using an 
AIF. Interestingly, they found only a moderate correlation 
(R2 = 0.45) when a PBIF with venous blood calibration and 
metabolite correction was used [14]. Potential reasons for 
this difference are unknown. Lavisse et al. did not report the 
individual metabolite fractions in arterial and venous sam-
ples. McGinnity et al. (2018) found that kinetic modelling 
of [18F]GE179 with a PBIF in 9 epilepsy patients and 11 HC 
correlated well with the AIF-based approach (R2 = 0.81) and 
showed little bias (slope = 1.02, intercept =  − 0.20), if the 
PBIF was calibrated and metabolite corrected with arterial 
blood samples [13]. Mabrouk (2017) assessed the use of a 
PBIF with arterial blood calibration and metabolite correc-
tion for the quantification of [18F]FEPPA in 39 HC, 18 AD 
and 16 Parkinson’s disease (PD) patients and showed good 
correlations (R2 = 0.98) between the VT obtained using an 
AIF and the PBIF [15].

Other tracers

Rissanen et al. (2015) investigated whether a PBIF with or 
without arterial blood calibration and metabolite correc-
tion could be used as input function for kinetic modelling 
of [11C]TMSX data of 7 HC, 12 multiple sclerosis (MS) 
patients, and 9 PD patients [16]. Quantification using the 
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calibrated and metabolite corrected PBIF showed high cor-
relation (R2 = 0.94) as compared with AIF-based quantifica-
tion, but the non-calibrated PBIF did not (R2 = 0.58). Further-
more, Zanotti-Fregonara et al. (2013) found a high correlation 
(R2 = 0.88) when quantifying [18F]FMPEP-d2 data of 42 HC 
using a PBIF calibrated and metabolite corrected with arte-
rial blood samples as compared with quantification using an 
AIF [17]. Finally, Takikawa et al. (1994) investigated the use 
of a PBIF calibrated and metabolite corrected with an arte-
rial blood sample as input function for kinetic modelling of 
[18F]FDOPA data of 12 HC and 12 PD patients and found an 
excellent correlation (R2 = 0.98) with AIF derived results [12].

Concluding remarks on the use of a PBIF

In general, use of arterial samples for PBIF calibration and 
metabolite correction leads to more accurate measurements 
of kinetic parameters than use of venous samples or use of 
a PBIF without blood correction at all, although compara-
tive studies are scarce. Discrepancies between individuals 
in tracer clearance, tracer extraction, blood velocity and 
metabolism are among the main aspects hampering proper 
implementation of a PBIF without blood calibration and 
metabolite correction, and therefore at least 1 blood sample 
to calibrate the plasma curve and correct for metabolites is 
still required. This blood sample is preferably drawn after 
peak activity has passed and the blood radioactivity con-
centration has become more stable, which is often later than 
30 min after tracer injection. In addition, the PBIF could be 
affected by disease or intervention, and therefore a specific 
PBIF should be generated for each condition, unless it has 
been proven that the PBIF is not affected.

Image‑derived input function

An IDIF is an input function, which can be generated 
by placing an ROI over a suitable vascular structure 
in the PET scan. In case of brain PET studies, usually 
the carotid arteries are used. These are visible in early 
timeframes immediately after tracer injection, when the 
radiotracer is still restricted to the blood pool. Another 
method to delineate the blood pool is the use of magnetic 
resonance imaging (MRI) or CT angiography to deline-
ate the blood vessels and transfer these ROIs to the PET 
scan of the same individual. There are also statistical 
approaches to extract blood data from the PET images, 
like independent component analysis [29]. This approach 
is based on the fact that blood TACs have a completely 
different shape than tissue TACs, regardless of the under-
lying kinetic properties of the tracer. After delineation 
of the blood pool via any of these methods, a time activ-
ity curve is created representing the whole blood signal Ta

bl
e 

1  
C

or
re

sp
on

de
nc

e 
of

 th
e 

re
su

lts
 o

f v
ar

io
us

 P
B

IF
 a

pp
ro

ac
he

s w
ith

 th
os

e 
de

riv
ed

 fr
om

 A
IF

-b
as

ed
 p

ha
rm

ac
ok

in
et

ic
 m

od
el

lin
g

A
IF

 =
 ar

te
ria

l i
np

ut
 fu

nc
tio

n,
 P

B
IF

 =
 po

pu
la

tio
n-

ba
se

d 
in

pu
t f

un
ct

io
n,

 C
M

R
gl

u =
 ce

re
br

al
 m

et
ab

ol
ic

 ra
te

 o
f g

lu
co

se
, V

T =
 vo

lu
m

e 
of

 d
ist

rib
ut

io
n,

 D
V

R
 =

 di
str

ib
ut

io
n 

vo
lu

m
e 

ra
tio

, K
i =

 ne
t i

nfl
ux

 
ra

te
, 2

T3
k =

 ir
re

ve
rs

ib
le

 tw
o 

tis
su

e 
co

m
pa

rtm
en

t m
od

el
, 2

T4
k =

 re
ve

rs
ib

le
 tw

o 
tis

su
e 

co
m

pa
rtm

en
t m

od
el

, n
.r.

 =
 no

t r
ep

or
te

d

St
ud

y
Tr

ac
er

B
lo

od
 c

al
ib

ra
tio

n
M

et
ab

ol
ite

 c
or

re
ct

io
n

K
in

et
ic

 m
od

el
O

ut
co

m
e 

pa
ra

m
et

er
C

or
re

la
tio

n 
(R

2 )
B

ia
s (

sl
op

e;
 

[in
te

rc
ep

t])

Ro
cc

ia
, 2

01
9 

[1
1]

[18
F]

FD
G

A
rte

ria
l

N
o

2T
3k

C
M

R
gl

u
0.

59
n.

r
Ta

ki
ka

w
a,

 1
99

3 
[7

]
[18

F]
FD

G
A

rte
ria

l
N

o
2T

3k
C

M
R

gl
u

1.
00

0.
99

M
cG

in
ni

ty
, 2

01
8 

[1
3]

[18
F]

G
E1

79
A

rte
ria

l
Ye

s
Sp

ec
tra

l a
na

ly
si

s
V

T
0.

81
1.

02
 [-

0.
20

]
La

vi
ss

e,
 2

01
5 

[1
4]

[18
F]

D
PA

71
4

A
rte

ria
l

Ye
s

2T
4k

 (A
IF

) L
og

an
 

(P
B

IF
)

V
T

0.
92

n.
r

La
vi

ss
e,

 2
01

5 
[1

4]
[18

F]
D

PA
71

4
Ve

no
us

Ye
s

Lo
ga

n
V

T
0.

45
 (m

ea
n)

n.
r

M
ab

ro
uk

, 2
01

7 
[1

5]
[18

F]
FE

PP
A

A
rte

ria
l

Ye
s

2T
4k

 (A
IF

)
V

T
0.

86
n.

r
Lo

ga
n 

(P
B

IF
)

R
is

sa
ne

n,
 2

01
5 

[1
6]

[11
C

]T
M

SX
A

rte
ria

l
Ye

s
Lo

ga
n

V
T

0.
94

n.
r

D
V

R
0.

67
–1

.0
0 

(r
an

ge
)

R
is

sa
ne

n,
 2

01
5 

[1
6]

[11
C

]T
M

SX
N

on
e

Po
pu

la
tio

n
Lo

ga
n

V
T

0.
58

n.
r

D
V

R
0.

67
–1

.0
0 

(r
an

ge
)

Za
no

tti
-F

re
go

na
ra

, 2
01

3 
[1

7]
[18

F]
FM

PE
P-

d2
A

rte
ria

l
Ye

s
Lo

ga
n

V
T

0.
88

n.
r

Ta
ki

ka
w

a,
 1

99
4 

[1
2]

[18
F]

FD
O

PA
A

rte
ria

l
Ye

s
2T

3k
K

i
0.

98
n.

r

1640 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1636–1650

1 3



within the PET scan. However, also for IDIF, the challenge 
remains to generate a metabolite corrected plasma curve 
from a whole blood curve. Therefore, use of one or more 
arterial or venous blood samples is still required to cali-
brate the whole blood curve, determine the blood-plasma 
ratio and correct for radioactive metabolites.

Validation of the image‑derived input function

Among the non-invasive methods to create an input func-
tion, the IDIF should be the most accurate one, at least 
in theory, as the blood curve is measured directly from 
the PET images and therefore should accurately represent 
tracer activity in blood. In fact, if sufficiently short time 
frames (e.g., ≤ 10 s) are selected during the first minutes 
of the PET acquisition, the whole blood curve obtained 
using an IDIF is, in general, sharper than the whole blood 
curve measured using arterial blood sampling, as it is not 
affected by dispersion in the arterial cannula and external 
lines [44]. A slower injection protocol will most likely 
result in an IDIF more similar to the AIF. However, a 
slower injection will negatively affect the robustness of 
the microparameter estimates, which can be more reli-
ably estimated with a bolus injection. The accuracy of the 
IDIF-based quantification method is, however, depend-
ent on several aspects, like the intrinsic spatial resolu-
tion of the PET scanner, the reconstruction algorithm 
used and the definition of the ROIs. The carotid arteries 
are the main arteries within the field-of-view of most 
PET scanners (typically ~ 25 cm). They have a diameter 
of ~ 5 mm, which is of the same order of magnitude as 
the resolution of most scanners. Small structures, like 
carotids, are therefore prone to partial volume effects, 
i.e. blood-to-tissue spill-out effects during the early phase 
and tissue-to-blood spill-in effects during the late phase 
of the PET scan. Typically, a partial volume correction 
(PVC) method is applied to limit these effects [45]. How-
ever, it still is not clear which PVC would be best for 
the carotid arteries. Furthermore, small ROIs, like the 
carotid arteries, result in a lower signal-to-noise ratio 
and thus poorer precision. With the introduction of large 
field-of-view PET/CT cameras, it is possible to have both 
the heart and the brain within the field of view, which 
enables the generation of IDIF curves for PET studies of 
the brain using the heart or aorta as blood pool [46, 47]. 
This would lead to more accurate IDIF curves, as both 
ventricles and aorta have a much larger diameter than the 
carotid arteries. Besides the resolution of the PET camera 
and the generation of the ROI, the applied reconstruction 
parameters also have a large effect on the accuracy of the 
IDIF, because the reconstruction parameters can affect the 
signal-to-noise ratio and determine the time frames used 
to generate the input function. For example, too many 

iterations increase the noise, whereas too few iterations 
reduce the contrast in the images, leading to difficulties 
obtaining the blood peak. In addition, short time frames 
are required to accurately capture the blood peak (prefer-
ably ≤ 10 s), as longer frame times lower the amplitude 
and broaden the blood peak by averaging the peak activity 
over a longer period. However, these early time frames 
should not be too short, as the small number of coinci-
dences detected in such a short time frame would lead to 
a poor signal-to-noise ratio. Longer frame times can be 
used after blood peak has passed and blood activity levels 
change more slowly. For these reasons, the validation of 
IDIF-based quantification methods theoretically has to be 
performed per scanner, since the scanner resolution has 
a large impact on partial volume effects and the optimal 
number of iterations, and therefore the accuracy of the 
obtained blood TACs.

Correspondence of the image derived input 
function with the gold standard

[18F]FDG

So far, two studies [18, 23] (n = 9, 16) investigated the use 
of an IDIF with arterial blood calibration as input func-
tion for kinetic analysis of [18F]FDG data, three [8, 24, 25] 
investigated the use of an IDIF with venous blood calibra-
tion (n = 16, 22, 26), and one [26] used an IDIF without any 
blood calibration (n = 6, Table 2). Both studies comparing 
kinetic results between IDIF with arterial blood calibra-
tion and AIF showed high correlations (R2 = 0.85–1.00) and 
low bias (slope = 0.92–1.09, intercept = 0.00–0.00) [18, 23]. 
Noteworthy is that the variation in correlation coefficients 
seemed to be caused primarily by the quantification method 
employed, as they were highly comparable (R2 = 0.99–1.00, 
slope = 0.91–1.09) when Patlak analysis was used, but lower 
for non-linear regression (R2 = 0.85, slope = 0.97) [23]. The 
three studies investigating the use of an IDIF with venous 
blood calibration also found high correlation (R2 = 0.98–1.00) 
and low bias (slope = 0.92–1.11, intercept = – 0.04–0.05) 
when compared with AIF results [8, 24, 25]. Even pharma-
cokinetic modelling of [18F]FDG data using an IDIF with-
out blood calibration showed high correlation (R2 = 0.91), 
although this study included only 6 subjects and the bias was 
not reported [26]. All studies mentioned above only included 
HC, so the impact of disease cannot be assessed yet.

Neuroinflammation tracers

The use of an IDIF for quantification of the neuroinflam-
mation tracers [18F]GE179, [18F]FEPPA (all TSPO), [11C]
arachidonic acid (cyclooxygenase) and [18F]JNJ-64413739 
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(P2X7 receptors) has also been investigated (Table 2 and 
Supplementary information Table 2). Remarkably, all these 
studies only included healthy subjects, who supposedly 
should not suffer from neuroinflammation. Consequently, 
the impact of inflammation induced perfusion effects can-
not be assessed [48]. In addition, the use of HC alone, and 
thus regions with low specific uptake, means that correla-
tions have been performed only with low VT values, and it 

therefore remains unclear whether correlations remain the 
same in the presence of a high specific signal. The use of 
an IDIF with venous blood calibration and metabolite cor-
rection for kinetic analysis of [18F]GE179 data resulted in 
high correlation (R2 = 0.90, n = 10) when compared with AIF 
based results [20]. Unfortunately, the bias was not reported 
in this study. For quantitative analysis of [18F]FEPPA, 
Mabrouk et al. used independent component analysis to 

Table 2   Correspondence of the results of various IDIF approaches with those derived from AIF-based pharmacokinetic modelling 

VT = volume of distribution, ROI = region of interest, CMRglc = cerebral metabolic rate of glucose, ICA = independent component analysis, 
1T2k = reversible one tissue compartment model, 2T3k = irreversible two tissue compartment model, 2T4k = reversible two tissue compartment 
model, 4VHC = 4 hottest voxels of carotids, MDC = manual delineation of carotids, PWC = pairwise correlation, n.r. = not reported, NLR = non-
linear regression

Study Tracer Blood calibration Metabolite cor-
rection

Kinetic model Outcome param-
eter

Precision (R2) Bias (slope; 
[intercept])

Zhou 2012 [18] [18F]FDG Arterial No Patlak Ki (ROI based) 0.99–1.00 0.92–1.09 
[0.00–0.00]

Ki (voxel-based) 0.99–1.00 0.92–1.08 
[0.000.00]

Huisman 2012 
[23]

[18F]FDG Arterial No Patlak Ki 0.99 ± 0.01 
(mean)

0.99 ± 0.06 
(mean)

NLR Ki 0.85 ± 0.34 
(mean)

0.97 ± 0.13 
(mean)

Zhou 2011 [24] [18F]FDG Venous No Patlak Ki (ROI based) 0.99–1.00 1.00–1.09 
[0.00–0.00]

Ki (voxel-based) 0.98–1.00 1.00–1.11 
[0.00–0.00]

Chen 1998 [8] [18F]FDG Venous No Patlak CMRglc 0.99–1.00 0.92–1.09 
[– 0.04–
0.05]

Chen 2007 [25] [18F]FDG Venous No Patlak CMRglc 0.99–1.00 1.02 [0.00]
Croteau 2010 

[26]
[18F]FDG None No 2T3K CMRglc 0.91 n.r

Galovic, 2021 
[20]

[18F]GE179 Venous Yes 2T4k VT 0.90 n.r

Mabrouk 2014 
[27]

[18F]FEPPA Arterial Yes 2T4K VT 0.70–0.87 0.83–1.01
VT (ICA) 0.88–0.92 1.01–1.17

Zanderigo 2018 
[28]

[11C]Arachidonic 
acid

None Population based 2T3K Ki 0.84 1.06 [0.31]

Mertens, 2021 
[22]

[18F]JNJ-
64413739

Arterial Yes Logan VT 0.69 n.r

Schain 2013 [29] [11C]Flumazenil Arterial Yes Logan VT (MDC) 0.98 1.21 [– 0.17]
VT (4HVC) 0.95 1.29 [– 0.45]
VT (PWC) 0.96 1.10 [– 0.13]

Schain 2013 [29] [11C]
AZ10419369

Arterial No Logan VT (MDC) 0.89 1.30 [– 0.25]
VT (4HVC) 0.90 1.35 [– 0.23]
VT (ICA) 0.90 1.29 [– 0.21]
VT (PWC) 0.96 1.01 [– 0.02]

Bahri 2017 [30] [18F]UCB-H Arterial Yes Logan VT  > 0.99 (mean) 0.98–1.06 
[–0.02–
0.04]

Islam 2017 [19] [15O]H2O None No 1T2K K1  > 0.99 1.00 [0.05]
Vestergaard, 

2021 [21]
[15O]H2O None No 1T2k K1 0.87 n.r
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derive the IDIF [27], which was subsequently calibrated 
and metabolite corrected using arterial blood samples. This 
approach produced outcome parameters that correlated bet-
ter (R2 = 0.88–0.92, slope = 1.01–1.17, n = 18) with those 
derived from AIF-based analyses than using an IDIF gen-
erated from an ROI that was manually delineated on the 
internal carotid (R2 = 0.70–0.87, slope = 0.83–1.01, n = 18). 
While for all TSPO tracers there is endothelial binding, 
which increases with the stronger tracer affinity for TSPO 
[49]. Binding of the tracer to endothelial cells might theo-
retically cause an overestimation of the image derived whole 
blood curve and consequently of the IDIF. However, the 
high correlations observed between the 2T4k VT using an 
AIF and the 2T4k VT using an IDIF for [18F]GE179 and 
[18F]FEPPA suggest that the influence of endothelial TSPO 
binding is negligible. Zanderigo et al. only used a popula-
tion based metabolite correction of the IDIF for the analysis 
of [11C]arachidonic acid PET scans and found better cor-
relations between IDIF and AIF-based results (R2 = 0.84, 
slope = 1.06, intercept = 0.31, n = 11) than when an IDIF 
uncorrected for metabolites was used [28]. Use of an IDIF 
with arterial blood calibration and metabolite correction 
for kinetic analysis of [18F]JNJ-64413739 data showed a 
correlation of R2 = 0.69 (n = 11) compared with AIF based 
results [22]. These studies suggest that the use of an IDIF for 
neuroinflammation tracers might be feasible in some cases, 
but still requires substantial validation, especially in patients 
suffering from neuroinflammation.

Other tracers

A study by Schain et al. (2013) found that kinetic analysis of 
[18F]flumazenil data using an IDIF, calibrated and metabo-
lite corrected with arterial plasma samples, highly correlated 
with AIF-based analysis (R2 = 0.95–0.98, n = 6), but showed 
a moderate bias (slope = 1.10–1.29, intercept = – 0.45–0.13) 
[29]. Schain et al. (2013) also investigated the use of an 
IDIF with arterial blood calibration and metabolite correc-
tion for quantifying [11C]AZ10419369 data of 6 HC and 
again found a high correlation (R2 = 0.89–0.96) with AIF-
based modelling and a moderate bias (slope = 1.01–1.35, 
intercept = – 0.25–0.02) [29]. Bahri et al. (2017) investi-
gated the use of an IDIF with arterial blood calibration and 
metabolite correction as input function for kinetic analysis 
of [18F]UCB-H data and found high correlation (R2 > 0.99) 
and low bias (slope = 0.98–1.06, intercept = – 0.02–0.04), 
but this study included only 4 HC [30]. Islam et al. (2017) 
and Vestergaard et al. (2021) investigated the use of an IDIF 
for analysing [15O]H2O data of patients with cerebrovascular 
disease and HC [19, 21]. As [15O]H2O does not produce 
metabolites, the IDIF was used without blood calibration. 
Islam et al. (2017) found higher correlations than Vester-
gaard et al. (2021) (R2 > 0.99, n = 33 vs. R2 = 0.87, n = 19) 

[19, 21]. Vestergaard et al. (2021) ascribed the discrepancy 
between K1 values measured with AIF and IDIF to inaccura-
cies in the measurement of the AIF, but they also found that 
only a moderate reproducibility in K1 estimates when an 
IDIF was used [21]. This difference in correlation between 
both studies could also be due to differences in ROI deline-
ation of the internal carotid artery, as the ROI for the blood 
pool was defined on the PET images by Islam et al. and on 
the MRI scan by Vestergaard et al.

Concluding remarks on the use of an IDIF

The results of IDIF based pharmacokinetic modelling showed 
moderate to excellent correlations with the outcome of AIF-
derived quantification. However, most studies only included HC 
and used arterial blood samples for calibration and metabolite 
correction of the IDIF. Nevertheless, pharmacokinetic model-
ling of [15O]H2O and [18F]FDG data with an IDIF without any 
blood calibration showed high correlations and low bias and thus 
may be used to substitute kinetic modelling with an AIF [19, 
26]. In addition, the use of an IDIF with venous calibration also 
seemed to perform well for [18F]FDG [8, 24, 25]. This is most 
likely because differences in whole blood and plasma have little 
impact on the estimation of the [18F]FDG macroparameters [8], 
as the blood-plasma ratio is constant over time during a scan of 
60 min and has limited intersubject variation. Nonetheless, for 
determination of CMRglu, a venous blood sample is still required 
for determining the glucose concentration in blood when con-
verting Ki to CMRglu. For other tracers than [15O]H2O and [18F]
FDG, the performance of IDIF using venous samples was poor, 
whereas the application of arterial blood samples for calibra-
tion and metabolite correction undermined the main purpose of 
using an IDIF, i.e. to reduce the invasiveness of the procedure.

Simultaneous estimation of the input 
function

The tracer tissue concentration as measured with PET is 
determined by the AIF and the (physiological) impulse 
response function [31, 50]. The rate constants of the impulse 
response function can be estimated by fitting the tracer 
concentration measured with PET (which is composed of 
both signal from tissue and blood) to an appropriate com-
partment model with the AIF as input function. When the 
optimal compartment model for the tracer of investigation 
is defined a priori, a series of distinct tissue TACs can be 
used to extract the parent plasma TAC by fitting all TACs 
simultaneously. For every tissue TAC, the solution for the 
AIF must be the same, as the tracer concentration in plasma 
is considered to be the same across the brain. The use of 
multiple tissue TACs reduces the number of possible solu-
tions for the AIF. Therefore, an increase in the number of 
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TACs and the use of TACs with sufficient diversity in shape 
(reflecting different tracer kinetics) enables the estimation 
of the AIF, at least in theory.

Several confounders affect the generation of an input 
function by SIME, such as patient motion or subtle meas-
urement errors (noise) in the later time frames of the PET 
scan. These confounders can affect the approximation of 
individual rate constants, and consequently the SIME gen-
erated AIF. From a theoretical point of view, SIME could 
accurately denominate the plasma concentration, but in prac-
tise, there are too few TACs to correctly solve the formulas, 
because there are too many unknown variables. To compen-
sate for the computational complexity, a blood sample can be 
taken to determine the parent tracer concentration in plasma, 
which can be used to scale the plasma concentration curve 
of SIME appropriately to the AIF.

Validation of simulation estimation of the input 
function

The fundamental principles of SIME were derived in 1994 [50]. 
The renewed interest in this method is mainly due to recent tech-
nological advances in computer speed, reducing computational 
time significantly. The accuracy of SIME highly depends on 
both the number and the diversity in shapes of the tissue TACs 
used [51]. The acquisition of sufficiently divergent TACs is gen-
erally considered to be the main problem with SIME. Nonethe-
less, the number of tissue TACs is generally restricted in order 
to reduce computational time. Therefore, often first a selection 
is made of differently shaped tissue TACs through visual inspec-
tion. To reduce the computational complexity of SIME, the true 
AIF is often substituted for a model to reduce the number of 
unknown variables. However, SIME has difficulties with accu-
rately estimating the variables that describe the tail of the curve 
[52]. The integration of blood data describing the tracer parent 
fraction concentration in plasma within the models of the plasma 
curve reduces further the computational complexity of SIME 
and thereby enhances the accuracy of parameter estimation [33, 
52]. The application of a 3-exponential model for the plasma 
curve in SIME results in better estimates of the tail than the 
peak of the AIF. Although this has minimal effect on estimated 
macroparameters, it reduces accuracy of estimated individual 
microparameters [31]. The advantage of SIME is that it gener-
ates an AIF from the images, irrespective of the PET scanner 
resolution and that it is specific for the individual.

Correspondence of SIME with the gold standard

[18F]FDG

Two studies have been retrieved that used arterial blood 
and one study that used venous blood for the calibration of 
the SIME derived [18F]FDG input function, and one study 

did not use any blood calibration at all (Table 3). When the 
SIME derived input function was calibrated with an arterial 
blood sample, the two studies showed quite discrepant cor-
relation (R2 = 0.72–0.88, n = 49 vs. R2 = 0.91–0.95, n = 9), 
despite hardly any methodological differences between the 
two studies [11, 31]. Both studies used the 2T3k model for 
quantification, a single blood sample collected at 40 min and 
the same ROIs. The main difference was the sample size (49 
versus 9). Therefore, it seems likely that the small sample 
size may not be representative for the general population. 
The study, in which the SIME derived input function was 
calibrated with venous samples, showed both high corre-
lation (R2 = 0.94, n = 3) and low bias (slope = 1.01, inter-
cept = 0.01) [33]. However, it should be noted that only 3 
subjects were included in this study. The study using SIME 
without blood calibration resulted in only moderate cor-
relation (R2 = 0.62–0.69, n = 49) [11]. This indicates that 
the scaling of SIME with a blood sample seems to perform 
better for accurate and precise quantification of [18F]FDG 
data. This might be due to inaccuracies caused by the blood 
volume in the absence of blood calibration, noise or the 
lack of a blood sample that requires an increased number of 
TACs. Whether venous samples can be used for this purpose 
remains to be confirmed.

Neuroinflammation tracers

[11C]PBR28 is the only neuroinflammation tracer for 
which kinetic modelling with SIME has been investigated 
(Table 3). When a SIME derived input function with arte-
rial blood calibration and metabolite correction was used as 
input for kinetic analysis of [11C]PBR28 data from 21 AD 
patients and 15 HC, only moderate correlation (R2 = 0.56) 
as compared with AIF based results was obtained [34]. 
Similarly, the application of SIME without blood calibra-
tion and metabolite correction, but with the use of a popu-
lation based template, yielded only a moderate correlation 
(R2 = 0.37–0.78), although with low bias (slope = 0.92, inter-
cept = 0.10) [34]. The moderate correlations of SIME using 
both arterial blood calibration and a population–based cali-
bration might be due to limited divergence in TACs, which 
could be either due to the tracer kinetics or due to limited 
neuro-inflammation (and thus limited specific uptake) within 
the studied subjects.

Other tracers

Interestingly, good correlation without taking any blood 
samples	  could be achieved for the tracer [11C]SB201745 
(R2 = 0.94–0.96, n = 6) despite rapid metabolism [38]. For 
[11C]SB201745, the excellent correlation could be achieved 
by incorporation of an IDIF and Hill function for metabolite 
estimation, which significantly reduced the computational 
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complexity of SIME [38]. This combination of SIME with 
an image-derived whole blood curve together with a Hill 
function for metabolite estimation also improved the esti-
mation of the shape of the AIF curve including the peak 
(Supplementary information Table 3) [38]. SIME using 

arterial blood calibration and metabolite correction for [11C]
DASB quantification resulted in high correlation (R2 = 0.95, 
n = 25) for 1 study and in moderate correlation (R2 = 0.77, 
n = 18) for another, while both had comparable moderate 
bias (slope = 0.84) [31, 35]. However, application of venous 

Table 3   Correspondence of the results of various SIME approaches with those derived from AIF-based pharmacokinetic modelling

LEGA = likelihood estimation in graphical analysis, AIF = arterial input function, BPND = binding potential, VT = volume of distribution, 
CMRglc = cerebral metabolic rate of glucose, Ki = net influx rate, 1T2k = reversible one tissue compartment model, 2T3k = irreversible two tissue 
compartment model, 2T4k = reversible two tissue compartment model, n.r. = not reported

Study Tracer Blood calibra-
tion

Metabolite cor-
rection

Kinetic model Outcome 
parameter

Correlation (R2) Bias (slope; 
intercept)

Roccia, 2019 
[11]

[18F]FDG Arterial No 2T3K CMRglu 0.72–0.88 n.r

Ogden, 2010 
[31]

[18F]FDG Arterial No 2T3k Ki 0.91–0.95 0.70–0.88 
[– 0.00–0.01]

Wong, 2001 
[33]

[18F]FDG Venous No 2T3k CMRglu 0.94 1.01 [0.01]

Roccia, 2019 
[11]

[18F]FDG None No 2T3K CMRglu 0.62–0.69 n.r

Schain, 2018 
[34]

[11C]PBR28 Arterial Yes 2T4k BPND (AIF) 0.56 n.r
VT /fp (SIME)

Schain, 2018 
[34]

[11C]PBR28 None Template 2T4k BPND 0.78 0.92 [0.10]
BPND (AIF)
VT /fp (SIME) 0.37 n.r

Bartlett, 2019 
[35]

[11C]CUMI Arterial Yes LEGA VT 0.81 0.92 [0.76]
BPND

Zanderigo, 2015 
[36]

[11C]CUMI Arterial Yes LEGA VT 0.84 0.93 [1.58]
BPND 0.90 0.99 [0.64]

Bartlett, 2019 
[35]

[11C]CUMI Venous Yes LEGA VT 0.36 0.79 [5.52]

Zanderigo, 2015 
[36]

[11C]CUMI None Predicted LEGA VT 0.69 0.72 [4.07]
BPND 0.78 0.84 [1.60]

Ogden, 2010 
[31]

[11C]DASB Arterial Yes 1T2k VT 0.95 0.84 [2.96]

Bartlett, 2019 
[35]

[11C]DASB Arterial Yes LEGA VT 0.79 0.84 [6.90]
BPND

Bartlett, 2019 
[35]

[11C]DASB Venous Yes LEGA VT 0.68 0.68 [4.12]

Mikhno, 2015 
[37]

[11C]DASB None Predicted 1T2k VT 0.77 n.r
BPND 0.92

Ogden, 2010 
[31]

[11C]WAY-
100635

Arterial Yes 2T4k VT 0.82 1.00 [0.01]

Sari, 2018 [38] [11C]SB201745 None Fitted 2T4k VT 0.94 n.r
BPND 0.97

Bartlett, 2019 
[35]

[11C]ABP688 Arterial Yes 2T4k VT 0.79 0.82 [0.76]

Bartlett, 2019 
[35]

[11C]ABP688 Venous Yes 2T4k VT 0.87 1.08 [0.17]

Zanderigo, 2018 
[32]

[11C]Harmine Arterial Yes 1T2k VT 0.90 1.07 [– 1.04]
0.88–0.93 (ROI 

wise)
1.11–1.20 [– 4.35 

to – 0.59]
Ogden, 2010 

[31]
[11C]BTA Arterial Yes 2T4k VT 0.85 1.03 [0.08]
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blood calibration and metabolite correction resulted in mod-
erate correlation and bias (R2 = 0.68, slope = 0.68, n = 18) 
[35]. For [11C]DASB, the non-invasive SIME approach 
had good correlations (R2 = 0.77–0.92, n = 96), making use 
of machine learning to determine which electronic health 
records (EHR) variables are best suitable for predicting 
the AIF [37]. The extracted variables were related to heart 
rate, blood pressure and body size, and apparently these 
variables are good enough to enable the estimation of a 
metabolite corrected plasma curve. This is especially sur-
prising as it seems to outperform SIME with blood calibra-
tions and metabolite corrections, at least for [11C]DASB. 
SIME with arterial, venous or no blood calibration and 
metabolite correction has also been applied for quantifi-
cation of [11C]CUMI data. However, none of the methods 
seemed to be precise (R2 = 0.81–0.90, slope = 0.92–0.99, 
intercept = 0.64–1.58, n = 14–19; R2 = 0.36, slope = 0.79, 
intercept = 5.52, n = 19; R2 = 0.69–0.78, slope = 0.72–0.84, 
intercept = 1.60–4.07, n = 14; respectively) enough to sub-
stitute the AIF [35, 36]. Interestingly, [11C]CUMI BPND 
could be estimated with somewhat higher correlation and 
bias than VT, irrespective whether SIME was calibrated 
and metabolite corrected with an arterial blood sample or 
with a predicted metabolite correction [42]. Application of 
SIME, calibrated and metabolite corrected with an arterial 
blood sample, to quantify [11C]WAY-100635, [11C]BTA or 
[11C]ABP688 data resulted in estimations of VT with fairly 
good correlation (R2 = 0.79–0.85, n = 7–10). Although 
bias of [11C]ABP688 VT was only moderate (slope = 0.82, 
intercept = 0.76), it was good for [11C]WAY-100635 
(slope = 1.00, intercept = 0.01) and [11C]BTA (slope = 1.03, 
intercept = 0.08) 	 [37,41]. Calibration and metabolite correc-
tion of SIME with a venous blood sample slightly improved 
the quality of [11C]ABP688 VT estimates (R2 = 0.87, 
slope = 1.08, intercept = 0.17), although this effect may be 
due to the relatively small sample size (n = 10) [41]. When 
SIME with arterial blood calibration and metabolite correc-
tion was used to estimate [11C]harmine VT in 5 HC, good 
correlation was obtained (R2 = 0.88–0.93), but bias was poor 
(slope = 1.11–1.20, intercept = – 4.35 to – 0.59) [38].

Concluding remarks about the use of SIME

The correspondence of SIME was highly variable across 
studies, irrespective of the method used for blood calibra-
tion and metabolite correction. One of the factors that may 
have affected the results of SIME is the outcome parameter 
used. In contrast to the studies investigating the PBIF and 
IDIF, various studies on SIME used the BPND as outcome 
parameter. Estimation of BPND, calculated as the k3/k4 ratio, 
is notoriously prone to high standard errors. Therefore, poor 
correlations between BPND estimated with SIME and AIF-
based compartment modelling may be due to unreliable AIF 

based BPND estimates, which would underestimate the per-
formance of SIME. A limited number of studies showed 
positive results for the quantification of [11C]SB201745 
and [11C]DASB data using a completely non-invasive 
SIME. SIME without blood calibration provided disap-
pointing results for [18F]FDG, but SIME with either arterial 
or venous blood calibration worked well. The non-invasive 
SIME approaches for [18F]FDG data used machine learning 
to predict the [18F]FDG plasma fraction from EHR-derived 
variables. The negative results of these attempts suggest 
that the [18F]FDG plasma fraction could not be accurately 
predicted, which is surprising as the plasma/blood ratio for 
[18F]FDG has low intersubject variability and no metabolites 
are formed. Perhaps the use of other variables would make 
it more accurate, but nonetheless, for [18F]FDG, SIME with 
venous blood calibration showed promise in substituting 
the AIF [11]. For other tracers than [18F]FDG, SIME does 
not perform good enough in either a non-invasive or less-
invasive form to substitute AIF. Even for [18F]FDG, the non-
invasive or less-invasive SIME methods have been shown 
to perform well in only one study with small sample sizes, 
which further emphasizes the need for further validation of 
this method.

Discussion

The aim of this study was to assess the correspondence of 
potentially non-invasive methods to generate an input func-
tion (PBIF, IDIF, SIME) for kinetic analysis of brain PET 
data with the gold standard, i.e. arterial sampling. The main 
methodological variations in the various approaches were 
whether manual blood samples were used for calibration 
and metabolite correction of PBIF, IDIF or SIME and, if 
so, whether these samples were arterial, arterialised venous 
or venous. Most studies that made use of arterial calibra-
tion and metabolite correction showed promising results, 
but such methods cannot really be considered as less- or 
non-invasive methods, as they still require the collection of 
arterial blood samples. The correspondence of these non-
invasive methods was determined by comparing estimated 
macroparameters with those obtained using an AIF. Over-
all, this correspondence was moderate to excellent. Further-
more, it seems that, for optimal performance, PBIF requires 
calibration and metabolite correction with arterial blood 
samples, while IDIF and SIME seem to be promising non-
invasive quantification methods, especially for [18F]FDG.

Although almost every study described the use of arterial 
sampling in their methodology, only a few actually investi-
gated full kinetic analysis using a non-invasively generated 
input function in comparison with compartment modelling 
using an AIF. Most studies used a linearization method for 
comparing VT or Ki estimates. Although these linearization 
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methods are generally well established methods, they should 
be carefully implemented, as they are prone to bias. Due to 
physiological assumptions in the mathematical equations, 
linearization methods often result in underestimation of 
macroparameters [7].  Another aspect related to the lineari-
zation methods is that the later time points have a high influ-
ence on the slope of the linearization and therefore govern 
the eventual parameter estimation. When blood samples of 
early time points are used to calibrate and metabolite cor-
rect the non-invasive input curve instead of late time points, 
this might affect the absolute quantification and thus result 
in erroneous quantification. Nonetheless, the linearization 
methods use the AUC of the input function, as such small 
errors in estimating the input function, like estimating the 
peak activity levels, have less impact on the quantification.

For tracers that are not metabolised, in particular [18F]
FDG, the bias was generally limited. For tracers that gen-
erate plasma metabolites, the non-invasive methods either 
overestimate (slope > 1.05) or underestimate (slope < 0.95) 
outcome parameters (< 5% deviation of the slope is con-
sidered to be due to noise), which indicates increased bias 
of the methods as compared to AIF derived quantification. 
Remarkably, the PBIF studies reported slopes of ~ 1.00, 
which is in contrast to IDIF and SIME. This suggests that the 
variation in bias might arise from difficulties measuring the 
true AIF, as the measured AIF suffers from delay and disper-
sion effects. As the PBIF is an average of measured AIF’s, 
the dispersion effects are incorporated in the curves, while 
for IDIF and SIME the true AIF is estimated without inter-
ference of dispersion effects and might thus represent values 
closer to the ground truth. Yet, in case of high repeatabil-
ity and correlation, the non-invasive methods could still be 
employed to substitute the AIF if the bias remains constant.

Studies were included in which correlations were reported 
between results of non-invasive quantification methods and 
pharmacokinetic modelling with an AIF, but many studies 
did not report the slope and intercept of this correlation, and 
therefore it was not clear how well the values of the esti-
mated parameters corresponded. Depending on the purpose 
of PET quantification, knowledge regarding inter-subject 
variability of the bias (e.g. slope, intercept) could be impor-
tant for example when absolute quantification is necessary 
for treatment decision making. Therefore, it is highly recom-
mended that future studies do not only report the correlation, 
but also the slope and intercept of the correlation.

Non-invasive kinetic modelling approaches need to be vali-
dated per tracer, per pathology and for each intervention. Any 
disease or pharmacological substrate could theoretically affect 
tracer kinetics (e.g. alterations in liver function affecting tracer 
metabolism, or alterations in kidney function affecting tracer 
clearance) and, therefore, performance of the non-invasive 
kinetic approaches. From a theoretical perspective, PBIF is 
most vulnerable by disease factors and interventions, especially 

in cases where the disease or intervention strongly affects tracer 
metabolism and plasma clearance. IDIF and SIME should be 
less affected by pathology. The IDIF is directly extracted from 
a blood pool in the scan and should therefore be affected in the 
same manner by pathology or intervention as the AIF.

So far, the PBIF has mainly been individualized using 
variables related to body composure (e.g. body weight, body 
height, body surface area, body mass index, lean body mass) 
and injected dose. Some studies have shown that measure-
ments related to heart rate and blood pressure correlate bet-
ter with measurements of tracer concentrations in blood [11, 
37], and therefore correction using these variables might 
enhance the correspondence of the PBIF.

In this study, we considered the AIF as gold standard. 
However, many experimental factors influence the accuracy 
of the AIF, like the use of manual or automatic sampling, 
sensitivity of the blood monitor, the number of blood samples, 
the time points of the blood samples or the accuracy of the 
measurement of the manual samples. While manual sampling 
of the AIF is not ideal as it has a lower temporal resolution as 
compared to the automatic sampling, the automatic sampling 
suffers from dispersion effects. However, dispersion effects 
influence mostly the estimation of the microparameters, but 
not the macroparameters, and therefore the effects of disper-
sion are often negligible for PET quantification. Furthermore, 
the AIF is also depended on the tracer injection procedure. 
Manual tracer injection can introduce confounders (like vari-
ations in injection speed, injection pressure, injection volume, 
volume of flushing) which influence the shape of the meas-
ured AIF’s. This issue could be easily solved with an auto-
mated injection system for tracer administration. In addition, 
there is variation in automated injection regarding bolus injec-
tion and dynamic injection. A bolus injection is considered to 
lead to better estimations of the microparameters, whereas no 
differences between these 2 injection schemes should arise for 
macroparameter estimation. The major source of errors in the 
AIF, however, is usually the assessment of the tracer parent 
fraction. Not only the assessment of the parent fraction itself 
is prone to errors due to low count rates, but also the time 
resolution of the plasma parent curve is usually poor. Due to 
the time-consuming procedure of the metabolite analysis, the 
number of plasma samples that can be measured is usually 
limited, especially for tracers labelled short-lived isotopes like 
11C. Therefore, some concerns regarding the AIF as a gold 
standard can be raised as well.

Conclusion

Several studies have shown good correspondence 
between quantitative outcome measures derived using 
PBIF, IDIF or SIME and corresponding outcome meas-
ures obtained using arterial sampling. However, the need 
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for arterial blood samples eliminates the potential ben-
efits of these methods and hampers clinical utilization. 
A limited number of studies (with small sample sizes) 
suggest that IDIF and SIME-based methods may have 
the potential to omit any arterial sampling. In particular 
for PET tracers that are not metabolised, the use of IDIF 
and SIME without any blood data was promising, and 
especially the combination of IDIF and SIME. However, 
given the limited number of studies with small sample 
sizes, these methods require further validation in vari-
ous patient groups before they routinely can be imple-
mented. Future studies that investigate the implementa-
tion of non-invasive PET quantification should not only 
report correlation coefficients, but also parameters that 
reflect the bias of the parameter estimates, such as slope, 
intercept and ICC, as this is crucial for the assessment 
whether the technique could be employed to substitute 
the AIF. We still may not be there in the clinic, but path 
forward becomes more clear.
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