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Abstract
Purpose  This study aimed to investigate whether models built from radiomics features based on multiphase contrast-
enhanced MRI can identify microscopic pre-hepatocellular carcinoma lesions.
Methods  We retrospectively studied 54 small hepatocellular carcinoma (SHCC, diameter < 2 cm) patients and 70 patients 
with hepatocellular cysts or haemangiomas from September 2018 to June 2021. For the former, two MRI scans were collected 
within 12 months of each other; the 2nd scan was used to confirm the diagnosis. The volumes of interest (VOIs), including 
SHCCs and normal liver tissues, were delineated on the 2nd scans, mapped to the 1st scans via image registration, and enrolled 
into the SHCC and internal-control cohorts, respectively, while those of normal liver tissues from patients with hepatocellular 
cysts or haemangioma were enrolled in the external-control cohort. We extracted 1132 radiomics features from each VOI and 
analysed their discriminability between the SHCC and internal-control cohorts for intra-group classification and the SHCC 
and external-control cohorts for inter-group classification. Five radial basis-function, kernel-based support vector machine 
(SVM) models (four corresponding single-phase models and one integrated from the four-phase MR images) were established.
Results  Among the 124 subjects, the multiphase models yielded better performance on the testing set for intra-group and 
inter-group classification, with areas under the receiver operating characteristic curves of 0.93 (95% CI, 0.85–1.00) and 0.97 
(95% CI, 0.92–1.00), accuracies of 86.67% and 94.12%, sensitivities of 87.50% and 94.12%, and specificities of 85.71% and 
94.12%, respectively.
Conclusion  The combined multiphase MRI-based radiomics feature model revealed microscopic pre-hepatocellular carci-
noma lesions.
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Introduction

According to the World Cancer Report published by the 
International Agency for Research on Cancer (IARC), 
hepatocellular carcinoma (HCC), the third leading cause of 
cancer-related mortality worldwide, accounts for approxi-
mately 80% of primary liver cancers. In 2020, there were 
an estimated 410,038 new cases and 391,152 deaths from 
HCC in China [1]. Cirrhosis secondary to hepatitis B virus 
(HBV) infection is a major risk factor for HCC and affects 
the majority of middle-aged and elderly Chinese men [2]. 
Additional main risk factors for HCC observed worldwide 
include external exposure to toxins (aflatoxin exposure, 
alcohol consumption) and hepatitis C virus (HCV) infec-
tion. However, the early manifestations of the process of 
HCC development from dysplastic nodules (DNs) to small 
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hepatocellular carcinoma (SHCC), which is defined by 
the very early HCC criteria of the Barcelona Clinic Liver 
Cancer (BCLC) criteria as a single HCC nodule less than 
2 cm in diameter, are difficult to detect clinically. Thus, 
a large number of Chinese patients are diagnosed at an 
advanced stage and receive only palliative care [3]. The 
5-year survival rate for HCC is only 33% in all races [4], 
but in China, it drops to 14.1% [5]. Therefore, it is specifi-
cally essential to find a new measurement to detect these 
changes in the early stage for diagnosis and intervention.

Medical imaging technologies, including contrast-
enhanced computed tomography (CE-CT), contrast-
enhanced magnetic resonance imaging (CE-MRI), and 
contrast-enhanced ultrasound imaging (CE-US), can achieve 
satisfactory diagnostic results for HCC. If the imaging pro-
file on dynamic MR is specific for HCC (intense contrast-
enhanced agent uptake in the arterial phase followed by 
extracellular contrast wash-out in the venous and/or delayed 
phase), a diagnosis can be made even without histological 
confirmation [6–8]. However, it is still difficult to identify 
very early lesions by medical imaging, even for an experi-
enced radiologist. Although these lesions may have already 
become malignant, they remain microscopic on dynamic 
MRI and lack typical radiological markers [9].

The term “radiomics” was first proposed by Lambin et al. 
[10]. It is a field that focuses on improving image analysis 
and the high-throughput extraction of a vast number of quan-
titative features from medical images. The underlying basis 
of radiomics is that the analysis of these quantitative features 
can provide more and better information than physicians 
can by visually analysing these images. It has been reported 
that radiomics features of the tumour area present significant 
predictive efficacy in the classification of HCC [11–15]. Li 
Yang et al. [16] and Huang et al. [17] showed the best areas 
under the receiver operating characteristic curve (AUROCs) 
of 0.861 and 0.784 in the validation cohort, respectively. 
However, these previous studies were conducted on the 
assumption that HCC lesions could be observed on MR 
images, and few studies have focused on early or very early 
HCC lesions with no imaging changes.

Hence, we aimed to develop a multiphase MRI-based 
radiomics model to evaluate the risk of microscopic pre-
HCC lesions for HCC and/or other liver-related disease 
patients.

Materials and methods

Patient cohort

The institutional review board of our institution approved 
this retrospective study. The requirement for informed con-
sent was waived.

From September 2018 to June 2021, we retrieved the data 
of hospitalized patients screened for HCC due to cirrhosis 
secondary to HBV infection from Shandong Provincial Hos-
pital affiliated to Shandong First Medical University.

The inclusion criteria for SHCC patients were as follows: 
(1) patients were diagnosed with SHCC by a radiologist with 
more than ten years of experience. (2) Patients received 
two MR examinations, of which SHCC was not apparent 
on the former but was diagnosed on the latter. The inter-
val between the two examinations was not more than one 
year. (3) Patients had never been treated with transcatheter 
arterial chemoembolization (TACE) in the newly developed 
SHCC lesion. (4) Patients’ MR imaging at the newly devel-
oped SHCC lesion site was consistent with the ‘wash-in 
and wash-out’ phenomenon described in the guidelines. (5) 
Patients had complete T1-weighted, arterial-phase, portal 
venous–phase, and delayed-phase MR images at both time-
points. The SHCC lesions on the first MR scan of eligible 
SHCC patients were included in the SHCC cohort; a normal 
volume of interest (VOI) from the first MR scan of each 
eligible SHCC patient was included in the internal-control 
cohort. Moreover, we also set up an external-control cohort 
to ensure the robustness of the research findings. The inclu-
sion criteria are as follows: (1) patients were diagnosed with 
hepatic cyst or haemangioma by a radiologist with more 
than ten years of experience. (2) There were one to three 
lesions, and each one measured less than 2.3 cm in diam-
eter. (3) Patients had no history of hepatitis, drug-induced 
liver damage, or alcohol abuse. (4) Patients had complete 
T1-weighted, arterial-phase, portal venous–phase, and 
delayed-phase MR images. The exclusion criteria were as 
follows: (1) the tumour outline was unclear on MR images 
in the SHCC cohort. (2) The quality of the MR images was 
poor in the internal- or external-control cohort. Figure 1 
shows the whole experimental design.

MR image acquisition and registration 
and delineation of volumes of interest (VOIs)

The MR image acquisition parameters are detailed in 
Table 1. The MR images were retrieved from the picture 
archiving and communication (PACS) system, including 
non-contrast-enhanced T1-weighted (T1WI), arterial phase, 
portal venous phase, and delayed phase images. In patients 
with SHCC, we collected two MR scans within an interval 
of less than 12 months. Imaging characteristics consistent 
with SHCC lesions could be detected in the 2nd scan but no 
visible changes could be observed by the naked eye in the 
exact lesion location in the 1st scan.

To ensure accurate VOI delineation, we used the Elastix 
toolbox [18] in the 3D slicer open-source software [19] 
version 4.1.1 (http://​www.​slicer.​org) to register the 
images successively. The arterial phase images of the 2nd 

2918 European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:2917–2928

http://www.slicer.org


1 3

scan were used as a template, and the arterial and other 
phases of the 1st scan were the targets to be successively 
registered.

Then, a radiologist with 20 years of experience manu-
ally delineated the SHCC tumour VOIs on the template 
images using ITK-SNAP open-source software version 
3.8.0 (Yushkevich P and Gerig G). The tumour delinea-
tion covered the entire SHCC tumour lesion in all slices. 
For the internal-control cohort, the radiologist delineated 
the normal liver VOIs of these patients on MR images. A 
normal liver VOI was defined as a lack of imaging abnor-
mality changes associated with SHCC on ten successive 
levels on both scans. The VOI for the external-control 
cohort was delineated identically as for the internal-con-
trol cohort. Consequently, we obtained 68 SHCC VOIs, 54 

internal-control VOIs, and 70 external-control VOIs on the 
MR images from each phase.

Feature extraction

We performed a rescaling operation to normalize the MR 
images. The resampled voxel sizes were set to 2 × 2 × 2 mm3 
to standardize the slice thickness. We mapped the VOIs onto 
the registered image to extract radiomics features using the 
PyRadiomics package [20] version 3.0.1. The radiomics 
features were generated from the original, wavelet-filtered, 
and Laplacian of Gaussian (LoG)-filtered images. The fea-
tures included shape, intensity (‘First-order statistics’), and 
texture. Texture features included grey-level cooccurrence 
matrix (GLCM), grey-level size zone matrix (GLSZM), 

Fig. 1   The flow chart of the 
whole experiment includes 
several steps of data acquisition, 
registration, outlining, feature 
extraction and selection, model 
construction, and prediction

Table 1   The detail of the MR image acquisition

Parameters

Scanner Siemens 3.0 T Skyra (TIM Sys-
tems, Siemens Medical Solutions, 
Erlangen, Germany)

Siemens 3.0 T Prisma (TIM Sys-
tems, Siemens Medical Solutions, 
Erlangen, Germany)

Siemens 3.0 T Verio (TIM Sys-
tems, Siemens Medical Solutions, 
Erlangen, Germany)

TR (ms) 4.31 (median) 3.92 (median) 3.92 (median)
TE (ms) 2.03 (median) 1.39 (median) 1.39 (median)
Slice Thickness (mm) 3 (median) 3 (median) 3 (median)
Dose of Gd-EOB-DTPA MR 

contrast agent
0.1 mmol/kg 13 ml 13 ml

Injection rate of Gd-EOB-DTPA 
MR contrast agent

2.0 ml/s 2.5 ml/s 2.5 ml/s

Acquisition time of the arterial 
phase

14 s 19 s 19 s

Acquisition time of the portal 
venous phase

26–30 s 25–32 s 60 s

Acquisition time of the delayed 
phase

60 s 3–5 min 3–5 min
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grey-level run length matrix (GLRLM), neighbouring grey-
tone difference matrix (NGTDM), and grey-level depend-
ence matrix (GLDM) features.

Feature robustness and reproducibility

The robustness and reproducibility of the features were 
assessed with the intraclass correlation coefficient (ICC) 
[21–23]. Thirty patients from the SHCC cohorts were cho-
sen randomly for VOI re-delineation by another experienced 
radiologist two weeks after the first delineation. Features 
with an ICC coefficient greater than 0.9 were retained and 
considered to have excellent robustness and reproducibil-
ity. Moreover, we concatenated the four-phase MR image 
features to evaluate whether the joint-phase (all-phase) fea-
tures provided better discriminability than the single-phase 
features.

Feature selection

We implemented two types of analysis: intra-group clas-
sification and inter-group classification. The intra-group 
classification involved the 68 SHCC VOIs and 54 internal-
control VOIs, and the inter-group classification involved the 
68 SHCC VOIs and 70 external-control VOIs.

We randomly divided the intra-group classification 
(n = 122) and the inter-group classification (n = 138) data 
into a training set (n = 92 for intra-group classification, 
n = 104 for inter-group classification) and testing set (n = 30 
for intra-group classification, n = 34 for inter-group classi-
fication) at a 3:1 ratio. These datasets came from the four 
sets of single-phase features and the single set of all-phase 
features. In total, there were ten datasets.

The least absolute shrinkage and selection operator 
(LASSO) regression model was used for feature selection. 
Employing regularization, the LASSO regression model 
adjusts the penalty coefficient value (λ), compresses most of 
the coefficients to zero, and retains the values with nonzero 
coefficients. Consequently, the retained features are nonre-
dundant and sparse, potentially preventing the classifier from 
overfitting. By adjusting the parameter (λ) with the training 
set, the optimal features were screened via the minimum 
criteria with tenfold cross-validation.

Classifier and assessment of the performance 
of different models

We chose the radial basis-function, kernel-based support 
vector machine (RBF-SVM) as the classifier. First, the most 
valuable features filtered by the LASSO regression model 
from the four single phase-based and single combined-phase 
MR image features were used to train the corresponding 
classification models with the training set (intra-group and 

inter-group classification). The optimal parameters of the 
SVM models were selected via tenfold cross-validation. 
Second, the efficacy of all models was tested with the test-
ing set (intra-group and inter-group classification). Five 
models were established based on the RBF-SVM classifier: 
four according to the individual image phases (T1WI, arte-
rial phase, portal venous phase, and delayed phase), and 
an all-phase model according to the integration of the four 
single-phase MR image features. The area under the receiver 
operating characteristic curve (AUROC), area under the 
precision-recall curve (AUPRC), sensitivity, specificity, and 
accuracy were calculated to evaluate classifier performance.

Statistical analysis

The SPSS version 26.0 (http://​www.​ibm.​com/, IBM) and 
R version 4.0.1 (https://​www.r-​proje​ct.​org/) statistical soft-
ware was used for statistical analysis. The chi-square test 
was used to assess categorical data. The Shapiro–Wilk test 
was used to assess the normality of continuous data. The t 
test was used if the continuous data conformed to a normal 
distribution; otherwise, the Mann–Whitney U test was used. 
Normally distributed data are described as the mean ± SD; 
otherwise, the median (IQR) was used. Differences in AUC 
values between different models on the testing set were 
estimated using the Delong test. A two-sided p < 0.05 was 
regarded as significant.

Results

Baseline characteristics

A total of 124 patients were enrolled in this study, includ-
ing 54 SHCC patients (ranging from 36 to 73 years of age, 
with a mean of 56.9 ± (9.35) years) and 70 hepatic cyst or 
haemangioma patients (ranging from 36 to 73 years of age, 
with a mean of 48.5 ± (14.88) years). In the SHCC group, 
4 patients were women and 50 were men. In the hepatic 
cyst or haemangioma group, 30 patients were women and 
40 were men. There were statistically significant differences 
in age (p < 0.001 [t value: 3.65]) and gender (p < 0.001 [χ2 
value: 16.99]) between the two groups. The interval between 
the two MRI scans was 4.81 ± (2.67) months. Details of the 
VOI numbers, volumes, and diameters are provided in sup-
plementary Table 2.

Optimal radiomics signature

We extracted 1132 radiomics features from the VOIs at each 
phase, consisting of 14 shape, 18 intensity, 68 texture, 688 
wavelet, and 344 LoG features. Through the first round of 
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screening using the ICC, 179, 325, 277, and 266 features 
remained among the T1WI and arterial, portal venous, and 
delayed phase image features, respectively (Fig. 1a of the 
supplementary material).

Subsequently, after filtration with LASSO regression, the 
T1WI, arterial phase, portal venous phase, delayed phase, 
and all-phase models were built with 9, 6, 6, 23, and 36 opti-
mal radiomics features, respectively (Fig. 1b1, b2 of the sup-
plementary material). The retained features of each model 
were considered the radiomics signatures in the intra-group 
classification. The all-phase model consisted of 8 T1W and 
12 arterial phase, 8 portal venous phase, and 8 delayed phase 
image features (Fig. 1c1 of the supplementary material).

In addition, 16, 13, 12, 10, and 18 optimal radiomics 
features (Fig. 1b3, b4 of the supplementary material) were 
selected by LASSO regression in the models built from the 
T1WI, arterial phase, portal venous phase, delayed phase, 
and all-phase imaging features in the inter-group classifi-
cation, respectively. The all-phase model was constructed 
from 7 T1W, 3 arterial phase, 1 portal venous phase, and 
7 delayed phase imaging features (Fig. 1c2 of the supple-
mentary material). The optimal radiomics signature of each 
model is detailed in Table 1 of the supplementary material.

Best performance of the models in intra‑group 
and inter‑group classification

For intra-group classification, the performance of the all-
phase model was significantly greater than that of the sin-
gle-phase classifiers. The optimal performance was achieved 
with an AUROC of 1.00 (95% CI, 1.00–1.00) with the 
training set and 0.93 (95% CI, 0.85–1.00) with the testing 
set (Fig. 2) and corresponding AUPRCs of 1.00 and 0.94 
(Fig. 3), respectively. Basic first-order statistics (‘Range’ 
and ‘Maximum’) and high-dimensional texture features 
(Grey-Level Co-occurrence Matrix [‘DifferenceAverage’] 
and Grey-Level Size Zone Matrix [‘ZoneVariance’]) con-
tributed to the model construction.

Likewise, the all-phase model achieved good perfor-
mance in inter-group classification with the 18 optimal 
radiomics features. The RBF-SVM classifier achieved an 
AUROC of 0.99 (0.99–1.00) with the training set and 0.97 
(95% CI, 0.92–1.00) on the testing set (Fig. 2) and corre-
sponding AUPRCs of 1.00 and 0.98 (Fig. 3), respectively. 
In model construction, the most important contributing 
features were first-order statistics (‘Maximum’ and ‘Vari-
ance’) and high-dimensional texture features (Grey-Level 

Fig. 2   Comparison of the 
AUROC on the training set (a) 
and testing set (b) of the differ-
ent models from the intra-group 
classification, and training set 
(c), testing set (d) from the 
inter-group classification
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Size Zone Matrix [‘ZoneVariance’] and Grey-Level Depend-
ence Matrix [‘HighGrayLevelEmphasis’]). The performance 
details of the different models are shown in Table 2.

Differences in the AUROCs between intra‑group 
and inter‑group classification

With the testing set, we compared the performance of the 
same model in intra-group and inter-group classification 
according to the AUROC values. The Delong test revealed 
no differences between the values for the two classifica-
tions, p > 0.05 (Table 3). In addition, the top 3 radiomics 
features from the weighted ranking of the all-phase model 
were analysed to explore whether there were significant 
differences between normal tissue and undetectable 
SHCC lesions (Table 4). The results showed a significant 
difference (p < 0.05) in the values of the radiomics fea-
tures between normal tissue area and undetectable SHCC 
lesions (Fig. 4). Figure 5 depicts expression heatmaps for 
the top two weighted features of the all-phase model for 
intra-group and inter-group classification. The heatmaps 
reveal that the heterogeneity within the tumour cannot be 

reflected by MRI images, increasing the interpretability 
of the radiomics features.

Discussion

In this study, we aimed to develop a multiphase MRI-based 
radiomics model to evaluate the risk of microscopic lesions 
or high-risk nodules in HCC patients with radiologically 
undetectable lesions. This model showed clearly excellent 
performance in both intra-group and inter-group classifi-
cation. These results are clinically significant in that such 
models can help physicians find potential malignant lesions 
for HCC and/or other liver-related disease patients in the 
very early stage.

In a majority of Chinese HCC patients, the disease tends 
to be secondary to HBV infection [24, 25], and a large pro-
portion of patients are generally identified at an advanced 
stage [26]. Cirrhosis increases the risk of SHCC/HCC 
[27]. The transformation of cirrhotic nodules into HCC 
is a continuous and complex process [28], following the 
development of low-grade dysplastic nodules (LGDNs) 

Fig. 3   Comparison of the 
AUPR on the training set (a) 
and testing set (b) of the differ-
ent models from the intra-group 
classification, and training set 
(c), testing set (d) from the 
inter-group classification
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to high-grade dysplastic nodules (HGDNs) to HCC [29]. 
Among them, DN is considered to be a precancerous lesion 
of SHCC/HCC [30–35]. DNs usually present with nontypi-
cal manifestations of influence on gadoxetic acid (GD-EoB-
DTPA)-enhanced MRI [36, 37]. According to a study by 
Eremites SC et al. [38], LGDNs result in only a 4% increase 
in arterial blood supply, HGDNs, an approximately 17–32% 

increase, and HCC, an approximately 94% increase. There-
fore, a large proportion of DNs presents with uniform T1 
and T2 signals on MRI and does not show enhancement in 
the arterial phase [39], which makes it difficult to distin-
guish [40, 41]. The diagnosis of SHCC on MR depends on 
the increase in unmatched arterioles, the decrease in blood 
supply to the portal vein, the deposition of iron and lipids, 
and the changes in the formation of envelopes. From our 
experience, even before the radiologist can recognize SHCC/
HCC lesions on MRI by the naked eye, the precancerous 
lesion may already exist. During the development of DNs 
or SHCC, few clinical symptoms are present, which can be 
fatal. Therefore, early inspection, detection, intervention, 
and treatment are particularly important.

To date, there have been several radiomics studies on 
hepatocellular carcinoma. Li Yang et al. [16] achieved an 
AUROC of 0.861 with the validation cohort of an MRI-
based model incorporating significant clinical radiological 
factors and a fusion radiomics signature obtained from hepa-
tobiliary phase (HBP) images. Huang et al. [17] reported 
that radiomics feature models based on CE-MR images 

Table 2   The performance details of different models

Abbreviation: intra-, intra-group classification; inter-, inter-group classification; CI, confident interval; AUC​, the area under the curve; Acc, accu-
racy; Sen, sensitivity; Spe, specificity

Group

Data set Intra- Inter-

Model AUC (95%CI) Acc Sen Spe AUC (95%CI) Acc Sen Spe

Training set T1WI 0.93(0.877–0.976) 83.70% 78.85% 90.00% 0.98(0.958–1) 95.19% 94.12% 96.23%
Arterial phase 0.89(0.815–0.951) 81.52% 75.00% 90.00% 0.99(0.981–1) 97.12% 94.12% 100%
Portal venous phase 0.89(0.829–0.957) 83.70% 73.08% 97.50% 0.98(0.961–1) 95.19% 96.08% 94.34%
Delayed phase 0.97(0.946–0.999) 93.48% 92.31% 95.00% 0.97(0.939–0.994) 91.35% 90.20% 92.45%
All-phase 1 (1–1) 100% 100% 100% 0.99(0.999–1) 99.04% 100% 98.11%

Testing set T1WI 0.88(0.759–1) 83.33% 81.25% 85.71% 0.91(0.816–1) 85.29% 70.59% 100%
Arterial phase 0.88(0.754–1) 86.67% 81.25% 92.86% 0.98(0.937–1) 91.18% 82.35% 100%
Portal venous phase 0.86(0.695–1) 86.67% 93.75% 78.57% 0.92(0.827–1) 88.24% 82.35% 94.12%
Delayed phase 0.86(0.731–0.992) 80.00% 93.75% 64.29% 0.86(0.740–0.983) 82.35% 94.12% 70.59%
All-phase 0.93(0.85–1) 86.67% 87.50% 85.71% 0.97(0.916–1) 94.12% 94.12% 94.12%

Table 3   Comparison of the AUROC between inter- and intra-group 
classification on the testing set

Abbreviations: inter-, inter-group classification; intra-, intra-group 
classification; AUROC, the area under the receiver operator charac-
teristic curve

Model name (inter- vs. intra-) AUROC values p values

T1W1 vs. T1W1 0.91 vs. 0.88 0.698
Arterial phase vs. arterial phase 0.98 vs. 0.88 0.194
Portal venous phase vs. portal venous 

phase
0.92 vs. 0.86 0.510

Delayed phase vs. delayed phase 0.86 vs. 0.86 0.999
All-phase vs. all-phase 0.97 vs. 0.93 0.478

Table 4   The top 3 radiomics 
features weight of inter- and 
intra-group classification on all-
phase model

Abbreviations: intra-, intra-group classification; inter-, inter-group classification; LoG, Laplacian of Gauss-
ian; GLDM, gray level dependence matrix; GLSZM, gray level size zone matrix

Model Filter Feature class Feature Image phase Weight

All-phase model
(intra-)

Wavelet (HLL) GLDM Large Dependence High 
Gray Level Emphasis

Arterial 11.0103

LoG (σ = 2 mm) First order Range T1WI 9.6618
Wavelet (LHL) First order Maximum Delayed 7.9649

All-phase model
(inter-)

Original First order Maximum Delayed 7.2267

Wavelet (LLH) GLSZM Zone Variance Arterial 3.8969
LoG (σ = 4 mm) First order Variance Delayed 2.8917
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Fig. 4   Statistical analysis of the top 3 radiomics features a weight of intra-group classification (a) and inter-group classification (b) on the all-
phase model
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had favourable performance in predicting HCC, with mean 
AUROCs of 0.712, 0.784, 0.771, and 0.774 when con-
structed from arterial phase, portal venous phase, delayed 
phase, and hepatobiliary phase features, respectively. Many 
studies have been based on analyses of lesions that have 
already changed on visual imaging [42–47]. This makes 
sense if the lesion is detected before it can be observed by 
the naked eye.

In the current study, we included both an internal-con-
trol and an external-control cohort. If we had only set up 
an internal-control cohort, there could have been biases in 
the experimental results because we would not have been 
able to guarantee that the selected normal VOIs would not 
be disturbed by the information from underlying malig-
nant lesions (although we attempted to avoid this as much 
as possible). Hence, we also selected a group of normal 
liver VOIs from patients diagnosed with hepatic haeman-
giomas or cysts as the external-control cohort to ensure 
a more stable experiment. The experimental results also 
confirm the existence of biases in one aspect; the AUROC 
for inter-group classification was generally better than that 
for intra-group classification with the testing set. However, 
this difference was not significant, with p > 0.05 obtained 
with the Delong test. This result indicates that despite the 
existence of biases, these models can still exert a predictive 
efficacy on the corresponding populations. The goal of the 
intra-group classification analysis is to screen HCC patients 
early to determine whether new high-risk lesions have 
developed, while the purpose of inter-group classification 

analysis is to determine whether there are risky lesions 
related to HCC in the screening of non-HCC populations. 
We invited two radiologists (Mj.X. and Lq.C.) with five 
years of experience to perform a reader test with the testing 
set (Fig. 2 of the supplementary material). In intra-group 
classification, the AUROCs obtained by the two radiolo-
gists were 0.62 and 0.75, respectively. In the inter-group 
classification, the AUROCs obtained by the two radiolo-
gists were 0.71 and 0.73, respectively. When lesions are 
still in the microscopic stage, very early diagnosis can be 
greatly challenging for radiologists. Our model can assist 
radiologists in diagnosing these lesions ultra-early, produc-
ing great benefit to the patients.

Radiomics features related to image transformation are 
highly important for revealing information on very small 
lesions. The most common such transformation is the 
application of filters, as the image information obtained by 
different filter transformations may be different. According 
to Zhang et al. [48], the AUROC of a model constructed 
from filter-free radiomics features was 0.728 with the vali-
dation cohort. In a study of Zhao et al. [45], the radiomics 
features extracted from images processed by the wavelet 
filter were not included; only the original features and the 
features extracted from images transformed by the LoG 
filter were included. Among them, most of the features for 
constructing the optimal model were LoG features, com-
prising approximately ~ 75%, and the AUROC was 0.771 
with the validation cohort. Throughout our research, in the 
best models for intra-group and inter-group classification, 

Fig. 5   Feature visualization of the gray level dependence matrix 
(GLDM) of arterial phase MRI by wavelet filter (a). Feature visuali-
zation of the first order Range of T1WI phase MRI by Laplacian of 
Gaussian (LoG; σ = 2 mm) filter (b). Feature visualization of the gray 

level size zone matrix (GLSZM) of arterial phase MRI by wavelet fil-
ter (c). Feature visualization of the first order Maximum of delayed 
phase MRI by none filter (d)
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the features extracted from images subjected to LoG fil-
tering and wavelet transformation accounted for ~ 97% 
and ~ 78% of the model construction, and the AUROCs 
were 0.93 and 0.97 with the testing set, respectively. The 
information contained in the original images is not suffi-
cient to explain all the phenomena and meet clinical needs. 
For further image analysis and research, some edge detec-
tion methods are often applied, such as LoG filters and 
wavelet transforms. The LoG is composed of a Gauss-
ian kernel and Laplacian kernel; the latter is sensitive to 
areas with rapidly changing intensities, highlighting spe-
cific texture information in the original texture image and 
enhancing edges. A Gaussian smoothing filter is usually 
needed to smooth the image before the Laplacian operation 
to reduce the susceptibility to noise. Wavelet transforma-
tion produces good local characteristics. When the scale 
of the wavelet function is large, the anti-noise ability is 
strong, and when the scale of the wavelet function is small, 
the ability to extract image details is strong. Therefore, a 
balance between suppressing noise and extracting image 
edge details can be achieved. We recognized that some 
features reflecting tumour heterogeneity and microenviron-
ment [7] were intensity (first-order) and texture (GLCM, 
GLSZM, etc.) features, consistent with other studies [22, 
49–52]. Depending on the organ being imaged and the 
type of imaging modality, the first-order statistics may or 
may not have been the same across all applications. In 
intra-group classification, the top three features used to 
construct the best model were ‘Large Dependence High 
Grey Level’, ‘Range’, and ‘Maximum’ (Table 4). We found 
that the median values of these features in the lesion areas 
were generally higher than that in the normal areas [367.65 
(175.13, 712.37) vs. 247.59 (159.17, 364.83), 32.73 
(21.89, 47.89) vs. 16.17 (13.31, 24.88), and 30.61 (21.39, 
47.29) vs. 19.83 (13.81, 28.25)]. In inter-group classifi-
cation, the top three features used to construct the best 
model were ‘Maximum’, ‘Zone Variance’, and ‘Variance’ 
(Table 4). The average value of the ‘Maximum’ feature of 
the lesion areas was greater than that of the normal area 
[238.23 ± 58.92 vs. 220.63 ± 44.07]. The median of the 
‘Variance’ feature value of the lesion areas was greater 
than that of the normal area [107.86 (38.94, 205.54) vs. 
12.99 (5.01, 28.06)], but the ‘Zone Variance’ value was 
lower than that of the normal area [57.72 (59.56, 193.61) 
vs. 115.79 (12.76, 119.92)]. ‘Entropy’ and ‘Uniformity’ 
are two commonly used features computed in medical 
imaging. In a liver study [53], researchers showed that the 
‘Total Entropy’ of the liver of healthy people was higher 
than that of patients with liver metastases. We calculated 
‘Sum Entropy’ instead of ‘Total Entropy’ and found that 
the results corresponded to the above conclusions [1.39 
(1.17, 1.64) vs. 1.44 (1.38, 1.50)]. Griethuysen et al. [18] 

stated that ‘Zone Entropy’ measures the uncertainty/ran-
domness in the distribution of zone sizes and grey levels. 
The higher values obtained in the lesion indicates more 
heterogeneity [3.41 (2.58, 4.05) vs. 2.00 (1.58, 2.58)] than 
in the normal area.

Limitations

The limitations of this study are as follows: first, the contour 
of the tumour area relied on manual delineation by an expe-
rienced radiologist, which required considerable time and 
energy expenditures. Second, this study relies on powerful 
registration algorithms, which can directly affect the accu-
racy of segmentation. For this reason, we asked the expe-
rienced radiologists to double-check the registration effect 
to minimize the impact of registration uncertainty on the 
experimental results. Third, a small number of samples were 
included, and this was a single-centre, retrospective study. 
The results of this study thus reflect only the patients at the 
centre and are not representative of the general population. 
Therefore, multicentre, large sample, and prospective stud-
ies are needed to further improve the results of this study.

Indeed, the essence of our experiment is hindsight. When 
applied to reality, we cannot define the VOI on the first MRI 
scan because there are no abnormalities when observed by 
the naked eye. However, the essence of research is to solve 
practical problems. The clinical transformations of this 
research in the future could entail the following: first, we 
need a software algorithm to automatically or semiautomati-
cally identify and segment the liver. Second, a sliding con-
volution kernel of a specific size, e.g., 5 × 5 or 7 × 7, would 
extract features from left to right sequentially for the whole 
liver or a specific liver segment and input these quantita-
tive data into our model to obtain the predicted probabil-
ity. These probabilities can be visualized with a heatmap, 
which conveniently displayed which areas are at high risk. 
This could help clinicians make decisions and intervene to 
achieve precision medicine.

Conclusions

Although new lesions in SHCC patients cannot be observed 
on MR imaging, a combination of radiomics features and 
machine learning algorithms can be sensitive to underlying 
abnormalities that cannot be detected by the naked eye.

In our study, we reported that the optimal model, based 
on the integration of radiomics features from four phases of 
MR images, could achieve excellent performance in evaluat-
ing microscopic pre-hepatocellular carcinoma lesions.
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